VANDERBILT UNIVERSITY

= 7 = 7

7 7

Institute for Software Integrated Systems
Vanderbilt University
Nashville Tennessee 37235

Z

/ Z 4 7

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

TECHNICAL REPORT

TR #: ISIS-01-202

Title: High-Level Functional Simulation for Model-Based Embedded
System Synthesis

Author: Brandon Eames, Sandeep Neema, Jason Scott, Ted
Bapty

Copyright © Vanderbilt University, 2001

Abstract

In the synthesis of embedded systems from models, the designer represents complex
systems with domain-specific, multi-aspect, abstract models. In devel oping the models,
the designer must make many high-level design decisions. The impact of these decisions
are not readily predictable, given the complexity of the system. Consequently, the
designer needs tools to assess these impacts and predict system performance, from a
numerical/accuracy standpoint as well as performance. This report describes atool for
performing the numerical (functional) smulation of systems directly from the models.

Thetool isintegrated with the Model-Integrated Design Environment for Adaptive
Computing Systems, and implements a critical part of the design flow. From muilti-
aspect models, a component-based data-flow computation is extracted and a Matlab
program is synthesized. Matlab is used as a runtime environment to execute the program,
dueto its large user community and the number of existing tools and libraries. The
results of the computation are visible to the designer, providing feedback in the system
specification/design cycle.

KEYWORDS
Functional Simulation, Component-Based Design, Interface Synthesis, HW/SW Synthesis,
FPGA, VHDL, Design Environment, Model-Integrated Computing.

ACKNOWLEDGMENTS
This work was sponsored by the Defense Advanced Research Projects Agency, Information
Technology Office, under contract # DABT63-97-C-0020.

A HIGH-LEVEL FUNCTIONAL SSIMULATION

When a designer creates a set of system models, he/she may want to simulate the
proposed design before committing to a particular implementation path. A functional
simulation is a representation of a system, which can be executed to verify the behavior
or function of the models. By simulating a set of models before proceeding to component
implementation, a designer can verify the semantics of each piece of the system, perhaps
uncovering design details which would otherwise only be discovered much later, during
component implementation or system integration. A further benefit of a functional
smulation is that it empowers the designer to perform “back-of-the-envelope”
calculations when starting a new design concept. The MatSim interpreter was introduced
into the ACS toolset to generate a functional simulation from the algorithm models of an
ACS system design.

MatSim generates an executable representation of the system structural models in
the Matlab language. System designers often use the Matlab language and computational
environment during initial stages of a design to perform algorithm development and
simulation. Matlab is a common choice because of its powerful computational libraries,
which provide many of the functions required in signal processing applications, as well as
its data visualization capabilities. MatSim assumes that the system designer will provide
a Matlab m-function representing each primitive component in a design to be smulated.
These user-provided functions smulate the functionality provided by a particular
component. MatSim will then generate the glue code to call the user-provided m-
functions, scheduling them in the correct order. The generated glue code aong, with the
user-provided m-functions, forms an executable simulation that represents the system
structural models.

MatSim generates a functional smulation for a single point design, as opposed to
a design space. Before the designer invokes MatSim, he/she should invoke the desert
interpreter to alow the selection of a point design from the modeled design space. When
generating a functional simulation, the resource mapping is not taken into account.
MatSim assumes that all components included in the point-design are to be smulated,
and will have an associated Matlab-based smulation component, regardless of the
resource category of the component.

Matlab Representation of Structural Models

MatSim is responsible for generating Matlab code that correctly represents the
structural models of a system design. Structural models, as stated in Chapter |1, are used
to model the computations or algorithms of the system. The three types of structural
models are ProcessingCompounds, ProcessingTemplates, and ProcessingPrimitives.
Because MatSim is invoked on a single point design instead of on a design space,
ProcessingTemplates carry no significance. A template represents a design alternative.
When a design is selected from the design space, al possible aternatives are resolved,

and a template can be thought of as merely a placeholder for that alternative which it
contains that was selected through design space exploration. In representing a
ProcessingTemplate model, MatSim ssimply uses the selected dternative in the place of
the template. Representing compounds and primitives, however, is not so simple.

ProcessingPrimitives

Each processing primitive represents a user-provided system component. The
user is required to supply a Matlab m-function, which represents the behavior of the
system component. This m-function will be invoked as part of the functional smulation.
There are no limitations on the contents of the m-function; however, there is a
correspondence between the function and the parameter signature, or prototype of the
function. MatSim assumes that the ports of a model represent parameters of a function.
Each input port represents an input parameter, and each output port an output parameter
of the function. The name of the function is derived from the “ Script/Component name”
attribute of the ProcessingPrimitive model. Figure 1 depicts a ProcessingPrimitive model
named DoCorrection. The model has two input ports, Correction and Position, and
output port Out. The “Script/Component name” attribute has been set to “doCorrection.”
While MatSim assumes that the name of the user-supplied function is smilar to the
scriptname attribute, there is one minor difference. MatSim generates simulation
components names by adding the letter “M” to the front of the scriptname, to avoid
naming conflicts with components which are named according to the scriptname (as will
be seen in Chapter 1V). The function that simulates the DoCorrection component should
therefore be named “MdoCorrection”. The function MdoCorrection, shown in Figure 2,
correctly represents the DoCorrection model of Figure 1.

I .: M arne: an:nEn:nrre::tin:nn IF'rn:u:essingF'rimitive IT_I,Ipe .&spect:lﬁtructural&.gpect jIStructural
=+
- i Attributes of DoCorrection x|
. . .
%:’ Description:
E
Correction ; daC 7
Script/Component nanme; Qlorrestion
Filename: doCarmrection.c Qut
Tharoughput (KB /5] a __‘
-
Fosition
Far Help, press F1 [EDIT [100% |ACS w30 [7:25 PM 2

Figure 1. A ProcessingPrimitive model with ports and a scriptname, to be translated into a Matlab function

function [Out] = MdoCorrection(Correction, Position)
(function doCorrection to simulate the correction
%Y runtime component.

