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1 INTRODUCTION

Consider the general class of control system designs for use in a flight control system. Sensors, actuators, and
data networks are designed redundantly to mitigate faults. The underlying platform implements a variant of
the time-triggered architecture (TTA) [1], which provides precise timing and reliability guarantees. Safety-
critical tasks and messages execute according to strict precomputed schedules to ensure synchronization
between replicated components and provide fault mitigation and management. Deployed software imple-
mentations of the control functions must pass strict certification requirements which impose constraints on
the software as well as on the development process. The additional burden of design analysis required to
establish safety increases cost and schedule, decreasing the flexibility of the development process.

In modern embedded control system designs, graphical modeling and simulation tools (e.g. Mathworks’
Simulink/Stateflow) represent physical systems and engineering designs using block diagram notations. De-
sign work revolves around simulation and test cases, with code generated from models when the design team
reaches particular schedule milestones. Control designs often ignore software design constraints and issues
arising from embedded platform choices. At early stages of the design, platforms may be vaguely specified
to engineers as sets of trade offs [2].

Software development uses Unified Modeling Language Computer-Aided Software Engineering (UML
CASE) tools to capture concepts such as types, components, interfaces, interactions, timing, fault handling,
and deployment. Software development work flows focus on source code creation, organization, and man-
agement, followed by testing and debugging on target hardware. Physical and environmental constraints
are not usually represented by the tools. At best such constraints may be provided as documentation to
developers.

Complete control system software designs rely on multiple aspects. Designers lack tools to model the
interactions between the hardware, software, and the environment with the required fidelity. For example,
software generated from a carefully simulated synchronous dataflow model of the controller functions may
fail to perform correctly when its functions are distributed over a shared network of processing nodes. Cost or
availability considerations may force the selection of platform hardware that limits timing accuracy or data
precision beyond originally designed bounds. None of the current design, analysis, or development techniques
support comprehensive (i.e. multi-domain) validation of certification requirements to meet government safety
standards. Model and code analysis tools must all be integrated to have the same semantic view of the design
details.

1.1 Overview

We aim to create a Domain Specific Modeling Language (DSML) to address problems of design consistency
across the entire development flow for a distributed embedded control system design. Often, the best
solutions involve iterating the design cycle as problems are discovered or problem understanding increases.
Our DSML captures the relationships between concepts in the different design domains described, and
supports the integration of analysis tools and code generation.

High-Confidence Design Challenges

We identify several specific challenges that arise because of inconsistencies between domains in a high-
confidence embedded development project. Some of the challenges are fundamental, and others arise because
of our attempts to use models to resolve consistency problems.
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1. Controller, software, and hardware design domains are highly specialized and often conceptually in-
compatible. Sharing model artifacts between designers in different domains can lead to consistency
problems in engineering solutions or implementations based on incomplete or faulty understanding
of design issues. Current state of the art resolves differences in understanding by reviewing many of
the details in numerous meetings and personal discussions. Manual reconciliation of issues occurs as
individual designers receive assignments to modify and correct the design. In the worst cases serious
incompatibilities are not discovered until very late in the design cycle, leading to project overruns and
cancellations[3]. Several large modeling tool projects (for example, AADL [4] and Topcased[5]) work to
integrate tools from independent research and development teams into a common design environment
featuring a standardized modeling language. Resolution of semantic consistency between integrated
tools to improve design efficiency is a serious issue in such efforts.

2. Incompatibilities between models and assumptions in different design domains create a related problem.
For example, controller design properties which are verified using simulation models may no longer be
valid when the design becomes software in a distributed processing network. Currently control designers
use conservative performance margins to avoid rework when performance is lost due to deployment on
a digital platform.

3. Long development, deployment, and test cycles limit the amount of iterative rework that can be done
to get a correct design. If a particular design analysis is costly or time-consuming, the team cannot
afford to iterate the design from its early stages in order to resolve problems. Currently high-confidence
design requires both long schedules and high costs.

4. Automating steps in different design and analysis domains for the same models and tools requires a
consistent view of inferred model relationships across multiple design domains. If integrated tools have
different views of the model semantics, then their analyses are not valid when the results are integrated
into the same design. Therefore, all of the tools used in the design process must have a consistent view
of design details. Explicitly reconciling semantics between formalisms and tools is costly and time-
consuming. Often the effort cannot be justified outside of academic research unless the results are
applicable to numerous designs.

5. As our research explores new directions in high-confidence design, modification of the ESMoL meta-
model (language specification) creates maintenance problems for ESMoL models and for interpreter
code that translates them into analysis artifacts and generated code. We would like to isolate interpreter
development from the language to a degree in order to allow the ESMoL language to evolve with our
research. ESMoL models can be updated to new versions of the language using features built into the
tools, but nothing exists yet to handle those problems for interpreter code.

Model-Integrated Solutions

We propose a suite of tools that aim to address many of these challenges. Currently under development at
Vanderbilt’s Institute for Software Integrated Systems (ISIS), these tools use the Embedded Systems Mod-
eling Language (ESMoL), which is a suite of domain-specific modeling languages (DSML) to integrate the
disparate aspects of a safety-critical embedded systems design and maintain proper separation of concerns be-
tween control engineering, hardware specification, and software development teams. The Embedded Systems
Modeling Language (ESMoL) encodes in models the relationships between controller functions specified in
Simulink, software components that implement those functions (i.e. dataflow, messaging interfaces, etc. . . ),
and the hardware platform on which the software will run. Many of the concepts and features presented here
also exist separately in other tools. We describe a model-based approach to building a unified model-based
design and integration tool suite which has the potential to go far beyond the state of the art.

1. The ESMoL language and tools provide a single multi-aspect embedded software design environment
so that modeling, analysis, simulation, and code generation artifacts are all clearly related to a single
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design model. We aim to incorporate models appropriate to the different design domains in a consistent
way using the Model-Integrated Computing (MIC) approach discussed below. ESMoL models use
language-specified relations to associate Simulink control design structures with software and hardware
design concepts to define a software implementation for controllers. Further, ESMoL is a graphical
modeling language which integrates into existing Simulink-based control design work flows[6].

2. ESMoL models include objects and parameters to describe deployment of software components to
hardware platforms. Analysis artifacts and simulation models generated from ESMoL models contain
representations of the behavioral effects of the platform on the original design. We include platform-
specific simulations to assess the effects of distributed computation on the control design [7].

3. ESMoL’s integrated analysis, simulation, and deployment capabilities can shorten design cycles. The
ESMoL tool suite includes integrated scheduling analysis tools which converge quickly in most cases
([8]) so that static schedules can be calculated in rapid design and simulation cycles. We include
automatic generation of platform-specific task configuration and data communications code in order
to rapidly move from modeling and analysis to testing on actual hardware.

4. ESMoL uses a two-stage interpreter architecture in order to integrate analysis tools and code generators.
The first stage resolves any inferred model relationships from ESMoL models into a model in an
abstract language (ESMoL Abstract), much in the same way that a parser creates an abstract syntax
tree for a program under compilation. The ESMoL design language allows relational inference where
appropriate in order to make the user experience more productive. The Stage 1 interpreter resolves
object instances, parameters, and relations, and stores them in an ESMoL Abstract model. Model
interpreters for analysis and generation use this expanded model to guarantee a consistent view of
the relationships and details, and to share code efficiently in an integrated modeling tool development
project. The two-stage approach also isolates the interpreter code from the structure of the ESMoL
language. Changes to the language are principally isolated from the interpreter code by the first stage
transformation.

5. We generate analysis models and code from the intermediate language using simple template generation
techniques[8]. Round-trip incorporation of calculated schedule analysis results back into the ESMoL
model helps to maintain consistency as models pass between design phases.

Fig. 1 depicts a design flow that includes a user-facing modeling language for design and an abstract
intermediate language for supporting interpreter development and maintenance. During design, a software
modeler imports an existing Simulink control design into the Generic Modeling Environment (GME) [9],
configured to edit ESMoL models (Step 1). The modeler then uses the dataflow models imported from
Simulink to specify the functions of software components which will be used to implement the controllers.
These component specifications represent synchronous dataflow models that are realized as C code calls, and
which are extended with interfaces defining input and output message structures for data distribution. We
also specify the mapping from dataflow I/O ports to and from fields in the messages (Step 2). Designers
specify the hardware topology for a time-triggered distributed processing network using another integrated
design language (Step 3). A modeler instantiates component instances to create multi-aspect models where
logical dependencies, hardware deployment, and timing models can be specified for the software architecture
(Steps 4 and 5).

A completed model is transformed (via the Stage 1 transformation) into a model in the ESMoL Abstract
language, resolving all implied relationships and structural model inferences (Step 6). Model interpreters
for design analysis (in this case calculating time-triggered schedules) are integrated using the Stage 2 model
transformation from ESMoL Abstract models to analysis specifications (Step 7). Another model interpreter
imports results from the analysis (in this case, scheduled start times) back into the ESMoL Abstract and
ESMoL models (Steps 8 and 9). Finally, designers can also create platform-specific simulations and generate
deployable code using the Stage 2 transformation (Step 10).

