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Abstract 

The design of modern high-performance embedded systems 
is challenging.  Power and size constraints limit hardware 
size, while performance requirements demand algorithm-
specific architectures.  A model-integrated approach can be 
used in the design capture and synthesis of these systems.  
A domain-specific graphical system design environment 
allows the capture of system requirements, design 
information and alternatives, and of available processing 
resources in the form of models.  A model interpretation 
process generates architecture specifications and 
compilable code.   

A typical first step in designing complex systems is to 
develop a simulation-based prototype.  After functional 
verification of the prototype, system components are 
implemented, each tailored to a particular target platform.  
Only after all components are implemented can system 
integration be addressed, often uncovering inconsistencies 
between components and forcing costly redesign.   

This paper describes an extension of a model-integrated 
design environment and runtime system.  Simulation-based 
components are included in system models.  A simulation 
engine is interfaced to a runtime environment, allowing 
simulation components to run "in the loop" with non-
simulation based components.  The extended environment 
allows prototype synthesis from system models and 
automates the integration of implemented components into 
the system.  Further, the extended environment provides the 
designer with a powerful visualization and debugging tool.   

1 Introduction 

Ongoing research at Vanderbilt University has produced a 
system design tool embodying the model-integrated 
approach to designing complex embedded systems [1].  The 
design tool consists of a domain-specific graphical model 
editor, allowing the capture of system requirements, 
processing resources, and design information and 
alternatives.  The environment also provides a model 
interpreter, a program which verifies model consistency and 
generates system specification and configuration 
information from the models.   Figure 1 depicts the design 
flow, the steps a system designer would pass through when 
building a system using the model-integrated approach. 

Figure 1  Design Flow used in constructing a system with the 
Model-Integrated Approach. 

When designing systems using this approach, a first step is 
to construct a system prototype, exploring and developing 
the basic system algorithms and proving the fundamental 
concepts behind the system.  The platform for the prototype 
is a simulation language and environment, such as Matlab.   

After a system prototype has been constructed and tested, 
the system is captured in models using the domain-specific 
modeling environment.  System algorithms are decomposed 
into concurrently executing processes.  Inter-process 
communications are modeled as connections between 
process models.  Algorithms are modeled according to the 
dataflow model of computation.  Hardware resources and 
physical interconnections are also modeled.   

After completing the system models, the designer must 
implement the processing components represented in the 
models.  Each process model represents an implementation 
of a computation or algorithm tailored to a particular 
platform.  Component implementation involves designing, 
implementing and testing each component individually, 
and, most importantly, within the context of the system.   

When the components have been implemented and verified, 
the tools may be used to synthesize a system from the 
models.  The synthesis operation maps processes to 
hardware resources, builds network initialization 
specifications, and generates any "glue logic" needed to 
facilitate inter-process and inter-processor communication.  
With these specifications, the network may be loaded with 
the synthesized system.  The designer now tests the 
generated system and handles system integration issues.   

Construct/Evaluate
Prototype

Build / Refine
Models

Build / Test
Components

Synthesize / Test
Integrated System



The model-integrated approach has been shown effective in 
a real-world application [2].  However, there are some 
limitations that have become apparent through design 
iteration.  Figure 1 depicts the design flow, including the 
paths of design iterations.  When components are being 
designed and implemented, it may become apparent that a 
change to the system architecture is needed, requiring a 
refinement of the models.  Also, during system-wide 
testing, integration may uncover inconsistencies between 
component implementations, requiring further changes.  
Each change in the models could require changes to 
components.  Major changes to the models could result in 
the redesign and re-implementation of several components.  
The designer runs the risk of redesigning components over 
and over as design iterations proceed.  If component 
inconsistencies could be discovered earlier in the design 
process, redesign could be avoided.   

A few simple extensions of the current design tools have 
been made which address these limitations.  A simulation 
engine, specifically Matlab, has been integrated into the 
model-integrated approach to designing systems. The 
modeling environment has been extended to allow the 
capture of the Matlab environment as a processing resource, 
and Matlab functions as process models.  The underlying 
runtime system has been extended to support the execution 
of Matlab processes in the context of the network, and to 
allow data to be exchanged between Matlab functions and 
other processes running on the network. 