(P—pconstant set to 0.375 by experimentation
P constant = 0.375;
Cut = Position * Correction * P constant:

Figure 2. User-provided function represented by the Primitive model in Figure 1.

The only requirement on the user when creating simulation components is that a
component’s signature matches the port interface of the model that represents the
component. If amodel has multiple ports, the order of the parameters is significant. The
order of the parameters must match the numbering of the ports. When models are
constructed, each data port is assigned a number. It is the modeler's responsibility to
ensure that ports are numbered sequentialy, and that all ports are numbered. Input ports
are numbered independent of output ports. In the case of the DoCorrection model of
Figure 1, the Correction port is input port number 0, and Position is input port number 1.
This matches the code in Figure 2, where the Correction parameter appears first in the
input parameter list, followed by Position. When these conventions are followed, the
code generated by MatSim will invoke the primitive components properly, with the
proper data.

ProcessingCompounds

A ProcessingCompound model represents a collection of components. MatSim
generates a Matlab function to represent each compound model in the system. Every
model in a system is represented by a Matlab function: templates are resolved through
design-space exploration, a function representing each primitive is provided by the user,
and MatSim generates a function for each compound. The model hierarchy trandates
directly to a set of Matlab functions. MatSim simply needs to ensure that the functions
are called in the proper order, and that the parameter passing is performed properly.
Dataflow and Static Scheduling

Components in the ACS modeling language are modeled according to the
dataflow formalism. This means that control flow in the execution graph is implied by
the flow of data. A function does not execute until its inputs have been generated. A
function only produces outputs when it executes. As data flows across the execution
graph of a system, new functions are triggered. When MatSim generates code to
represent the contents of a compound model, this implicit control flow must be trand ated
into an explicit order in which functions execute. MatSim must generate the proper order
in which to call the functions representing the contents of a compound. This proper order
is a static schedule for the execution of the functions.

In order to produce the correct static schedule for a model, MatSim must resolve
the data dependencies between functions in each compound. The data dependencies
within a compound can be conveniently represented with a Directed Acyclic Graph

(DAG). Nodes of the graph represent the models contained in a compound. Edgesin the
graph represent a communication path between models. If two models have multiple
paths connecting them (in the same direction), only one directed edge in the DAG is
needed to show the dependency. Any communication paths in the modes in the
compound which connect directly to the ports of the compound need not be represented
in the DAG, asit is assumed that input parameters to a function can always be read from,
and output parameters can always be written to. The resulting DAG represents the data
dependencies between the models contained in a parent compound. For example, Figure
3 depicts a compound model, GenCorrection, with two submodels, AcquirePosition, and
DoCorrection. The DAG representing the data dependencies of this graph is fairly
simple, and is depicted in Figure 4.

I .;‘ M armne: IGenEDrrectiDn iPrDcessingEDmpDun IT_I,Ipe ﬁSpECtZIStructuraLﬁ.spect ;“
it
= ﬂ—'cur
Q _ HPos OutlE3
- Correction Status
DoCorrection
Pos[0}
AcquirePosition
Far Help, press F1 [EDIT [100% |aCS_van a4

Figure 3. ProcessingCompound model GenCorrection, with submodels AcquirePosition and DoCorrection

@

Figure 4. DAG representing the data dependencies of the GenCorrection model shown in Figure 3

Once the DAG representing the data dependencies of the components in a model
has been formed, the static schedule may be derived through a topological enumeration
algorithm. A topologica enumeration attempts to find an ordering of the nodes of a
directed graph such that each node that is selected would have an in-degree of zero if al
edges which are sourced by nodes which have already been selected were removed from
the graph. In the case of the DAG in Figure 4, the AcgPos node would be selected first,
and then by default, DoCorr. DoCorr could not be selected first, because when the
enumeration contains no nodes, there are no edges which could be removed from the
graph, and DoCorr retains an in-degree of 1. In constrast, after AcgPos is included in the

enumeration, the only edge in the graph happens to be sourced by AcgPos and can be
removed. DoCorr is left with an in-degree of zero and can be included in the
enumeration. Figure 5 shows an example of a more complicated DAG and one possible
topological enumeration.

@ @ A Possible Enumeration
V3
I\ % i

V2
V4

() "

Figure 5. A more complex DAG, with one possible topological enumeration

The topologica enumeration represents the static schedule for caling the
functions which represent the models contained in a compound. In the case of Figure 4,
AcgPos was selected first, so a call to the m-function representing the AcquirePosition
primitive in Figure 3 will be called first, followed by the function representing
DoCorrection. MatSim writes these two function calls to a file. This file becomes the
function representing the GenCorrection compound.

Parameter Naming and Passing

As mentioned previoudly, the ports of a model represent the parameters of the
model. This is no different for compound models. The input parameters of a function
representing a compound model are named after the input ports of the model, likewise for
the output parameters with the output ports. The input and output parameters of a
function are known as the formal parameters of a function. This is in contrast to the
actual parameters, or the parameters which are passed to a function when it isinvoked. A
connection sourced by an input port of a compound represents a use of the formal
parameter representing that port. If the destination of such a connection is an input port
of amodel contained in a compound, the formal parameter is used as the actual parameter
in the call to the function representing the model.