In a later section we discuss the relationship between the behavior represented by the original Simulink
model and the behaviors represented by ESMoL and ESMoL Abstract (Steps 5 and 10). ESMoL provides
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Figure 1: Flow of ESMoL design models between design phases.
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a great deal of modeling flexibility, as subsets of the Simulink model are used in Step 2 to define software
components. These subsets can be replicated to model redundant computation networks, for example.
In Step 4 they are aggregated to define dataflows, and then partitioned to define deployment of those
dataflows. With all of the language flexibility provided, we need to ensure that the synchronous semantics
of the original Simulink model are preserved in the distributed implementation in order to ensure that the
inherent correctness properties (functional determinism, timing determinacy, and deadlock freedom) are also
preserved.

The illustrated design flow represents only a single iteration in the overall development work flow to
be discussed later. In the sequel we will use the expression design flow to indicate the work of modeling,
analyzing, and generating code for a single design. Development flow will indicate the macro-level iterative
development process which includes one or more design flow iterations.

2 Related Work: Languages and Tools for Embedded Systems
Design

A number of projects seek to bring together tools and techniques which can automate different aspects of
high-confidence distributed control system design and analysis:

• AADL is a textual language and standard for specifying deployments of control system designs in data
networks[4]. AADL projects also include integration with the Cheddar scheduling tool[10]. Cheddar is
an extensible analysis framework which includes a number of classic real-time scheduling algorithms[11].

• Giotto[12] is a modeling language for time-triggered tasks running on a single processor. Giotto uses a
simple greedy algorithm to compute schedules. The TDL (Timing Definition Language) is a successor
to Giotto, and extends the language and tools with the notion of modules (software components)[13].
One version of a TDL scheduler determines acceptable communication windows in the schedule for all
modes, and attempts to assign bus messages to those windows[14].

• The Metropolis modeling framework[15] aims to give designers tools to create verifiable system models.
Metropolis integrates with SystemC, the SPIN model-checking tool, and other tools for schedule and
timing analysis.

• Topcased[5] is a large tool integration effort centering around UML software design languages and
integration of formal tools.

• Several independent efforts have used the synchronous language Lustre as a model translation target
(e.g. [16] and [17]) for deadlock and timing analysis.

• RTComposer[18] is a modeling, analysis, and runtime framework built on automata models. It aims to
provide compositional construction of schedulers subject to requirements specifications. Requirements
in RTComposer can be given as automata or temporal logic specifications.

• The DECOS toolchain [19] combines a number of existing modeling tools (e.g. the TTTech tools,
SCADE from Esterel Technologies, and others) but the hardware platform modeling and analysis
aspects are not covered.

We are creating a modeling language to experiment with design decoupling techniques, integration of
heterogeneous tools, and rapid analysis and deployment. Many of the listed projects are too large to allow
experimentation with the toolchain structure, and standardization does not favor experimentation with
syntax or semantics. Due to its experimental nature some parts of our language and tool infrastructure
change very frequently. As functionality expands we may seek integration with existing tools or standards
as appropriate.
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Figure 2: Platforms. This metamodel describes a simple language for modeling the topology of a time-
triggered processing network.

3 Tools and Techniques

The models in the example and the metamodels described below were created using the ISIS Generic Modeling
Environment tool (GME) [9]. GME allows language designers to create stereotyped UML-style class diagrams
defining metamodels. The metamodels are instantiated into a graphical language, and metamodel class
stereotypes and attributes determine how the elements are presented and used by modelers.

The Model-Integrated Computing (MIC) approach[20] builds up DSMLs by creating specific sublan-
guages to capture concepts and relationships for different facets of the design domain, and then integrating
those sublanguages into a common modeling language by precisely specifying the structural relationships
between those sublanguages. In a GME metamodel a sublanguage is called a paradigm. We will use the
terms sublanguage, language, and paradigm interchangeably. Confusion is resolved by explicitly naming the
paradigms involved in the discussion.

The GME metamodeling syntax may not be entirely familiar to the reader, but it is well-documented
in Karsai et al [9]. Class concepts such as inheritance can be read analogously to UML. Class aggregation
represents containment in the modeling environment, though an aggregate element can also be flagged as
a port object. In the modeling environment a port object will also be visible at the next higher level in
the model hierarchy, and available for connections. One unique notation in MetaGME (the GME modeling
language for creating modeling languages) is the dot used for relating an association class to its endpoint
connection classes. For example, the dot between the Connectable class and the Wire class (Fig. 2) represents
a line-style connection in the modeling environment. One other useful concept from a GME metamodel is
the reference. A reference object appears in the Metamodel specification associated with another class. This
allows the modeler to create an object with the same interface (port structure) as the associated class, but
which actually refers to the original object, much in the same way that a pointer refers to a different object
in memory in a computer program.

Another key technology used in the ESMoL tool suite is the GReAT model transformation language (and
its associated code generation tools)[21]. The ESMoL suite contains a pair of platform-independent code
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generators for Simulink and Stateflow models. The transformations take Simulink and Stateflow blocks,
and create equivalent models in another language (SFC) that corresponds to an abstract syntax graph
for fragments of C code. Functional code generation proceeds by simply traversing and printing the SFC
models. Other generators use the UDM C++ modeling API [22] to create code implementing the platform-
specific code to wrap functions as tasks, define communication messages structures, and configure a time-
triggered virtual machine to execute the generated code. These generators as well as generators for platform-
resimulation models are described elsewhere (see Porter et al [6], Thibodeaux [23], and Hemingway et al [7]
for details).

Platform-based design partitions design frameworks into designer-supplied components and plat-form-
provided services[2]. High-confidence systems require services and guarantees for correct and efficient exe-
cution such as real-time execution, data distribution, and fault tolerance. Platform-based design allows the
construction of complex systems by facilitating reuse over common execution behaviors. The platform also
defines a formal model of computation (MoC) [24], which predicts how the concurrent objects of an appli-
cation interact (i.e. synchronization and communication). We use an implementation of the time-triggered
architecture as a platform layer in order to reduce timing variances in sensing, actuation, and distributed
data communications [1][23]. The central idea of the time-triggered architecture is to provide deterministic
and fault-tolerant synchronous execution in order to ensure the consistent behaviors of distributed replicas
of controller components.

4 The ESMoL Languages

To motivate our description of the facets of ESMoL, we focus on an actual control design model for the
Starmac quadrotor helicopter [25][26]. Fig. 3 depicts its control architecture, consisting of two nested
control loops. From left to right in the diagram, the Input Filters restrict the input trajectory commands to
prevent maneuvers beyond the physically safe limits of the helicopter. The Outer Loop PD controller takes
the requested position reference and the position data from the sensors, and calculates the attitude required
for the quadrotor to achieve the requested change in position. Saturation is another limiter to ensure that
the commanded attitude actuation is realizable. The Inner Loop PD controller takes the attitude command
from the Outer Loop and measured attitude data, and calculates the motor thrusts required to achieve the
commanded attitude. Motor Compensator filters the thrust commands to account for response delays in the
motors which drive the rotors. Finally, the Dynamic Model describes the physical behavior of the helicopter,
including the imprecision introduced by the sensors which measure position and attitude. The ESMoL model
examples given below come from the design model for the quadrotor, except where noted.

Figure 3: Basic architecture for the quadrotor control problem.
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Requirements Analysis (RA)

Formal requirements modeling offers great promise, but in ESMoL requirements modeling is still in concep-
tual stages. Informally, we require stability of the software-implemented closed-loop control system over the
full range of possible inputs, and satisfaction of the calculated timing constraints (task release times and
deadlines).

Functional Design (FD)

In ESMoL, functional specifications for components can appear in the form of Simulink/Stateflow models
or as existing C code snippets. ESMoL does not support the full semantics of Simulink. In ESMoL the
execution of Simulink data flow blocks is restricted to periodic discrete time, consistent with the underlying
time-triggered platform. This also restricts the type and configuration of blocks that may be used in a design.
Continuous integrator blocks and sample time settings do not have meaning in ESMoL. C code snippets are
allowed in ESMoL as well. C code definitions are limited to synchronous, bounded response time function
calls which will execute in a periodic task with a fixed amount of memory.

An automated importer constructs an ESMoL model from a Simulink control design model. The new
model is a structural replica of the original Simulink model, only endowed with a richer software design
environment and tool-provided APIs for navigating and manipulating the model structure in code. The
Simulink and Stateflow sublanguages of our modeling environment are described elsewhere[27]. The ESMoL
language evolved from another DSML known as ECSL-DP. They share many concepts, but ESMoL departs
from many of the modeling structures previously described by Neema in order to increase the flexibility and
generality of the language.