2 Modeling Environment 

The basis of the model-integrated approach is to model the 
system to be built.  These models can then be used to 
synthesize the system.   

2.1 Modeling a System 

The modeling environment allows the user to capture 
design information about a system.  The computations and 
algorithms used in the system are captured, as are the 
resources.  The design tools automate the mapping of 
algorithms onto resources.   

Resources represent any processing element used in the 
final platform of the system.  The possible processing 
elements include PCs, DSPs, FPGAs and ASICs.  Physical 
communication paths between processing elements are 
captured as connections between the ports of each element.  
Each communication path has associated with it a protocol 
for communication.  Protocols are implemented to manage 
the passing of messages from one type of element to 
another.  The use of protocols abstracts the differences 
between how nodes in the network send and receive data.   

Algorithms used in the system are modeled as well.  
Algorithms consist of concurrently executing processes.  
Each process represents a basic block of code or logic.  
Inter-process communications are modeled as connections 
between process models.  A connection represents a stream 
or queue of messages sent from one process to another.  
Each process model is assigned resource category, 
corresponding to the type of resource on which it may 
execute.  Alternative implementations of a particular 
algorithm or process may be explicitly included in the 
models as well.  An alternative model includes several other 
models, one of which will be used to implement the 
process.  By explicitly modeling design alternatives, the 
modeler defines a design space, or a representation of many 
possible system implementations. 

The design tools automate many aspects of building the 
actual system.  A design space exploration tool aids the 
modeler in selecting a particular design from the design 
space.  A code synthesis tool generates a network 
configuration from the models, allowing a system design to 
be loaded onto the network.  Further, it maps a set of 
algorithm models onto the processing network models, 
associating inter-process communication streams with inter-
processor communication channels.  It generates 
initialization information for each node in the network and 
creates all "glue logic" needed to connect hardware-
processes together.  Outputs of the synthesis tool can be 
passed through COTS VHDL and C compilers to generate 
executable code, which can then be loaded onto the 
network. 

2.2 Modeling Environment Extensions 

The modeling environment described has been extended to 
support Matlab processes within a generated system.  A 
new type of resource model was created to represent the 
Matlab processing environment.  The Matlab resource 
model is treated much the same way as a PC or DSP 
processor: a processing element capable of executing 
processes.  Process models are allowed to have a resource 
category of Matlab, meaning that the target implementation 
platform of a process is the Matlab execution environment.  
These extensions allow the designer to model processes 
implemented in the Matlab language as part of the system. 

3 Runtime System Architecture 

The design tools synthesize systems tailored for a particular 
runtime system architecture.  The architecture has been 
designed to be easily configured through model-based 
system generation.   



3.1 Basic Runtime Framework  

The architecture consists of pieces of runtime support 
executing on each node of the network.  For a general-
purpose processor, this runtime support is provided in the 
form of a simple kernel.  For a programmable logic device, 
the runtime support is provided through a virtual hardware 
kernel [3], containing communication support and bus 
arbitration.  Figure 2 depicts the layers of support provided 
by the kernel on a processor in the system.  There may be 
several processes allocated to a particular node.  Processes 
can exchange data through streams.  A stream represents a 
queue of messages, managed by the kernel, connecting a 
source process to a destination process.  A process may 
send and receive messages through streams via an API 
provided by the kernel.  The kernel is responsible for 
ensuring that messages enqueued into a stream reach the 
appropriate destination process.  Many times, the 
destination process will reside on a different node than the 
source process.  In such a case, the kernel will send the data 
to the appropriate node via one of its communication 
channels.  Each node may have several communication 
channels connecting it to other nodes in the network.  The 
kernel drives the transfer of data across a channel through 
software which implements a particular communication 
protocol. 

Figure 2  The kernel layers used to support inter-processor 
communication. 

The communication protocol which drives the hardware 
consists of two functions, a send and a receive.  The send 
function is responsible for retrieving a message from a 
kernel stream and invoking the communication hardware to 
send it to the connected node.  The receive function queries 
the communication hardware to determine whether there is 
a message which has been sent from the connected node, 
and if so, transfers it to the appropriate kernel stream. 