Connections between models contained in a compound represent intermediate
results, for which a temporary variable must be generated. Temporary variables are
named according to the name of the port which sources the connection. Thisis only a
naming convention; any temporary name could have been used. An integer is added to
the end of the parameter name to guarantee uniqueness. When a function generates an
output which is to be used as an input to another function, the temporary variable is used
as an output parameter for the function call representing the source of the connection, and
as an input parameter to the function call representing the destination of the connection.
For example, in the case of Figure 3, the AcquirePosition model sources a single
connection to the DoCorrections model. This connection will cause the generation of a

temporary variable, named after the output port of the AcquirePosition model, which is
named Position. The parameter name will use the port name with a unique integer
attached to the end of the name as the port name, giving “Position_1,” for example.
Position_1 will be used as an output parameter in the call to the function representing
AcquirePosition, and as an input parameter to the function representing DoCorrections.
After al function calls have been generated for a file representing a particular
compound, the formal output parameters of that compound must be updated properly.
The updating of formal output parameters represents input connections to the output ports
of the compound model. In order to simplify the algorithm which generates code for a
compound, temporary variables are generated for every output parameter written to
during execution of the function. After the last function has executed, the temporary
variables which represent the connections to the output ports of the parent compound are
assigned to the formal output parameters. For example, the code generator will insert a
call to the function representing the DoCorrection model in Figure 3. This call requires
one output parameter, so the code generator uses a temporary variable, named after the
output port of the DoCorrection model. When the code generator discerns that no more
functions remain to be called, it will update the output parameters of the function being
generated by assigning the temporary variable generated in the call to the DoCorrection
function to the formal output parameter Out.
Generating a Complete Function

MatSim uses the algorithms described to generate a complete Matlab function for
each compound in the system. For a given compound, the function is named after the
compound mode! itself, because there is no scriptname attribute for a compound. Just as
with primitive models, the letter “M” is attached to the front of the name for consistency.
For each compound, MatSim generates a separate file, named the same as the function.
The first line of the file contains, as per Matlab syntax, the function prototype, generated
from the port interface of the compound for which the file is being generated. Next,
Matsim executes the topological enumeration to determine the proper order in which to
call the functions which represent the models contained in the compound. Function calls
are written according to the port interface of the model. Parameters are passed in the
proper order as dictated by the port numbering and model connections. Temporary
variables are generated to hold the output parameters of function calls, and are used as
input parameters to subsequent function calls. After al function calls have been written,
the output parameters are updated by assigning the appropriate temporary variables to the
formal output parameters of the function.

For each function MatSim generates, it writes a global instance count variable
inside the function. In most functions, this instance counter plays no role. However, for
models involved in a feedback connection, this globa variable plays an important role,
which will be demonstrated later. Figure 6 shows the function generated by MatSim
representing the GenCorrection model shown in Figure 3. The function name and file
name correspond to the name of the model, with the “M” added to the front:
MGenCorrection. There is a single output parameter, Status, corresponding to the single
output port of the GenCorrection model, and a single input parameter, Correction,
corresponding to the input port of the model. The next line of text corresponds to the
declaration of the global instance count variable. This is followed by the calls to the two

functions representing the models contained in GenCorrection. The AcquirePosition
model is selected first in the topological enumeration algorithm, as discussed above. The
scriptname attribute of the AcquirePosition primitive model has been set to acqPos, so
MatSim generates a call to a function named MacgPos. MatSim passes no input
parameters to the MacgPos function because the AcquirePosition model contains no input
ports. The data generated from the invocation of MacqPos is stored in a temporary
variable named Pos 4, named after the output port of the AcquirePosition model.
MatSim next selects the DoCorrection in the topological enumeration, and generates a
call to the function represented by that model. The scriptname attribute of DoCorrection
is set to doCorrection, as was shown in Figure 1, so MatSim generates a call to the
function MdoCorrection. The actual parameters of MdoCorrection are passed according
to the port interface of the DoCorrection model. The first port of the DoCorrection model
is connected to the Correction port of the GenCorrection model. This connection is
represented as the use of the formal input parameter Correction as an actual parameter in
the call to MdoCorrection. The second input port of DoCorrection is connected to the
single output port of the AcquirePosition model, resulting in the use of the temporary
variable Pos 4 generated in the call to MacgPos as the second actual input parameter in
the call to MdoCorrection. The single output of the MdoCorrection function is stored in a
temporary variable called Out_7. Because there are no more models to be processed,
MatSim now generates code to update the forma output parameters of the function
before terminating. The statement Status = Out_7; represents the connection from the
output port of the DoCorrection model to the Status output port of GenCorrection. The
last line of the function updates the instance counter, flagging that the function has been
invoked at least once.

function [3tatus] = MNGenCorrection(Correction)

global MGENCOREECTICON INSTANCE CHNT:

[Fo=_4] = MacgPos;

[Dut 7] = MdoCorrection(Correction, Pos 4);
Jtatus = Out_7;

MGEMNCORRECTICH INSTANCE CHNT=1:

Figure 6. Function generated by MatSim representing the GenCorrection compound shown in Figure 3

A Complete Functional Simulation

MatSim iterates over the hierarchy of models and generates a function for each
compound in the hierarchy. When generating function calls, if a template is encountered,
acall is generated instead to the alternate within the template which was selected through
design-space exploration. After all functions have been generated, the user may execute
the functional smulation in the Matlab environment smply by calling the function
representing the root model in the structural hierarchy. Executing this function will
invoke in turn each of the other generated functions, tracing through the hierarchy until
all user-provided functions have been called as well. By providing a function to

represent the behavior of each primitive, the designer can invoke MatSim to generate a
complete functional simulation of a modeled system.

Code Generation Issues

Some issues of model semantics needed to be resolved in order to represent a real
modeled system in the Matlab language. While the generated functional simulation as
has been described to this point does accurately represent the system models, it does not
represent the intended execution semantics of system components. Also, MatSim
depends on the ability to model data dependencies as a DAG. When a feedback
connection is used in a model, the directed graph representation is no longer acyclic, and
MatSim cannot determine a proper static function schedule. These two issues required
some minor, but important, changes to the code generation and modeling environment.