Component Design (CD)

In the component design phase (CD) we specify software interfaces for the functions which will run in the
distributed controller network. A component type has a unique name (i.e. InnerLoop), and information to
find or generate its implementation in C (in this case, the file name and model path to the Simulink subsys-
tem “QuadRotor/STARMAC/InnerLoop”). A component specification contains a reference to a Simulink
subsystem, as well as references to message structure objects. The message structure objects will represent
message types, and each reference from a component definition represents an interface through which that
message is sent or received. Internally, the direction of the connection from the message reference to the
ports on the Simulink object determine whether the port sends or receives. We do not allow multi-directional
message transfers on the same interface. When the component is instantiated in the design model (e.g., in the
logical architecture diagram described below) the message references specified here will appear as ports on
blocks representing the instance. Connections to and from those ports represent the transfer of an instance
of that data message into or out of the component instance.

Fig. 4 shows an example of a model from the component interface definition language. Message fields
and their sizes are specified here, as well as component implementations and interfaces. These specifications
define software component types in an ESMoL model, which are instantiated and assigned to hardware in the
architecture and deployment models, respectively. The quadrotor model has four different component types
(each instantiated once) and six message types (instantiated as the ports objects appearing on the component
instances later in the design). The breakout inset in the figure shows the internals of the DataHandler
component specification. The sensor convert subsystem block in the center is a reference to a Simulink
block specifying the data conversions that transform raw sensor data into scaled, formatted data for use by
the controller blocks.

The blocks on the outer edges of the figure (Fig. 4) are references to messages defined at the top level of
the system types model. On the left is the raw data message from the sensors. On the right are the attitude
data message (for local consumption by the inner loop), and the position data message (sent remotely to
the outer loop). The three message reference blocks in the inset appear as ports on the DataHandler block
(top left in the figure). Inside the component type definition, ports on the message objects correspond to
C structure fields. The field types are inferred from the data types imported from the connected Simulink
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Figure 4: Quadrotor component types model from the SysTypes paradigm.
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Figure 5: SystemTypes Metamodel.

signal port objects. The connections between the message ports and the Simulink reference block ports
describe the direction and details of data flow between the implemented message structures and the specified
functional block.

Fig. 5 portrays the SystemTypes sublanguage, which encodes these structures and relations. Components
of different types (here Simulink block references or C code blocks) specify the component functions. Message
references (MessageRef objects) define interfaces on the components, and ports on message objects (MsgPort
objects) represent message data fields as in the DataHandler example. The Input and Output port classes
are typed according to the implementation class to which they belong (i.e., either Simulink signal ports or
C function arguments). The connections between the block reference and the MsgPort objects describe the
details required to marshal and demarshal the data fields in the messages for use by the specified function.
Synchronous, periodic, discrete-time Simulink blocks and bounded-time synchronous C function calls are
compatible at this modeling stage, because their model elements both represent the code that will finally
implement the functions. These units are modeled as blocks with ports, where the ports represent parameters
passed into and out of C function calls. The Trigger and Event types are not discussed here, as they relate
to future work in the ESMoL tool suite.
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Figure 6: Overall hardware layout for the quadrotor example.

Hardware Architecture (HwA)

Fig. 6 illustrates the example platform model. The quadrotor architecture is deployed to a small embedded
processor assembly manufactured by Gumstix, Inc. The outer loop position control is handled by an Intel
PXA ARM processor (the Gumstix board), and attitude control and vehicle I/O are handled by an Atmel
Atmega128 AVR processor (the Robostix board). The I/O occurs over serial connections to the sensors and
motor actuators. The serial devices reside within the processor, and are modeled in the diagram as objects
connecting the input and output ports on the processor to the object representing the plant dynamics.
The two processors communicate via a synchronous I2C bus which runs a software emulated time-triggered
protocol.

A simple platform definition language (Fig. 2) contains relationships and attributes describing time-
triggered networks. The models contain network topology and parameters to describe behavioral quantities
like data rates and bus transfer setup times. Platforms are defined hierarchically as hardware units with ports
for interconnections. Primitive components include processing nodes and communication buses. Behavioral
semantics for these networks come from the underlying time-triggered architecture. The time-triggered plat-
form provides services such as deterministic execution of replicated components and timed message-passing.
Model attributes for hardware also capture timing resolution, overhead parameters for data transfers, and
task context switching times.

Architecture Language

Logical architecture, deployment, and timing/execution models represent different design aspects for the
same set of component instances. GME allows us to define the language in such a way that these three
model aspects are simply different views of the same set of model elements. Together, the information in
the three aspects define a model which is complete with respect to scheduling analysis, platform-specific
simulation, and code generation.

System design models defined in the architecture language do not necessarily represent complete designs.
For simple designs (such as the quadrotor example) a single architecture model can capture all of the details of
the software model. More complex designs require an additional layer of organization which is not described
here. It suffices to say that designs represented in the ESMoL Architecture language can be considered
as fragments which can be assembled into more complex structures. This is an active area of research for
our ESMoL modeling efforts, as the higher-level architecture models should also account for fault modeling,
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Figure 7: Quadrotor architecture model, Logical Architecture aspect.

evaluation, and performance issues.

• Logical Software Architecture (SwA) Aspect Fig. 7 portrays an ESMoL model example speci-
fying logical data dependencies between quadrotor software component instances, independent of their
distribution over different processors. The software architecture model describes the logical dataflow
dependency relationships between component instances. Semantics for SwA Connections are those
of task-local synchronous function invocations (with shared memory messaging) or message transfers
between remote tasks using time-triggered communication. In this model the interpretations for the
dependency links have not been specified. Those details appear in the deployment model.

For the quadrotor, the RefHandler and DataHandler components receive and process data from the
sensors. They pass their formatted data to the respective control blocks. The OuterLoop calculates an
attitude reference to achieve the requested position. The InnerLoop issues thrust commands to achieve
the requested attitude.

In a design model, creation of a (GME) reference object to one of the component types corresponds to
instantiation. Fig. 8 illustrates this idea. Using the same controller components along with a few new
components to implement voting logic, we have specified the logical architecture for a triply-redundant
version of the quadrotor model. Each ESMoL component type is used multiple times in a single design,
expanding the model structure far beyond the size and scope of the original Simulink design. This
particular model diagram is only shown to illustrate the instantiation mechanism.

• Deployment Models (SY, DPL) Fig. 9 displays the deployment model – the mapping of software
components to processing nodes, and data messages to communication ports. Two of the four compo-
nents are mapped to each of the two processors. For the quadrotor, the RefHandler and OuterLoop
tasks run on the Gumstix processor. The InnerLoop and DataHandler tasks run on the Robostix
processor. RefHandler receives position commands from a socket connection. DataHandler receives
sensor data from a UART channel (a processor port in the model diagram). Position and attitude data
are exchanged over the time-triggered bus, so the corresponding message ports are connected to bus
channel objects on their respective processors. InnerLoop sends thrust commands through a UART
channel, hence the connection to the appropriate processor port.

In the figure the dashed connection from a component to a node reference represents an assignment of
that component to run as a task on the node. The port connections represent the hardware channel
through which that particular message will travel. Remote message dependencies are assigned to bus
channels on the node. Local data dependencies are not specified here, as they are represented in the
logical architecture. IChan and OChan port objects on a node can also be connected to message
objects on a component. These connections represent the flow of data from the physical environment
through sensors (IChan objects) or the flow of data back to the environment through actuators (OChan
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Figure 8: Triply-redundant quadrotor logical architecture. This is not part of the actual quadrotor model,
and is only given for illustration.

Figure 9: Quadrotor architecture model, Deployment aspect.
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Figure 10: Details from the deployment sublanguage.

objects). Model interpreters use deployment models to generate platform-specific task wrapping and
communication code as well as scheduling problem specifications.

The metamodel in Fig. 10 illustrates the classes and relationships for both the logical architecture
connections and the deployment mapping. GME metamodels have a separate visualization aspect that
allows us to define aspects in ESMoL and indicate which classes and connections should be visible in
each aspect. ComponentRef objects are software component instances, and are visible in both aspects.
In the logical architecture aspect, Dependency connectors define message transfers between component
instance ports. The ports represent interfaces for each component instance. For the deployment aspect
we add NodeRef objects (node references) and connectors (ComponentAssignment and CommMapping)
to identify the mapping of tasks and messages to the platform model.

The deployment aspect captures the assignment of component instances as periodic tasks running on
a particular processor. In ESMoL a task executes on a processing node at a single periodic rate. All
components within the task execute synchronously. Data sent between tasks take the form of messages
in the model. For data movement, the runtime provides logical execution time semantics found in
time-triggered languages such as Giotto [28] – message transfers are scheduled after the deadline of
a sending task, but before the release of the receiving tasks. Tasks never block, but execute with
whatever data is available for each period.