3.2 Extended Runtime Framework 

The runtime framework has been extended to support the 
addition of a Matlab resource.  Matlab provides an API 
through which a stand-alone program can access its 
processing capabilities [4].  This API is referred to as the 
Matlab Engine, and the runtime system is interfaced to the 
Matlab environment through the engine.  The API allows 

the execution of Matlab commands, as well as the transfer 
of data to and from the Matlab workspace.  

Figure 3 depicts the interfacing of the runtime system to the 
Matlab Engine. 

Figure 3  Interface between the host kernel and the Matlab 
environment. 

To implement the interface between the host kernel and the 
Matlab environment, a new communication protocol was 
implemented, using the Matlab Engine software instead of 
physical communication hardware to perform data 
transfers.  In order to support the execution of processes in 
the Matlab environment as configured and specified in the 
models, a software kernel layer was implemented using the 
Matlab language.  The Matlab kernel layer is responsible 
for managing system message broadcast from the host and 
streams for inter-process communication, just as a kernel on 
a typical processor in the network.  However, a principal 
difference between a typical network processor and the 
Matlab resource is that the Matlab environment will not 
execute concurrently with the host kernel.  The host kernel 
will invoke the Matlab kernel layer through the 
communication protocol layer.  This implementation does 
not physically implement the modeled semantics of the 
Matlab resource being a separate processing element, 
however, from the modeling perspective, the same behavior 
is achieved when execution speed is not considered (a valid 
assumption, considering process execution time on Matlab 
vs. execution time on an embedded processor). 

The kernel layer in Matlab maintains system state through a 
set of persistent data structures, as shown in Figure 3.  The 
communication protocol layer on the host interacts with the 
communication protocol layer in the Matlab environment 
through the engine API.  Messages sent from the host are 
copied into arrays, which are placed into the Matlab 
workspace.  The host layer then invokes the Matlab layer 
receive function, which decodes the message and places it 
in the appropriate Matlab stream data structure.  In a similar 
fashion, the host receives messages from the Matlab 
environment by invoking the Matlab layer send function, 
which determines if there is a message waiting to be sent 
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from a Matlab process.  If a valid message is ready to be 
sent, the message is copied into the host layer.  The host 
layer dispatches received messages to their appropriate 
stream structures in the host kernel.   

Whenever the host protocol layer functions are invoked, 
regardless of whether messages were actually transferred, 
the Matlab kernel layer is invoked through its entry point.  
The Matlab kernel layer has a single entry point, through 
which it invokes the system message management facilities 
and then the process management facilities.  Process 
management attempts to schedule a process for execution.  
When a process is scheduled, it accesses streams through 
the kernel layer API, just as processes on a typical 
processor do through their kernel API.  The kernel layer 
API functions access the data structures containing stream 
messages.   

Through this interface to the host kernel, the Matlab 
execution environment can be used to perform 
computations and exchange data with the processing 
network.  The communication protocol layers implemented 
on the host and in Matlab abstract the details of how 
messages can be exchanged between processes executing 
on the Matlab resource and the network.  The Matlab kernel 
layer provides the execution semantics for a Matlab process 
which is identical to the semantics of a process running 
elsewhere in the network.  The interface allows the Matlab 
environment to be seen, from the perspectives of the 
modeler and component builder, as just another processing 
element in a heterogeneous processing network.   

4 A Revised Design Flow 

With the extensions to the design environment and runtime 
system described, an improved design flow can be 
achieved.  Figure 4 depicts the emergent design flow using 
the extended tools.   

Figure 4  Design Flow used in constructing a system with the 
extended Model-Integrated Approach. 

System construction begins with modeling the system.  As a 
first step, a designer need not be concerned with the 
implementation details of the target platform on which the 
final system will run.  Resource models may consist at this 
point solely of the PC host and the Matlab resource, and 
will be refined later in the design process.  A process model 
representing a Matlab realization is included as an 
alternative implementation for each component.  As each 
Matlab process model is created, a simulation component 
for the process is implemented in the Matlab language.  
Matlab components make use of the kernel layer API to 
exchange data with other processes through streams.  A 
Matlab component can typically be implemented much 
quicker than a VHDL hardware component due to the 
versatility and power of the Matlab language and built-in 
functionality. 