Accurately Representing Execution Semantics

Software components are implemented based on a dataflow kernel, masking
interprocess and interprocessor communication detaills. The kernel is responsible for
periodically re-invoking each component. Components are written to receive control
from the kernel, perform their task, and quickly and responsibly return control to the
kernel. With the code generation discussed so far, there is no concept of a scheduler to
ensure all components are repeatedly invoked. If, for example, the GenCorrection model
from Figure 3 represented the root model of a system, executing it once in the Matlab
environment would invoke the MacgPos function once, and the MdoCorrection function
once. This does not accurately represent the execution semantics of a modeled system.

The kernel repeatedly invokes each component. What is needed in the generated
system is to repeatedly invoke each component. MatSim resolves this issue by
generating a loop around the code representing the root or top-level modd in the
hierarchy. When the designer invokes this component, instead of smply executing each
of its function calls once, it will repeatedly execute the scheduled function calls, properly
mirroring the execution semantics of the find system. As a means of dlowing a
simulation to terminate gracefully, the loop executes conditionally based on a global
variable called TERMINATE_SIMULATION, which the user can set in one of the user-
provided component to cause the simulation to terminate.

Representing Feedback Connections

Feedback connections present a problem when attempting to represent the
contents of a compound model as a Directed Acyclic Graph. Figure 7 shows a root
compound model named SimpleControl. The connection from the output of
GenCaorrection to the input of Comparison represents a feedback connection. While
attempting to perform a topological enumeration on the graph representing the data
dependencies between the models contained in SimpleControl, MatSim encounters the
graph represented in Figure 8. MatSim can successfully determine that ReadSensorA and

ReadSensorB can be properly scheduled. However, this graph shows that Comp is
dependent on GenCor, and GenCor is dependent on Comp. MatSim cannot schedule one
function before the other because it will violate the presumed data dependencies.

I—; M ame; iSimpleEDntrDI IPrDcessingEDmpDun IT_I,Ipe .ﬁ.spect:IStructuraL&Spect j|
-+
= DiHex
%’—:’ Img Dres Cor
G Con
~ | ReadSensorA Comparison GenCorrection
Img
ReadSensorB
For Help, press F1 [EDIT [100% |[ACS_ w30 [2:1 2

Figure 7. Compound SimpleControl, with a feedback connection from GenCorrection to Comparison

Figure 8. An unschedulable DAG, caused by the feedback connection

This directed graph, however, does not accurately represent the actual data
dependency which feedback represents. In most applications, the component that
receives data from the feedback connection does not receive data from the connection in
the initial invocation of the function. That component ssimply generates an initia output
and feeds the result forward in the network. Not until the component which generates the
data to be fed back has had a chance to execute will the initial feedback data be
generated. So the missing dimension which is not shown in the directed graph is time.
While Comp does depend on GenCor, on the ith invocation of Comp, Comp depends on
the data which was generated in the i-1¥ invocation of GenCor. It cannot be expected
that GenCor produce an output before it can execute, so Comp is constructed “knowing”
an initial state for the feedback input.

In order to resolve the feedback connection in such a way that the proper results
are computed in the functional ssimulation, the user must implement Comp to “know” the
initial state of the feedback connection. Further, the modeler must denote in the model
which function “knows’ to execute without receiving the initial data. This information is
critical, because MatSim has no means of knowing if Comp is the component which
should ignore the cyclic input, or DoCor. The modeling language has been augmented
with an atom to allow the modeler to make such a distinction. Figure 9 shows an updated
SimpleControl model, with an initializer atom and connection in place. The initializer
atom allows the user to specify where to “break” a cycle in a directed data dependency
graph containing a cycle. With this updated information, MatSim can now determine that
Comparison has been written to ignore the initial input from the feedback connection, and
can therefore be scheduled before the function representing GenCorrection.

I k I are: !SimpIeEnntrDI IF'rn:n:essingEn:nmpn:nun IT_I,Ipe .ﬁ.spect:IStructuralﬁ.spect __ﬂ|
-+
4 3
& InitialStatus |
Ga”
Imig
ReadSensorA Comparison GenCorrection
Imig
ReadSensorB
For Help, press F1 [EDIT 100% |ACS_w3n [2:1 s

Figure 9. SimpleControl compound with Initializer atom and connection

MatSim must make a provision for passing a parameter which is involved in a
feedback connection. When MatSim generates the cal to the function representing
Comparison, the input parameter representing the first input will not exist. The variable
will be generated as an output parameter in the cal to the function representing
GenCorrection. This is not a problem, because Comparison has been written to ignore
the input parameter on the first invocation. However, Matlab syntax dictates that some
variable be passed as the actua parameter to the function on every invocation. MatSim
therefore creates a variable to pass to the function. The variable must be assigned some
value before Matlab will alow it to be cleanly passed as a parameter, so on the initial
invocation of the function, the variable is initialized to the empty matrix. After the call to
the Comparison function returns, the call to the GenCorrection function is executed,
generating the feedback parameter which is to be passed to the Comparison function on

the next invocation. All temporary variables are created as local variables and are
destroyed when a function returns to its caller. In the case of this feedback parameter that
IS generated in invocation i, and then used on invocation i+1, the scope of the parameter
must extend beyond the local scope. MatSim therefore declares the temporary variable as
globa before it is used in the call to the first function, so on the next invocation of the
function the first feedback function will receive as an actua parameter the proper value
generated by the second feedback function in the previous invocation. Figure 10 shows
the code MatSim generated from the SimpleControl model. The function inherits the
name just as before, and the instance counter is declared, as before. The next line
declares global the variable that will act as the loop condition controller, and initializes it
to the empty matrix. The next line begins the loop which will repeatedly execute the
functions representing the model hierarchy. The functions representing the ReadSensor
components are called, followed by the statement declaring a variable called Status 3 as
global. Thisvariable is the parameter to be used to store the feedback connection results.
The next statements will initidlize the Status 3 variable to the empty matrix when the
instance counter dictates that the function has not been executed before. Next, the
function representing the Comparison model is caled, using Status 3 as an input
parameter. This function will ignore the value of the first parameter during its first
invocation. The next function generates the Status 3 variable to be used as input to the
Mcomp function on the next iteration. Because this function represents a root model, it
was not technically necessary to declare Status 3 as a global variable, because the
variable will not leave scope before it is needed again. However, in genera, the
generated function will not contain a loop, and allowing the execution of the code as is
has a relatively mild impact on performance, and produces the correct results. Therefore
MatSim simply generates code representing the common case.