• Timing Models Fig. 11 shows the quadrotor timing and execution model, where the designer at-
taches timing parameter blocks (of type TTExecInfo) to components and messages. TTExecInfo block
configuration parameters include execution period and worst-case execution time. In the quadrotor
model all task and message transfers are timed. The quadrotor data network runs at a rate of 20ms.
Particular timings for tasks and data transfers will be discussed below in the evaluation discussion.

The timing sublanguage (Fig. 12) allows the designer to specify component execution constraints.
Individual components can be annotated with timing objects that indicate whether they should be ex-
ecuted strictly (i.e., via statically scheduled time-triggered means), or as periodic real-time or sporadic
tasks. Messages are similarly annotated. The annotation objects contain parameters such as period
and worst-case execution time that must be given by the designer. Automated scheduling analysis fills
in the schedule fields.

The execution model also indicates which components and messages will be scheduled independently,
and which will be grouped into a single task or message object. The time order of the message writer
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Figure 11: Quadrotor architecture model, Timing aspect.

Figure 12: Details from timing sublanguage.

16



and readers are enforced by the static schedule. The locality of a message transfer is specified in the
logical architecture and deployment aspects. In the case of processor-local data transfers, transfer
time is neglected – reads and writes occur in locally shared memory. After a static schedule has been
calculated, task and message release times are also stored in the timing objects.

Behavior of the deployed software components depends on the execution times of the functions on the
platform, the calculated schedule, and coordination between distributed tasks. The calculated static
execution schedule can be used to simulate the control design with additional delays to assess the
impact of the platform on performance.

5 Integrating Tools with ESMoL

Figure 1 depicts a design flow that includes a user-facing modeling language for design and an abstract in-
termediate language for supporting interpreter development and maintenance. A completed ESMoL model
is transformed (via the Stage 1 transformation, Step 6 in the figure) into a model in the ESMoL Abstract
language, where all implied relationships and structural model inferences have been resolved. Model in-
terpreters for calculating time-triggered schedules, creating platform-specific simulations, and generating
deployable code are integrated using the Stage 2 transformation.

Rather than designing a user-friendly graphical modeling language and directly attaching translators to
analysis tools, we created a simpler abstract intermediate language whose elements are similar to those of
the user language. The first model transformation flattens the user model into the abstract intermediate
form, translating parameters and resolving special cases as needed. Generators for code and analysis are
attached to the abstract modeling layer, so the simpler second-stage transformations are easier to maintain,
and are isolated from changes to the user language.

In the model integrated computing approach, domain specific modeling languages represent different
aspects of the design, with the aim of consistently integrating different concepts and details for those design
aspects and integrated analysis tools. Our tools enforce a single view of structural inference in the design
model. We will cover some of the transformation details to illustrate this concept. This approach can be
considered as an implementation of the tool integration ideas in [29], but with variations of the details
included in the design language.

5.1 Stage 1 Transformation

Stage 1 translates ESMoL models into an abstract intermediate language that contains explicit relation ob-
jects that represent relationships implied by structures in ESMoL (Fig. 13). This translation is similar to the
way a compiler translates concrete syntax first to an abstract syntax tree, and then to intermediate semantic
representations suitable for optimization. Stage 1 was implemented using the UDM model navigation API,
and written in C++. The ESMoL Abstract target model is the source for the transformations implemented
in Stage 2.

Each analysis translation works from a single view of the design model, simplifying the implementations
of tool-specific translations. As an example, consider the model shown in Fig. 7. Component DataHandler
sends data messages to the other two components, as denoted by the dependency arrows. The deployment
view (Fig. 9) shows that each component executes on a different processor. Locally, the port object on each
component (in both diagrams) represents the component’s view of the data message sent over the wire. The
solid connections in the deployment diagram indicate which device on the processing node will be used to
transfer the data. Specified messages will participate in processor-local synchronous data flows, or time-
triggered exchanges over the network. All of these connections and entities are related to a single semantic
message object, which is related to other elements in different parts of the user model (see the FormattedData
message in Fig. 18). The execution aspect contains timing information objects, which provide information
for fully specifying the various data transfers.

The first stage transformation checks constraints to ensure that each object is used correctly throughout
the design, ensuring well-formedness. The Stage 1 transformation then reduces this complex set of relations
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Figure 13: Stage 1 Transformation.

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objIChan, objMsgInst) | Acq = {(objMsgInst, objCompInst,

id(objIChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objIChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objIChan) ∈ NCidN

∧ parent(objIChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 1: Acquisition relation transformation details.
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Figure 14: Acquisition relation in ESMoL Abstract, representing the timed flow of data arriving from the
environment.

to a single message object with relations to the other objects that use it. Timing parameters from the
platform model are used to calculate a behavioral model for messages and components, including component
start times, message transfer times, and the duration of each message on the bus.

We describe here some of the transformations of user-facing ESMoL language objects and relations to
a more compact set of relations that simplify generation of design artifacts from the model. The most
direct example of such a semantic assumption is the single-message abstraction. Data transfers between the
functional code and the message fields must be compatible. We enforce compatibility both by constraint
checking, and by the use of a single ESMoL Abstract message instance object for all participants in the data
interchange. The Signal object in the abstract graph represents the transfer of a single datum to or from
the message. For simplicity and clarity we will not show the Signal objects in the diagrams, as they are
numerous.

The transformations described here capture different forms of the single-message transformation. This is
not a complete description of the entire first stage transformation, but provides a representative subset for
illustration.

In the formal descriptions below, ObjType (capitalized) is the set of objects of type Type, and objType

(lowercase) is an instance from that set. We also use two functions id : ObjType → Z+ for a unique identifier
of an object, and parent : ObjType1 → ObjType2 to find the parent (defined by a containment relation in the
model of an object). The parent relation is unique.

Acquisition: From the Environment to Data
In ESMoL Abstract Acquisition objects relate all of the different model entities (and therefore, their

design parameters) that participate in the collection of data from an input device such as an analog to
digital converter or serial link. The Stage1 transformation enforces certain cardinality constraints to ensure
the validity of this transformation – for example, each message instance is related to exactly one sender
and possibly multiple receivers. A message relationship can be implied by different types of connections in
ESMoL, so Stage1 must determine that only one such relationship exists.

The ESMoL relations shown in Table 1 are described as follows:

• CA ComponentAssignment: (the dashed connection shown in Fig. 9) assigns a task to run on a
particular processor (idN ).

• AC AcquisitionConnection: (the directed connection from processor object ports to component
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Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objOChan, objMsgInst) | Act = {(objMsgInst, objCompInst,

id(objOChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objOChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objOChan) ∈ NCidN

∧ parent(objOChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 2: Actuation relation transformation details.

Figure 15: Actuation relation in ESMoL Abstract, representing the timed flow of data back into the envi-
ronment.

message ports) assigns a hardware input peripheral data channel (modeled as an object of type IChan)
to a data-compatible message structure in the component.

• NC: Containment relationship of the channel object (port) in the Node object.

• CC: Containment of the message instance object (port) in the component instance object.

The metalanguage for ESMoL Abstract captures the structural semantic reductions shown in Table 1
in a compact form (see Fig. 14), so that all of the consumers of the input data get the same consistent
structural view of the model. This transformation takes the ESMoL objects described in the left column of
the table and produces a single relation for each collection representing an ESMoL Abstract data acquisition
specification. The modeling tools provide a programming interface for traversing, reading, and editing the
models. The collected relations are also more efficiently processed by synthesis interpreters, as they avoid
extra traversals to gather the objects.

Actuation: From Data to the Environment
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Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}
Locals = {(objMsgInst1, objCompInst1,

LDid1 = {(objMsgInst1, objMsgInst) | objMsgInst2, objCompInst2, objN ) |
id(objMsgInst1) = id1} (objN , objCompInst1) ∈ CAidN

∧ (objN , objCompInst2) ∈ CAidN

LDTC = {(objMsgInstj , objMsgInstj+1)| ∧ (objMsgInst1, objMsgInst2) ∈ LDTC

in the sequence ∧ (objCompInst, objMsgInst) ∈ CC
((objMsgInst1, objMsgInst2) ∈ LDid1 ,
(objMsgInst2, objMsgInst3) ∈ LDid2 ,

. . .
(objMsgInstj , objMsgInstj+1) ∈ LDidj )}

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 3: Local (processor-local) data dependency relation.

The transformation to an Actuation object is nearly identical to that of the Acquisition transformation,
but the data direction, cardinalities, and types involved are different. The chief difference is that actuation
objects can only have one associated task, where acquisition data may be broadcast to multiple tasks. Table 2
gives the details of the transformation from relations in ESMoL to the actuation relation in ESMoL Abstract.
Fig. 15 shows the structure of the resulting classes in ESMoL Abstract.