When the system algorithms have been modeled and the 
Matlab components have been implemented, the synthesis 
tools provided with the design environment can be used to 
generate a functional system.  This system will have all of 
its components implemented in Matlab, and represents the 
system prototype.  This system prototype may be loaded 
onto the host PC and tested.  Instead of requiring the system 
prototype to be hand-coded, the system can be generated 
from a model.  The benefits of modeling and system 
synthesis can be applied at a much earlier stage in the 
design process.  In addition, the architecture of the 
prototype reflects the implementation of the final system. 

After synthesizing the system prototype, the designer can 
test the generated system and refine the design, trying 
different algorithms, bit-widths, etc.  When a refinement to 
a component interface is required, the component model 
and corresponding Matlab implementation are updated, and 
the system is quickly re-generated, and testing commences 
again.  In this fashion, the designer may iterate, adjusting 
the system as needed, regenerating a prototype which is 
consistent with the system models.  This rapid, automated 
prototype generation was not possible before the extensions 
to the tools.   

When the designer is satisfied with the prototype system, 
component implementation can now proceed.  Previously, 
as components were built and tested individually, each was 
tested with simulated inputs and a simulated processing 
framework.  The framework simulation had to be tailored 
specifically for each component, and testing of a 
component became tedious.  With the updated tools, a 
component can be integrated into the prototype, and the 
prototype system can serve as the testing and simulation 
framework.  When implementing a component, a designer 
would include in the alternative model for that particular 
component another process model, which represents the 
target implementation of the component.  The resource 
models may need to be updated to reflect the target 
platform of the newly included component.  After 
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implementing the particular component, the designer then 
synthesizes a system with the newly implemented 
component replacing the Matlab version.  Because the tools 
automate this swapping of components, the synthesis of the 
new system is rapid.  Testing of the generated system will 
now focus on the newly implemented component, because 
all other components of the system have been verified 
previously.  The visualization power of Matlab is very 
useful in this situation, allowing the designer to view,  
manipulate, store or inject data entering or leaving the 
component under test through the remaining simulation-
based components in the system.   

System components can be implemented in this manner, 
one by one, testing each in the context of the final 
application, using the system prototype as the testing 
framework.  This approach saves the time of having to 
build a testing framework for each component, and is 
arguably a better means of testing components, because it 
tests each component in a context which is much closer to 
the actual execution environment.  It is also possible that 
component implementation may uncover design 
inconsistencies, requiring an adjustment to the models.  
When this occurs, the models can be updated, along with 
the Matlab versions of the affected components and a 
prototype can be re-synthesized and tested in a controlled, 
step-by-step manner. 

Another benefit provided by the extended tools is a better 
system integration.  Previously, system integration could 
not be addressed until the components were implemented.  
Using the extended tools, components can be integrated 
into the prototype system one at a time.  As each 
component is implemented and verified, a system using any 
combination of previously implemented and verified 
components can be synthesized and tested.  This allows 
system integration issues to be viewed during the 
component-implementation phase.  Prior to the tool, system 
integration could be a costly and time-consuming process 
due to design iteration caused by the need to redesign 
components.  With the extended tools, system integration 
issues can be examined much earlier in the design process, 
at component implementation time.  When system 
integration issues are identified and addressed at this early 
stage, costly design iterations, which would occur later in 
the design phase, are avoided.  With the extended tools, 
design iteration is no longer penalized, but rather supported. 

After all the components of the system have been 
implemented and verified, a final system can be synthesized 
from the models.  This final model is then tested to be sure 
no system integration issues remain.   

5 Conclusions 

The design of high-performance, complex embedded 
systems is difficult.  A system design tool has been shown 
to automate the design and implementation of such systems.  
Through some simple extensions, this design tool has been 
greatly improved.  By interfacing the Matlab simulation 
engine to the runtime system, a better model-integrated 
approach to building systems has been derived.  System 
prototypes may be synthesized from the system models.  
Components can now be built and tested from within the 
framework and context of the final system.  System 
integration issues can now be examined as components are 
integrated one-by-one into the system.  A new model-
integrated design approach to generating complex 
embedded systems results, providing a solid design process 
and framework in which to construct systems.  
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