function M3impleContraoll)

global M3INPLECONTROL INSTANCE CHNT:
global TERMINATE SIMULALTICH:
TERMINATE IIMULATION = []:
while isempty (TERMINATE STIMULATICHN],
[Ty O] = Mread sensk;
[Ty 1] = Mread sensE;
global 3tatus 3;
if isempty (M3INPLECONTROL INSTANCE CHNT)
SJtatu=s_ 3 = []:

enc
[Correction 11] = Meowp (3tatus 3, Img O, Tmg 1);
[Status_3] = MGenCorrection(Correction 11j);:
MSIMPLECCHNTROL INSTANCE CHNT = 1:

enc

Figure 10. Code generated by MatSim representing the SimpleControl model displayed in Figure 9

Bit-Width Simulation

When a designer explores different algorithms, it is often desired to perform an
anaysis of the effects of fixed-point limitations on the correctness of an algorithm. This
type of trade-off analysis is most appropriate in a simulation setting, allowing a designer
to determine the optimal bit-width required for a particular application, without needing
to implement and test each solution.

MatSim provides a limited support to the designer to perform bit-width tradeoff
analysis. When a modeler represents a system, he/she includes in the attributes of each
data port the datapath width to be used for that communication path. MatSim ensures
that the widths specified in the source and destination ports of each connection are
consistent. Matlab performs all mathematics in double-precision floating point format,
and MatSim cannot change that. However, between computations, MatSim can round
parameters to the equivalent widths specified in the ports. Thisis what is done when the
user specifies to include a fixed-point arithmetic smulation during code generation. The
rounding is performed by a function called roundfix, which takes a vector and a bit-width
as inputs, and outputs the vector with each element rounded to the precision specified.
Figure 11 shows the function generated by MatSim representing the GenCorrection
model from Figure 3 with bit-width arithmetic simulation code included. The first
statement after the function declaration is now a call to roundfix to round the formal input
parameter Correction. After the call to MacqPos, the output Pos 4 is rounded as well.
Each call to roundfix contains the parameter 16, representing the bit-widths specified in
the model on each port. In this case, each port happened to be set to 16 bits.

function [3tatus] = HeenCorrection(Correction)

[Correction] = roundfix (Correction, 16);:
gylobal MGENCORRECTICON INSTANCE CNT:

[Fos_4] = MacgPos;

[Pos 4] = roundfix(Pos_ 4, 16):

[Duc_ 7] = MdoCorrection(Correction, Pos 4);
[out 7] = roundfix(outc 7, 16);

Status = Out 7}

HGENCORRECTICH INSTANCE CHT=1;

Figure 11. Code generated for GenCorrection model with fixed-point simulation code included

By including the fixed-point smulation in the functional smulation, the designer
is alowed a somewhat closer view of what to really expect during component execution
on afixed-point architecture. If the user provides components which accurately represent
fixed-point arithmetic during functional simulation, a better fixed-point smulation will
result.

Functional Simulation Conclusions

MatSim provides the designer with the capability to generate a Matlab
representation of system algorithm models. This representation can then be executed,
along with user-provided simulation components representing system primitives, to
verify the models and experiment with algorithms. MatSim alows a developer to apply
model-integrated design techniques at the very earliest stages of a system design, during
algorithm development and concept design.

VIRTUAL PROTOTYPING

A virtua system prototype is a smulation-based representation of a system that
can demonstrate core design behaviors. A virtual prototype in the context of the ACS
toolset is distinct from the functional simulation discussed in Chapter I111. A functional
simulation is used to experiment and test models. The functiona smulation does not
simulate the runtime middleware, and has no concept of system resources. A virtua
prototype not only simulates the functionality of the system, but aso can interface to the
system hardware, alowing the exchange of data between the ssimulation environment and
actual system components at runtime. The virtual prototype executes on a layer of
simulated middleware, just as system software components execute. A virtual prototype
provides a more accurate representation of the system, and provides a unique platform on
which to perform component and system testing, as well as system integration.

Extending the Modeling Environment and Synthesis Tools

Modeling Environment Extensions

Supporting the generation of a virtual prototype from system models requires a
few extensions to the modeling environment. The extensions alow the user to explicitly
represent simulation components, and to interface those components to other components
in the network. The resource modeling capabilities were extended to allow the modeler
to represent the Matlab processing environment as a processing element in the system.
Figure 12 depicts a resource model for a heterogeneous network, with the Matlab
environment modeled as a processing resource in the network. The modeling language
requires that there be only one connection to the Matlab model, and that connection must
connect to the host. A network is allowed to contain only one Matlab model.

TMS320C40 Flex10K100FPGA,

Matlab
PO
mpn P2
Fy
! pe 64Kx16 SDRAM
TMS320CE7

Figure 12. Resource Model showing the Matlab environment interfaced to the host

To facilitate the exchange of data between the Matlab environment and the
network, a new communication protocol was established. Figure 13 shows some of the
attributes of the port of the Matlab environment model, showing the Matlab Protocol
being selected as the communication protocol. The port on the host processor which
connects to this port must also have Matlab Protocol selected.