Local Dependencies: Data Movement within Nodes Local dependencies represent not only direct
data dependencies between nodes on a particular processor, but also implied dependencies through remote
data transfer chains starting and ending on the same processor. This is modeled as the set LDTC of all pairs
in the transitive closure of dependencies starting with the message instance objMsgInst1. The collected set
of local dependencies ( Locals ) intersects this set with those message instances contained in components on
the current processing node (i.e. from the set CAidN

). Table 3 gives the transformation details.
Bus Transfers: Data Movement Between Nodes Bus transfers are slightly more complicated, as

they involve two or more endpoints. Table 4 and Fig. 17 contain the details. The send and receive relations
are modeled separately as they have different cardinalities (one sender and possibly multiple receivers). The
platform-specific code generators produce separate files for each processor (recall that the network may be
heterogeneous). Fig. 18 shows an example of the objects and parameters based on our design example.
The object diagram is an instance of the abstract language constructs shown in Figs. 14, 16, and 17. The
diagram depicts ESMoL Abstract relations of type Acquisition, LocalDependency, Transmits, and Receives.
These objects are involved in collecting position data from the sensors (task DataHandler from data channel
Robostix UARTChan1 ), and then redistributing it locally to the InnerLoop task as well as remotely to the
OuterLoop task through the bus channel interfaces on the Robostix and Gumstix nodes.

5.2 Stage 2 Transformation Outputs: Analysis Models and Code

Stage 2 generates analysis models and code from ESMoL Abstract models (Fig. 19). To perform the actual
generation of analysis models and code, we use the CTemplate library[30] called from C++. The current
Stage 2 interpreter is generally used in a particular sequence:

1. Generation of the scheduler specification.

2. Creation of a TrueTime simulation model.
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Figure 16: Local dependency relation in ESMoL Abstract, representing data transfers between components
on the same processing node.

Specified ESMoL Relation Sets ESMoL Abstract Relation

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objMsgInst, objBChan) | Trn = {(objMsgInst, objCompInst,

id(objBChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objBChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objBChan) ∈ NCidN

∧ parent(objBChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 4: Transmit relation transformation details. This represents the sender side of a remote data transfer
between components.
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Specified ESMoL Relation Sets Semantic Construct

CAidN
= {(objNode, objCompInst) |

id(objNode) = idN}

ACidCh
= {(objBChan, objMsgInst) | Rcv = {(objMsgInst, objCompInst,

id(objBChan) = idCh} objN , objCh) |
(objN , objCompInst) ∈ CAidN

NCidN
= {(objNode, objBChan) | ∧ (objCh, objMsgInst) ∈ ACidCh

id(objNode) = idN ∧ (objN , objBChan) ∈ NCidN

∧ parent(objBChan) = objNode} ∧ (objCompInst, objMsgInst) ∈ CC

CC = {(objCompInst, objMsgInst) |
parent(objMsgInst) = objCompInst}

Table 5: Receive relation transformation details.

Figure 17: Transmit and receive relations in ESMoL Abstract, representing the endpoints of data transfers
between nodes.
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Figure 18: Object diagram from part of the message structure example from Figs. 7 and 9.
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Figure 19: Stage 2 Interpreter.

3. Generation of platform-specific code using the FRODO virtual machine API.

We will cover details for generation of scheduling problem specifications and FRODO-specific code. The
TrueTime code generation is documented elsewhere[7].

Scheduling Problem Generation

The control design models provide task period configurations, and either profiling or static analysis provides
worst-case execution time parameters for each component instance. Data transfer rates and overhead param-
eters for communication buses are stored in the platform model. [8] describes the mapping of model structure,
execution information, and platform parameters into actual constraint model details, extending earlier work
on constraint-based schedule calculation[31]. The Gecode constraint programming tool [32] solves these con-
straints for task release and message transfer times on the time-triggered platform. The scheduling process
guarantees that the implementation meets the timing requirements required by the control design process.

Fig. 20 portrays the steps a model transformation takes while distilling details from ESMoL and creating
a scheduling problem model whose syntax represents the proper sets of behaviors. If the schedule is feasible,
task and message release time results are fed back into the ESMoL model as configuration parameters. We
describe the steps indicated in the diagram here:

1. We start with a design model specified using ESMoL.

2. The two-stage transformation converts the model to an equivalent model in ESMoL Abstract, and then
invokes the templates to generate a scheduling problem specification.

3. We invoke the scheduling tool, which performs the following steps:

(a) Parses the problem specification to import the model into the constraint generation environment.
(b) Calculates the hyperperiod length to determine the number of instances required for each task

and message.
(c) Translates task and message instance relationships into constraints in Gecode (as described in

[8]).
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Figure 20: Integration of the scheduling model by round-trip structural transformation between the language
of the modeling tools and the analysis language.
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Resolution 1ms

Proc RS 4MHz 0s 0s
Comp InnerLoop =50Hz 1.9ms
Comp DataHandling =50Hz 1.8ms
Comp SerialIn =50Hz 1us
Comp SerialOut =50Hz 1ms
Msg DataHandling.sensor_data_in 1B RS/SerialIn RS/DataHandling
Msg InnerLoop.thrust_commands 37B RS/InnerLoop RS/SerialOut
Msg DataHandling.ang_msg 1B RS/DataHandling RS/InnerLoop

Proc GS 100MHz 0s 0s
Comp RefHandling =50Hz 1us
Comp OuterLoop =50Hz 245us
Msg RefHandling.pos_ref_out 9B GS/RefHandling GS/OuterLoop

Bus TT_I2C 100kb 1.3ms
Msg OuterLoop.ang_ref 20B GS/OuterLoop RS/InnerLoop
Msg DataHandling.pos_msg 8B RS/DataHandling GS/OuterLoop

Table 6: Scheduling spec for the Quadrotor example.

(d) Solves the constraint problem, possibly indicating infeasibility.

(e) If a valid schedule results, it is written out to a file.

4. The results are imported into the ESMoL model and written to the appropriate objects.

Table 6 contains the distributed schedule specification for our quadrotor example, including the following
elements:

• Resolution (seconds) specifies the size of a single processing tick for the global schedule. This should
correspond to the largest measurable time tick (quantum) of the processors in the network. All tasks
and messages in the schedule timeline are discretized to this resolution.

• Proc specifies a processing node. Parameters are name, processor speed (Hz), and message send/re-
ceive overhead times (these default to zero seconds if unspecified). Processor names must be unique.

• Comp (or task) belongs to the most recently specified processor. A component is characterized by
its name, period, and worst-case execution time (WCET) (both in seconds). We do not address the
manner in which the WCET is to be obtained.

• Bus specifies a bus object, characterized by name, transfer speed (bits per second), and transfer
overhead (also in seconds).

• Msg includes a name, byte length, sending task, and list of receiving tasks.

Task and message names are unique only within their scope (processor or bus, respectively). When used
in other scopes they are qualified with their scope as shown (e.g. P3/T1). The timing constraints include
the various platform overhead parameters. For example, once the message length is converted from bytes
to time on the bus, we add the transfer overhead to represent the setup time for the particular protocol.
Engineers must measure or estimate platform behavioral parameters and include them in models for the
platform[2].
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Resolution {{RESOLUTION}}

{{#HOST_SECTION}}Proc {{NODENAME}} {{NODEFREQ}} {{SENDOHD}} {{RECVOHD}}
{{#TASK_SECTION}}Comp {{TASKNAME}} ={{FREQUENCY}} {{WCEXECTIME}}
{{TASK_SECTION}}{{#LOCAL_MSG_SECTION}}Msg {{MSGNAME}} {{MSGSIZE}} {{SENDTASK}} {{RECVTASKS}}
{{LOCAL_MSG_SECTION}}
{{HOST_SECTION}}
{{#BUS_SECTION}}Bus {{BUSNAME}} {{BUSRATE}} {{SETUPTIME}} {{#BUS_HOST_SECTION}}{{NODENAME}} {{BUS_HOST_SECTION}}
{{#MSG_SECTION}}Msg {{MSGNAME}} {{MSGSIZE}} {{SENDTASK}} {{RECVTASKS}}
{{MSG_SECTION}}
{{BUS_SECTION}}
{{#LATENCY_SECTION}}Latency {{LATENCY}} {{SENDTASK}} {{RECVTASK}}
{{LATENCY_SECTION}}

Table 7: Stage 2 Interpreter Template for the Scheduling Specification

Scheduling specifications are created in the Stage 2 interpreter from the template shown in Table 7.
The Stage 2 scheduler generation logic traverses the ESMoL Abstract model and fills in the structures
which are used to fill in the template when the CTemplate generator is invoked. In CTemplate, each
{{#...}} {{/...}} tag pair delimits a section which can be repeated by filling in the proper data structure
in the code. The other tags {{...}} are replaced by the string specified in the generation code.