IT M ame: IMatIaI:u IMatIaI:uM odel IT_I,IDE Azpect; I Structuraldzpect j|
1‘“" =

- x

g::' Fort #: 0 :I

Ga”
— Frotocal: | t atlab Pratacal _ﬂ

iz

For Help, press F1 [EDIT |100% |ACS_v30 [12: 4

Figure 13. Port Attributes showing Matlab Protocol as the selected communication protocol

The modeling language has been extended to allow the designer to explicitly
create simulation components to be integrated into a system. Setting the resource
category of a ProcessingPrimitive model to Matlab creates a simulation component. By
selecting Matlab for the resource category of a particular component, the designer
dictates that a particular component will be implemented in the Matlab language and

should be executed in the Matlab environment. All primitives whose resource categories
have been set to Matlab will be mapped to the Matlab resource during synthesis.

Extending Codflow: Prototype Synthesis

The codflow interpreter was extended to allow the synthesis of a virtual prototype
from the system models. Because the Matlab environment was modeled as a kind of
processor, similar to a DSP, codflow could treat it as just another node in the network
when generating middleware initializations and configurations. However, a few
modifications were needed to perform some configurations of the simulated middieware
in the Matlab environment. These modifications included the generation of a list of
simulation components which are to be executed in the Matlab environment, and the
generation of an initiadization file stipulating the number of streams and processes needed
in the Matlab environment. Specification of how the streams in the execution graph to
execute in the Matlab middleware is generated in the form of commands in the runtime
command file. It was not required to modify codflow to perform this command
generation for the Matlab node because to codflow, the Matlab node appeared as a typical
processor node.

An Execution Environment for Running Matlab Processes

An execution or runtime environment supports the execution system components
on a node in the resource network. Each node in the network provides a stand-aone
execution environment, which can communicate with other nodes in the network. The
execution environment alows the runtime system to be easily configured from the model
interpreter. It also provides services to system components, abstracting the details of
inter-process and inter-processor communications. The runtime environment smplifies
the details of building components. In order to alow Matlab components to accurately
represent their implementation counterparts, a Matlab execution environment was
constructed to simulate the execution environment of a processor node in the network.
The Matlab execution environment allows simulation components to be constructed
following the same semantics as other software components. The execution environment
also supports and abstracts communications with the rest of the network, allowing Matlab
components to exchange data with other components in the network. The
implementation of the Matlab execution environment follows closely from the concepts
implemented in the execution environment run on a processor.

The Processor Execution Environment

Each processor in the network runs a small dataflow kernel which implements the
concepts of the execution environment Error! Reference source not found.. The
kernel, based on a previous kernel implementation Error! Reference source not found.,
supports deterministic dynamic memory management, stream-based inter-process
communication, inter-processor communication, and process scheduling and

management. Simple services are made available to components through an API. Figure
14 depicts the organization of the runtime kernel of a network processor. The processes
on top represent user-provided components, which were represented as primitives in the
system models. The API layer services calls made by the processes. Through servicing
these calls, the API layer interacts with the stream, memory, and process management
facilities of the kernel. When it is determined that data needs to be exchanged with
another node in the network, the inter-node communication protocols are invoked, which
transfer data via the communication hardware. Each layer abstracts details about the
lower layers and provides services to the upper layers.

P

Kernel Process API

[Stream / Memory / Process M anagement J

[I nter-node Communication Protocols)

C Communication Hardware]

Figure 14. Organization of runtime kernel executing on a processor in the network

The models are used to configure the kernel on each node in the network. A
minima amount of configuration information is compiled into the runtime environment.
Instead of compiling this configuration information into the runtime environment, the
network nodes are configured to receive command messages from the host containing
configuration information. Through these command messages a kernel is instructed to,
for example, install a stream, to connect a stream to a particular port of a source process,
to activate a process, or to unhalt the node. Only when a node is unhalted can it begin to
execute processes. All commands are generated by the codflow interpreter from the
models.

Once the execution of system processes has begun, the kernel cycles through all
the processes which it has been instructed to execute. A process is Smply a subroutine
that the kernel calls. The subroutine is required to check the status of any input streams it
is to read from before attempting to perform computations, to ensure the presence of data
to operate on. It must also check that there is sufficient room in its output streams to
store the results of the computations. In this manner, the dataflow formalism is adhered
to, in that the flow of data across the processing graph dictates the control flow of the
graph. After the kernel invokes each function, it invokes the inter-processor
communication facilities to attempt to send any pending messages, and to receive into the
kernel data structures any messages which the hardware may have received. Next, the

kernel checks the command message stream and appropriately dispatches any messages
sent from the host.

Kernel state is maintained through persistent data structures. Processes can gain
access to the contents of these data structures through the API. When a process fills a
buffer to be passed to another process, it passes that buffer to the kernel through the API.
This buffer is held in a stream send queue data structure, waiting to be sent by the
communication hardware. The stream management layer will enqueue a send request
with the communication protocol layer. When the protocol, or interface, layer services
the send request, it will retrieve the buffer to be sent from the stream and will invoke the
communication hardware to send the buffer. How the protocol layer and communication
hardware send the buffer depends on the protocol that is used and the capabilities of the
communication hardware. The communication hardware on the receiving node will
receive the buffer and will wait to be serviced by the remote protocol layer. When the
remote protocol layer services the receive request it will pass the received buffer to the
remote stream management layer, which stores the buffer into the stream data structures.
When the process that is designated as the destination for the stream is invoked, it will
retrieve the buffer from the kernel stream through the API, and can then use the data. In
this fashion data can be exchanged between processes on different nodes in the network.
When the source process and destination process reside on the same node in the network,
the stream management layer smply forwards all sent buffers to the recelving stream,
instead of passing the buffers through communication hardware. These streams are
referred to as “local” streams.

Interface functions implement the communication protocols used by the kerndl.
There are two types of interface functions, a send and a recelve. A send function on one
node matches with a receive function on a remote node. A receive function expects data
in the order and format that its counterpart send function emits. Each node may have
severa communication ports or channels. Each channel is assigned a particular set of
interface functions. The interpreter coordinates the assignment of interface functions,
ensuring that two connected nodes “speak the same language’ by having valid pairs of
interface functions across each channel.

M atlab Execution Environment

In order to execute processes in the Matlab computational environment, and be
able to exchange data with the processing network, a smulated execution environment
was developed for Matlab. This execution environment consists of many of the same
concepts as the execution environment for the other processor nodes in the system.
Figure 15 depicts how the Matlab execution environment, or kernel layer, is organized.
Processes execute in the Matlab environment, with services provided by the kernel layer
through an AP, just as before with network processes. The API exchanges data and
invokes services from the Stream / Process Management layer. There is no need for
memory management in the Matlab kerndl layer because all memory allocation is
performed by the Matlab computational environment implicitly. The kernel on one of the
nodes in the network would at this point invoke services from the interface functions to
perform message passing between nodes. In the case of the Matlab kernel layer, when
the stream and process management facilities are invoked, they store data and state

updates to a set of data structures which maintain the kernel layer state in a persistent
fashion. The mechanics of how data is exchanged with other nodes in the network will
be discussed in the next section. The process management section of the kernel invokes
one process every time it is invoked, and each process must query the status of its input
and output streams via the APl before it performs computation. Each process is invoked
in a round-robin fashion, with dataflow dictating which process will actualy perform its

computations.

Matlab Kernel Layer ProcessAPI

[Stream / Process M anagement)

i

Persistent Kernel
State Storage

Figure 15. Organization of Matlab kernel layer

The kernel layer stores its state in a set of global data structures. It maintains a
table to track all kernel layer streams and a process table to manage processes allocated to
the Matlab execution environment. These data structures are configured through the
receipt and dispatch of host messages on system startup. However, as with the other
nodes in the network, the interpreter provides a small set of “bare bones’ setup code, to
provide for the initialization of communications with the host node in the form of an
initialization function.

Communicating With the Host

The kernel layer, in order to perform its basic function, must exchange data with
the host node in the network. Matlab provides an interface, caled the Matlab engine
Error! Reference source not found., whereby a standalone program can manipulate and
use the Matlab computational environment. The engine allows a standalone C program,
for example, to create Matlab variables and place them into the Matlab workspace, to
invoke native Matlab functions, and to retrieve the results of the functions to use in other
computations in the C program. The engine gives to a C program the full functionality of
the Matlab command line interface.

Through the Matlab engine interface, the system kernel executing on the host PC
can exchange data with the Matlab kernel layer. The Matlab protocol was implemented
as a set of interface functions to enable this exchange. The send function in the host
kernel passes data to a receive function in the Matlab kernel layer. The Matlab receive
function is written in native Matlab code. There is also a native Matlab send function,
which has a corresponding receive function on the host kernel. These interface functions
mask the details of buffer exchanges from their respective kernels.

The Matlab kernel layer does not execute as a stand-alone process on the host PC.
It executes as a dave to the host kernel. The host kernel must periodically invoke the
Matlab kernel layer, allowing it to send and receive data, and to execute processes. The
Matlab kernel layer has been designed to perform its tasks quickly and efficiently, and to
responsibly return control to the host kernel promptly after being invoked. The details of
how the Matlab kernel layer is invoked is abstracted by the host interface functions from
the rest of the host and network. Outside of the interface functions, it appears as though
the Matlab kernel layer is executing concurrently with the other nodes in the network.
The kernel layer is invoked after every buffer send and buffer receive, in order to alow
Matlab processes to perform their computations and send and receive data. The kernel
layer is invoked through the Matlab engine by calling a Matlab function designated as the
kernel layer entry point. This entry point invokes the process scheduling and stream
management facilities of the kernel layer, and then returns control to the host kernel.

The interface functions are responsible for exchanging data with the Matlab
environment. Data is aways exchanged between processes in the form of messages. A
message consists of a header and a body. A message header contains information as to
the source node, stream and channel, as well as the destination node, stream, and channel
of the message. The stream and channel management facilities of a kerne use this
information to route messages to their proper destinations. A message in the Matlab
execution environment is represented as two vectors. Each field of a message header has
a corresponding index into a header vector. A message body in the host kernel is
represented as smply an array of numbers. This is consstent with the Matlab
representation: a vector of numbers. When the host send function prepares to send a
message to the Matlab kernel layer, it allocates two vectors from the Matlab workspace,
one for the header and another for the body. The data from the host header is then
copied, field-by-field, into the header vector. The message body is then copied into the
body vector.

The Matlab computational environment supports only the double-precision
floating-point data type, so al fields are cast to doubles then they are copied. When a
message body is copied, the interface function must make an assumption about the
current data format of the host message body. Regardless of the explicit type declared in
the message body data structure, a component can store in a message whatever data in
whatever format is desired, as long as the source component is consistent with the
receiving component. However, the interface functions between the host and Matlab
must make an assumption about the format a message body is in, because it must convert
the data into double precision format. By convention, the interface functions assume that
all message bodies are currently stored in single-precision floating-point format, and the
responsibility for ensuring that this is the case is placed on the developer of the
components. Because there is no characterization of the type of information being passed

in a buffer, the interface functions are left with no other choice but to assume a format,
otherwise, it has no means of knowing how to perform the conversion to/from double.

Once the send function copies the header and body into Matlab vector variables,
the Matlab kernel layer receive function is invoked. The host send function through a
Matlab engine call, invokes a Matlab m-function representing the receive function,
passing the header and body vectors as parameters. This function simply verifies that the
message passed is consistent, and copies the message into the kernel layer global stream
table for later reference through the API. The Matlab send function then returns control
back to the host send function. The send function then frees the vectors which were
allocated from the Matlab workspace. Next, the send function invokes through an engine
cal, the Matlab kernel layer entry point, passing control momentarily to the kernel layer
to allow process execution. When the call returns, the send function returns control to the
host kernel.