Producing the Proc and Comp lines from the model API is straightforward as the output mirrors the
model hierarchy, so these lines require only simple traversals of the model. Each generated line uses param-
eters from the respective model object to fill in the blanks. The parameters are shown only in the generated
output, though the object diagram in Fig. 18 illustrates a good example of parameter layout and disposition.
In order to produce each Msg line, many relations must be collected (as shown in Table 3 and Fig. 16 )
and distilled into the right relationships. This requires more complex traversal code often involving multiple
passes through the model objects. To write a new generator similar to this one, the developer uses the
interpreter API and the transformed abstract syntax graph model. In the abstract language traversal we
collect the LocalDependency objects and filter them by processor. Each LocalDependency object contains
all of the information necessary to fill out the parameters in the template and create a new Msg line in the
scheduler specification file (within the proper Proc scope).

While we do not list here the details related to the solution of scheduling specifications, it may be useful
to document some of the scheduler limitations. More details regarding these limitations may be found in [8].

• We do not support preemptive scheduling of tasks or messages, as our runtime provides conflict-free
task execution and data communication during nominal operation.

• The overhead parameters may be an overly simplistic model for some cases. Each processor and bus
pair may have different parameters, depending on the bus type and the protocol used.

• We do not perform optimization on the schedule, so performance cost functions are not taken into
account. For control problems where the execution time changes yield irregular performance changes,
this is a more serious issue (see for example [33] ).

Platform-Specific Code Generation

Time-triggered execution requires configuration with the computed cyclic schedule. Code generated for
the virtual machine conforms to a particular synchronous execution strategy – each task reads its input
variables, invokes its component functions, and writes its output variables. The schedule calculation assumes
logical execution time semantics, where task input data is ready before task release, and output data is not
assumed ready before the task completes[12]. Data structures describe the invocation times and configuration
parameters for tasks and messages on each processor. Each message configuration instance also includes local
buffer addresses where the timed communication controller in the virtual machine can store incoming and
outgoing message data.

28



////////////////////////////// SCHEDULE TABLE ///////////////////////////////

portTickType hp_len = 20;

task entry tasks[] = {
{ DataHandling, "DataHandling", 4, 0},
{ InnerLoop, "InnerLoop", 9, 0},
{NULL, NULL, 0, 0}

}

msg entry msgs[] = {
{ 1, MSG DIR RECV, sizeof( OuterLoop ang ref ),

(portCHAR *) & OuterLoop ang ref,
(portCHAR *) OuterLoop_ang ref c, 7, 0, 0},

{ 2, MSG DIR SEND, sizeof( DataHandling pos msg ),
(portCHAR *) & DataHandling pos msg,
(portCHAR *) DataHandling pos msg c, 11, 0, 0},

{ -1, 0, 0, NULL, NULL, 0, 0, 0}
}

per entry pers[] = {
{ 1, "UART", IN, 0, 0, sizeof( DataHandling sensor data in ),

(portCHAR *) & DataHandling sensor data in,
(portCHAR *) DataHandling sensor data in c, 2, NULL, 0, 0},

{ 2, "UART", OUT, 0, 0, sizeof( InnerLoop thrust commands ),
(portCHAR *) & InnerLoop thrust commands,
(portCHAR *) InnerLoop thrust commands c, 14, NULL, 0, 0},

{ -1, NULL, 0, 0, 0, 0, NULL, NULL, 0, NULL, 0, 0 }
}

Table 8: Generated code for the task wrappers and schedule structures of the Quadrotor model.
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////////////////////////////// SCHEDULE TABLE ///////////////////////////////

portTickType hp_len = {{NODE_hyperperiod}};

{{#SCHEDULE_SECTION}}
task entry tasks[] = {
{{#TASK}}

{ {{TASK_name}}, "{{TASK_name}}", {{TASK startTime}}, 0},{{TASK}}
{NULL, NULL, 0, 0}

}

msg entry msgs[] = {
{{#MESSAGE NAME}}

{ {{MESSAGE index}}, {{MESSAGE sendreceive}}, sizeof( {{MESSAGE name}} ),
(portCHAR *) & {{MESSAGE name}},
(portCHAR *) & {{MESSAGE name}} c, {{MESSAGE startTime}},
pdFALSE},

{{MESSAGE NAME}}
{ -1, 0, 0, NULL, NULL, 0, 0}

}

per entry pers[] = {
{{#PER_NAME}}

{ {{PER index}}, "{{PER type}}",
{{PER way}}, 0, {{PER pin number}}, sizeof( {{PER name}} ),
(portCHAR *) & {{PER name}},
(portCHAR *) & {{PER name}} c,
{{PER startTime}}, NULL},

{{PER_NAME}}
{ -1, NULL, 0, 0, 0, 0, NULL, NULL, 0, NULL }

}
{{SCHEDULE_SECTION}}

Table 9: Template for the virtual machine task wrapper code. The Stage 2 FRODO interpreter invokes this
template to create the wrapper code shown in Table 8.
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The generated code for the Quadrotor model in Table 8 was produced from the template description for
the platform-specific code generator in Table 9. The FRODO virtual machine generation template brings
together all of the ESMoL Abstract relations described in the earlier section. The template and generated
code segment above correspond to the second-stage interpreter that creates the static schedule structures
used by the virtual machine. The tasks, messages, and peripherals listed here come from the Acquisition,
Actuation, Transmit, and Receive relation objects. The various connected objects are sorted according to
schedule time, and then the template instantiation uses the object parameters to create the tables in a
manner similar to that described for the scheduler specification generation above. The LocalDependency
relations do not appear in this template. The scheduler creates constraints that must be satisfied for each
local dependency, but local message transfers take place automatically in shared memory as tasks write to
and read from processor-local message structures. Therefore, any valid task and message schedule will satisfy
them. In a different part of the FRODO template, the local dependencies determine which message fields
must be used as arguments to the component function calls (not shown here).

6 Synchronous Semantics

We will briefly present a formal argument for the preservation of synchronous Simulink block firing orders
as we use the Simulink blocks to define software components, their deployment to the hardware, and impose
a time-triggered execution schedule on the design. Our semantic argument is only valid for synchronous
data flow (SDF) specifications. We do not claim to represent the full generality of Simulink specifications,
rather we restrict ourselves to dataflow graphs without conditional execution. Our graphs must contain
only tasks that execute in periodic, discrete time, have no delay-free loops, all delay elements must be
initialized with a data token, and initial block firing orders must include the outputs of the delay elements
This final assumption can be satisfied by considering the outputs of the delay elements as additional inputs
to the component. Then all dependent blocks will be able to fire as early as necessary in the schedule.
Our restrictions on execution are consistent with those required by the Mathworks Real-Time Workshop
Embedded Coder product, which forces models to have fixed-step execution and task periods harmonic with
the configured time step size for code generation.

Consider a synchronous acyclic graph G = (V,E) representing the connectivity of a Simulink dataflow
model, where edges abstract the transfer of data between blocks (without the data type information, data
capacity, or multiplicity). Let exec : G → R represent the task duration for vertices (obtained by analysis
or measurement), and the communication message transfer time for edges.

Let CV ⊆ V ×Z|V | be the set of all possibly concurrent firing orders for the blocks represented by the set
V which respect the partial order specified by the edge set E (i.e. (v1, v2) ∈ E ⇒ c(v1) < c(v2)∀c ∈ CV where
the pairs in c are interpreted as functions on V ). Note that CV should only be taken up to isomorphism,
eliminating orderings that are equivalent.

Consider the synchronous execution of G, where the full graph is executed on a periodic schedule at
instants {Tsk}, (k = 0, 1, . . . ,∞), and completes each execution before the next cycle. For embedded code
generation, Simulink requires models to execute with fixed-step semantics, so this is not an overly strong
restriction.

Next, we allow manipulations of the dataflow graph G as follows: Let G′ ⊆ G be a subgraph. Assume
that G′ = (V ′, E′) represents a well-formed functional dataflow. Let CV ′ ⊆ V ′ × Z|V ′| be a set of possible
orderings for V ′ created by restricting CV to the vertex set V ′. All orderings in CV ′ are also valid in CV ,
if we adjoin proper orderings from CV −V ′ . All orderings in CV ′ are also synchronous orderings, as they
respect the partial order defined by G′. We can also continue this construction for products. Let G′ ⊆ G
and G′′ ⊆ G, where we uniquely identify the vertex sets V ′ and V ′′ so that V ′ ∩ V ′′ = ∅. Then for G′ ×G′′

we have CV ′ ×CV ′′ . Considering the concurrent execution of G′ and G′′, both graphs execute synchronously
if executed according to an order from CV ′ × CV ′′ .

Let Gs1 , . . . , GsI
be subgraphs of a Simulink dataflow G. These represent ESMoL-specified dataflows.

Let Gs = ×i∈[1,I]Gsi where each vertex v ∈ Vs is given a unique identity as above. Consider the product of
the restricted orderings CVs = ×i∈[1,I](Vsi×Z|Vsi

|). Then the specified dataflow G is synchronous if executed
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according to an order from CVs .
Consider the following partitions on Gs:
Let Cp : Vs → [1, P ] assign component blocks to physical processors.
Let CT : Vs → [1, N ] assign components to computational tasks. We need to ensure that all components

belonging to the same task also belong to the same processor (∀n ∈ [1, N ],∃p ∈ [1, P ] : {v ∈ Vs|CT (v) =
n} ⇒ {v|CP (v) = p}.