The host receive function is very similar to the send function, only performing the
actions in the reverse order. The receive function first invokes the Matlab kerndl layer
send function through an engine call. If during processing, a Matlab process has
enqueued a message to be sent to the host, a flag is set in the state storage. When the
kerndl layer send function is invoked, it queries the flag and retrieves the message to be
sent. The message is returned as two parameters, a header vector and a body vector.
When the send function returns control to the host receive function, the receive function
retrieves pointers to the two output parameters of the kernel layer send function, and
determines if a message was in fact sent. When a message is sent, the receive function
allocates a message buffer from the host memory management, and copies, field-by-field,
the header vector and body vector into their appropriate locations. Again, the host must
assume that the format that the message body is supposed to be in is single precision
floating point. When the message is successfully copied, it is passed to the stream
management layer of the host kernel, for later access by system processes. After storing
the copied message, the recelve function invokes the entry point of the kernd layer
through an engine call, and then returns.

These interface functions allow the Matlab execution environment to exchange
data at runtime with processes running on the network. When a process executing on a
DSP in the network sources a stream connected to a process mapped to the Matlab
execution environment, the interpreter facilitates the exchange of data via the insertion of
forwarding components on the host and any other nodes in the path to the DSP executing
the source process. A forwarding component smply forwards a message from one
stream to another, allowing a message to propagate across a node. This communication
framework allows data to be exchanged between Matlab processes and any other process
in the network.

Figure 16 depicts the full kernel layer software and how it communicates with the
host kernel. Processes written in the Matlab language execute, interacting with the kernel
layer through the API. The API alows access to the stream and process management
facilities of the kernel, which are responsible for updating the kernel layer data structures.
The kernel layer is periodicaly given control by the host kernel, where it invokes one
process and then performs communications housekeeping, checking whether the
communications layer has updated any streams with new information. The actua
communications functions are not invoked by the kernel layer itself, but rather by the

host communications layer. The host send function translates message data structures to
the Matlab kernel layer representations of those data structures, as vectors, and then
invokes the Matlab receive, which updates the kernel layer state storage. The host
receive function invokes the Matlab send function, which retrieves a message needing to
be sent to the host. The recelve function then retrieves the Matlab message, and
trandates it to the host kernel message format, and passes it aong to the host kernel
stream management facilities, and processing continues.

PEE

Matlab Kernel Layer ProcessAPI

- [Stream / Process M anagement)

Persistent Kernel
State Storage

% [Matlab Kernel Layer Send / Receive

)
[MATLAB ENGINE]
)

[Host Kernel Send / Receive

Figure 16. The Matlab kernel layer and interface to the host kernel

Virtual Prototyping

With the extensions to the runtime environment and modeling tools, a developer
can now construct a virtual prototype of a system. A system can be modeled as a set of
simulation components, which can be implemented using the Matlab language and kernel
layer API. A functiona system can be synthesized from the models with the codflow
interpreter, and can be loaded onto the resource network. At first, this resource network
could consist of a host PC with the Matlab environment. After compiling and loading the
code, the developer may test the system to verify its behavior. After the behavior has
been verified, the resulting system represents a virtual system prototype, exhibiting the
functionality of the target system, but implemented using a smulation language. The
virtual prototype will obviously not meet the performance constraints of the target
system, but will demonstrate the core behaviors of the target.

After the virtual prototype has been constructed, it can be used during the
component implementation design phase. The modeling tools automate the selection of
implementation alternatives from the models. When a system is modeled, aternative
implementations for each component can be explicitly included in the models. As one

aternative implementation for a component, the user provides a Matlab-based simulation
implementation. Another implementation would be the target implementation. When
constructing the virtual prototype, the target implementations for system components
need not be constructed, nor even modeled. However, the user should make use of
template models to allow aternative implementations to be modeled later. Through the
design-space exploration utility, the designer may select the smulation implementation
for each component, and then use codflow to generate the smulation implementation.
After verification of the virtual prototype, the user can use the prototype as a testing
framework for testing component implementations. When a component is implemented,
the tools can be used to select the simulation implementations of al system components
except for that particular component, whose target implementation is included in the fina
design. After this design is synthesized and loaded, the user can verify that the
component’s target implementation exhibits the same behavior as the simulation
implementation. The virtual prototype provides an ideal framework because each
simulation component has at this point aready been verified, and the Matlab components
can be used to manipulate the inputs and display the outputs of the component under test.
Each component is tested in the context of the system, and the designer is saved the effort
of building a testbench framework for each component.

The virtual prototype also provides an excellent framework to perform system
integration. As components are implemented and tested, they may be integrated into the
prototype system, replacing their simulation-based counterparts. As more components
are included in this system, integration issues may be uncovered. Previoudy, integration
issues could not be thoroughly examined until most or all of the components had been
implemented and could be included into the system. Because the virtua prototype
system alows components to be integrated seamlesdy, integration issues can be
examined much earlier in the design phase. Systems can be synthesized consisting of
half smulation-based components, and half target implementation components. Through
testing these systems, the designer can examine how components interact in a more
controlled environment.

Matlab components can be used as a debugging tool. Because network
components can exchange data with Matlab components a runtime, the designer can
insert a Matlab component in the data path between two components to visualize the
messages being exchanged. Matlab components can also be used to modify the inputs to
a network component, allowing a greater versatility in testing.

The user is provided with a powerful tool to perform verification, debugging,
component testing and system integration through virtual prototyping. By providing an
interface between the Matlab computational environment and the processing network, a
developer is allowed to utilize the power of Matlab at runtime, intermixed with
implemented components.