Let {b1, . . . , bB} be a set of physical communication buses, {t1, . . . , tN} be the set of tasks, and {p1, . . . , pP }
be the set of physical processors. Let BE = {b1, . . . , bB} ∪ {t1, . . . , tN} ∪ {p1, . . . , pP }. Let CE : ES → BE

represent the communication mode for each data message represented by a graph edge. Data can travel
remotely (via a data bus bi) or locally in shared memory (between components within a task tj or between
tasks on a processor pk).

Let D ⊆ CVs be the subset of the orderings for Gs restricted such that if o ∈ D, then

∀v1, v2 ∈ Vs, CP (v1) = CP (v2) ⇒ o(v1) 6= o(v2)

D is the restriction of the synchronous orderings on Vs to the hardware partitioning, where two vertices
cannot have the same order if they share a resource. Note that if the design is not schedulable, D will not
exist.

Finally, consider the schedule. Let S : Gs → R|Vs|+|Es| represent start times for all elements of the
dataflow graph Gs.

Let D′ ⊆ D satisfy (∀o′ ∈ D′):

∀v1, v2 ∈ Vs, e = (v1, v2) ∈ Es ∧ CP (v1) 6= CP (v2)
⇒ S(v2) > S(v1) + exec(v1) + exec(e) ∧ o′(v2) > o′(v1)

.
If two components have a dependency through a remote message, then their start times are constrained

by the start time of v1, the duration of v1, and the duration of the message represented by the edge e. This
models the logical execution time semantics of time-triggered execution. Note that the addition of the edge
time may push the order values farther apart by allowing other tasks to execute during the data transfer
time, so the reduction involved in D′ may be significant. Again, we assume that the model is schedulable.

Since the final set of orderings D′ was constructed by reduction from the initial set of orderings CV , any
scheduling policy for ESMoL that enforces the constraints and partitionings shown above will maintain the
synchronous semantics of the original Simulink model if the ESMoL model is schedulable. Note that we
have not dealt with delays. The scheduling tool described in Porter et al[8] conforms to the constraints as
described, if combined with the Stage1 logic to create local dependencies for transitive remote connections
as described above. Unfortunately, the scheduler does not enforce end-to-end latencies well, an issue which
the authors are currenlty working to address.

7 Evaluation

Our approach for creating high-confidence designs varies somewhat from the traditional V-diagram develop-
ment model (see Fig. 21). In the traditional model we move down the V, refining designs as we proceed, with
the level of integration increasing as the project progresses. We recognize that system integration is often the
most costly and difficult part of development. Lessons learned during integration frequently occur too late
to benefit project decision-making. We aim to automate much of the integration work, and therefore shorten
design cycles. Beyond that, we want to enable feedback of models and analysis results from later design
stages back to earlier design cycles (along the dashed lines in the conceptual diagram) to facilitate rapid
rework if necessary. The goal is that the overall project can rapidly move towards a correct implementation
that most accurately reflects our current understanding of the design problem.
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Figure 21: Conceptual development flow supported by the tool chain.
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Our case study covers the incremental development of software for the Starmac quadrotor aircraft [25, 26].
We deployed our software to the same hardware as the Starmac controller (with the exception of our internal
I2C link, where the Starmac design used a UART), and tested in a hardware-in-the-loop environment
which simulated the Starmac dynamics. Specifically, we conducted three development phases (each with
a corresponding set of design models), each of which successively refined the design while preserving the
component structure:

1. Communications Test: We designed and deployed a shell of the controller architecture, where the
software controller components received and sent messages of the proper size, but the system functions
only copied data from the input ports to the output ports of each component. The Mathworks xPC
Target Hardware-in-the-Loop (HIL) simulator injected known data patterns into the deployed dataflow
implementation to ensure that all data paths were valid given the configured schedule.

2. Quad Integrator Test: We designed and deployed a simplified version of the quadrotor which acted
only along a single axis of motion, removing the rotational dynamics. We were able to validate our
control design approach (see [34]), and determine a method for gain adjustments required for stable
operation of the deployed controller.

3. Quadrotor Test: The final phase evaluated the full quadrotor dynamics and controller implementa-
tion. We tested trajectory tracking with the full platform delay effects.

Each of the three development phases answers a set of questions regarding the correctness of the design
under nominal operating conditions:

• Communications Test:

1. Is the hardware configuration valid for this software configuration?

2. Does our deployment mapping communicate the right amounts of data round trip?

3. Does the configured schedule avoid communication conflicts?

4. Is data corrupted by the communication protocols or software?

5. How much delay is introduced by the configured schedule?

• Quad Integrator Test:

1. Does our methodology for selecting stabilizing gains for the control loops adequately handle the
schedule delay introduced by data buffering, network communication, and the calculated schedule?

2. Is our sampling process sufficient for the platform and essential control architecture?

3. Are there any numerical problems that arise in our functional dataflow implementation considering
normal input value ranges?

• Quadrotor Test:

1. Given the additional functions and dimensions in the dataflow, can we still properly answer all of
the questions from the previous phase?

2. Does the full configuration track a reference trajectory?

Fig. 22 is a conceptual depiction of our evaluation environment. The Mathworks xPC Target simulation
software runs on a generic small-form-factor PC, with ethernet for configuration and data collection. The xPC
system contains an 8-port RS-232 serial expansion card, which communicates with the controller hardware
on one port. The simulator and controller send sensor and actuator data back and forth on a single full-
duplex serial link running at 57600 baud. The controller hardware consists of two processor boards – the
Gumstix Linux board runs the OuterLoop controller and the RefHandler data input tasks. The Gumstix
board has access to an ethernet port, through which the host machine sends new controller software for both
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Figure 22: Hardware in the Loop (HIL) evaluation configuration.

control boards. We also use secure shell connections to start and stop the controller, and to monitor for error
messages which are printed to the console. An internal I2C connection allows the two control boards to
exchange sensor data and attitude control commands. The Robostix AVR board runs the InnerLoop attitude
controller and the DataHandler sensor data distribution component. One Robostix UART device connects
to the xPC simulator as described above. Digital I/O pins allow the monitoring of timing information for
the Robostix. We embedded commands to toggle the I/O pins in the controller software, and connected the
pins to the LogicPort logic probe. The probe software shows timing traces for evaluating schedule operation
(as in Fig. 35). A software AVR simulator was also used to evaluate timing and stack usage for the software
running on the AVR. The Robostix board runs FreeRTOS. A Windows virtual machine on the host PC runs
the ESMoL modeling tools, logic probe display software, and Simulink which configures and compiles models
for the xPC target software. The Linux-based host itself runs the cross-compilers for the controller targets,
and secure shell connections to the Gumstix board for status monitoring.

7.1 Communications Test

Fig. 23 displays the simple model used to test data flow over the communication channels. The blocks
contain only pass-through elements – multiplexers, demultiplexers, and gains. With this model we verified
that data flowed correctly through all of the data paths in the system. The InnerLoop, OuterLoop, and
DataHandler components were all realized in software from an ESMoL model, and deployed to the hardware
platform. The execution of the components is controlled by a simple time-triggered virtual machine that
releases tasks and messages at pre-calculated time instants.

The Mathworks xPC Target simulated the plant dynamics for this test, which in this case amounted only

35



Figure 23: Communications test model.

Figure 24: Communications test plant model using the Mathworks xPC Target.
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to signal generators to create known data for the simplified controller blocks, and scopes to visualize data
received from the controller board. We compared the input and output traces for (delayed) equality (Fig.
24).

During this phase we found problems with the I2C communications link. The scheduling and timed
execution both required precise coordination to prevent data corruption. We also manually discovered a
deadlock condition in our communications controller logic. Increasing the speed of the I2C link from 100
kbits/sec to 400 kbits/sec resolved both the scheduling problem and the deadlock.

7.2 Quad Integrator Model

Figure 25: Simulink model of a simplified version of the quadrotor architecture.

Figure 26: Simplified quadrotor plant dynamics. The signal lines leading off the picture are signal taps used
for online stability analysis.

Our second evaluation phase controls a continuous-time system whose model represents a simplified
version of the quadrotor UAV. This model still follows the basic component architecture for the control
design (see Fig. 3), but excludes the nonlinear rotational dynamics of the full quadrotor while retaining
the difficult coupled stability characteristics. Fig. 26 shows a Simulink model containing the simplified
dynamics. The example model controls a stack of four integrators (and motor lag) using two nested PD

37



control loops, as shown in the Simulink diagram of Fig. 25. The Plant block contains the integrator models
representing the vehicle dynamics. The two control loops (InnerLoop and OuterLoop, as shown in Fig. 25)
are deployed to the Robostix and Gumstix processors, respectively. We refer to this example as the Quad
Integrator model. All of the controller components run at a frequency of 50Hz.

Our controller evaluation method is based on sector theory, proposed originally by Zames[35] to analyze
nonlinear elements in a control design. Sectors provide two real-valued parameters which represent bounds
on the possible input/output behaviors of a control loop. Kottenstette presented a sector analysis block for
validating a control design in Simulink[36]. We propose to use the same structure to verify the deployed
quadrotor control software online. This method is described more fully in Porter et al[34]. A few concepts
make this approach appealing for our case:

1. For a given component, the sector measures behavior simultaneously over multiple inputs and outputs,
so only one sector analyzer is required per control loop.

2. Our passive abstraction of the system design (described below) allowed us to use a sector analyzer for
each control loop to quickly isolate problem components in the deployed design.

Passive control requires that controllers use energy received from inputs or stored previously, introducing
no new energy into the environment[37]. If the plant dynamics were passive, we would have considerable
freedom in setting gains and choosing control structures. The zero-order hold outputs can introduce small
amounts of new energy to the environment during rapid velocity changes, so each of the control loops must
mitigate small amounts of “active” behavior. The sector bound a quantifies the energy-generating behavior
of each control loop. In our quadrotor system, we expect the bound a to be small and negative and choose
the gains appropriately. The result from Kottenstette indicates that the condition k < −1/a is sufficient to
ensure stability in these situations (where k is the configured gain of the control loop)[36].

Figure 27: Conceptual nested loop structure of the controller.

This particular design must be evaluated from the innermost loop to the outermost loop in order to make
sense of the gain constraints. Fig. 27 shows the nested loop structure of the design. The actual design and
implementation are complicated by the physical architecture of the digital realization:

1. Sensors acquire digital attitude and position information only, so velocities must be estimated.

2. The controller components are deployed to different processors in the digital implementation, as de-
scribed previously. Components on the two processors exchange data messages using a time-triggered
protocol.

3. Motor thrust commands are issued periodically using a zero-order hold. As discussed previously the
hold introduces additional energy back into the environment, violating the passivity condition.

The sector blocks are attached around each controller, so input and output ports are oriented from the
point of view of the control element. The output of the controller (input to the rest of the system) is
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connected to the sector analyzer input port. The signal controlled by the controller (before the error term is
formed) is part of the input to the controller, but from our point of view it is the output of the system, so it
connects to the sector analyzer output port. Fig. 28 displays the connection of the sector search block around
the position control gain for our example. Kx is the proportional gain for the outer loop PD controller, and
Kv is the derivative gain.

Figure 28: Sector analysis block (SectorSearch) connection around the position controller.

(a) Simulink simulation. (b) Execution on hardware (including schedule effects).

Figure 29: Sector value evolution over time for the quad integrator.

For this test we selected a square wave reference input near the highest frequency admissible by the
controller. Platform effects caused a significant deviation from our ideal sector estimates and bounds, as
illustrated by the sector bound changes in Table 10. Fig. 29 illustrates the evolution of the collected sector
data over time. For each digital control signal the table records the following (by column):

1. Original Bound: the sector bound based on the original gain value (− 1
k ).
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Signal Original Simulated Measured Delta New New
Bound Sector Sector Bound Sector

Angular Velocity -1.333 -1.2292 -1.2963 -0.0671 -2.667 -1.4568
Angle -0.5 -0.0295 -0.4831 -0.4536 -1.0 -0.0068
Velocity -0.5 -0.1856 -0.4830 -0.2974 -1.0 -0.9324
Position -3.333 -.7757 -3.8811 -3.1054 -6.667 -1.6081

Table 10: Sector value comparisons for simulation and execution on the actual platform.

2. Simulated Sector: the sector value recorded in simulation.

3. Measured Sector: the initial sector value measured on the platform.

4. Delta: the sector difference between the measured and simulated values.

5. New Bound: the sector bound based on the newly adjusted gains.

6. New Sector: the sector value measured on the platform with the new gains.

Although the initial platform gains satisfied the sector stability conditions analytically and in simulation
(comparing the Bound column to the Simulated column in the table), the overall system response when
deployed to the target platform resulted in significant position overshoot. The measured sector value for
position measured the farthest from the predicted value, and exceeded the gain bound for stability (−1/k),
though no evidence of instability was visible in the plot of the output trajectory. As all of the gains moved
right up to the edge of their bounds when deployed, we reduced all of the gains by 1

2 . Note that changing
the gains changes the acceptable sector bound as well as the actual sector bounds themselves (as shown in
Table 10). After adjusting the gains all of the sector values fell within the bounds.

On closer inspection we discovered that the most significant platform effect was a non-ideal position gain
condition for signals with frequencies too close to the sampling rate. Fig. 30 shows a comparison of the
ideal frequency response of the outer loop controller block with an empirically measured frequency response
for the same controller block deployed on the target hardware. Note the spike at the right-hand side of
the plot in Fig. 30(b). This is a nonlinear gain anomaly due to the effects of the saturation block, and
which appears only for signals with frequencies right near the Nyquist sampling rate. The remedy was to
add a simple input filter to cut off frequencies too close to the sampling rate. This effectively slows down
the possible commands that can be issued to the system. The sector analysis blocks helped identify the
position control component as the element whose behavior was farthest from predicted when deployed to
the platform. Adding a rate limiter block to the reference input resolved the problem. Note that the full
quadrotor model already included a similar (but more complex) rate limiter.

The Quad Integrator model simulation exposed a few interesting and unanticipated defects in our design,
beyond the gain anomaly detected by the sector analysis. The most significant problem was the asynchronous
arrival of the input sensor data. Since the input data transfers were not synchronized with the controller
schedule, we had to add a double-buffer to the UART data handler in order to eliminate data corruption.

7.3 Quadrotor Model

The final development phase integrated the full dynamics of the quadrotor, comprised of the full data paths
and nonlinear functions of the controllers. Figs. 31 - 33 show details from the full Simulink model for the
quadrotor. In the top-level design model (Fig. 31), the robo stix block (Fig. 32) contains the functional
specifications for the DataHandler (sensor convert block) and the InnerLoop (inner loop block, also Fig. 33)
software components. Likewise the gum stix block and the ref data block specify functions for the OuterLoop
and RefHandler software components.

We used the LogicPort probe to assess the correctness of the schedule. The configured schedule (Fig.
34) correlates with the schedule points measured by the LogicPort analyzer for the tasks and messages on
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(a) Analytically predicted response. (b) Measured response.

Figure 30: Magnitude frequency responses for the quad integrator.

the Robostix board (Fig. 35). Our experimental configuration did not provide a similar means for accurate
measurement of the timing on the Gumstix board, though we can observe that message transfers start and
end as predicted when task interference is absent. Task interference was only observed for misconfigured
schedules, or when other non-controller Gumstix processes created heavy loads, delaying the controller.
Both schedule-based and load-based interference were eliminated for nominal operation. Fig. 36 illustrates
tracking behavior for the xPC-simulated Quadrotor, where the real-time controller implementation runs on
the actual controller hardware. The dashed curves represent the commanded x, y, and z positions as shown,
and the solid lines show the actual trajectory achieved by the HIL simulated helicopter using the deployed
controller code.

Our first move to the full quadrotor model uncovered numerical problems with some of the emulated
floating-point functions provided by the gcc ARM cross-compiler. This forced us to implement our own
versions of the single-precision absolute value, signum, and minimum functions for the OuterLoop component.
This problem was new to this phase of the evaluation because the rate limiter was not present in the Quad
Integrator model.
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Figure 31: Simulink model of the Starmac quadrotor helicopter.
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Figure 32: Detail of the Robostix block.
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Figure 33: Detail of the inner loop block.
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Figure 34: Schedule configuration for the quadrotor.

Figure 35: Timing diagram for the Robostix AVR running the inner loop controller.
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Figure 36: Trajectory tracking for the quadrotor implementation.
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8 Lessons and Future Work

Probably the greatest difficulty in our work has been dealing with the large number of moving parts involved
in the development of the modeling language and tools, the modeling and implementation of design examples,
and the configuration of the development tools and execution environment for the target platform. Our
MIC-based solution only covered a part of the entire problem. We only lightly addressed target system
configuration, automated updates of the ESMoL model to track changes in the Simulink design, and runtime
assessment (of both the simulator for plant dynamics and the target platform with the deployed code). We
developed a technique for runtime assessment of controller stability as covered in Porter et al[34] (described
partially in the Quad Integrator evaluation section), but it was difficult to automate due to the limited
number of free data paths available for debugging in our chosen target system. The integration of third
party libraries in the development of our tools, and variations in platform module behavior were not directly
addressed by our techniques, though they consumed significant development and testing time.

The next frontier in ESMoL development should be control loop modeling and analysis. Control design
formalisms abound, each with its own particular features and capabilities. Passivity and the more gen-
eral sector analysis formalisms are good examples of compositional frameworks which could be encoded in
modeling tools[38] and which could support incremental development.
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