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Abstract 
 

In the synthesis of embedded systems from models, the designer represents complex 
systems with domain-specific, multi-aspect, abstract models. In developing the models, 
the designer must make many high-level design decisions. The impact of these decisions 
are not readily predictable, given the complexity of the system.  Consequently, the 
designer needs tools to assess these impacts and predict system performance, from a 
numerical/accuracy standpoint as well as performance.  This report describes a tool for 
performing the numerical (functional) simulation of systems directly from the models. 

 
The tool is integrated with the Model-Integrated Design Environment for Adaptive 
Computing Systems, and implements a critical part of the design flow.  From multi-
aspect models, a component-based data-flow computation is extracted and a Matlab 
program is synthesized.  Matlab is used as a runtime environment to execute the program, 
due to its large user community and the number of existing tools and libraries.  The 
results of the computation are visible to the designer, providing feedback in the system 
specification/design cycle. 
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A HIGH-LEVEL FUNCTIONAL SIMULATION 

 When a designer creates a set of system models, he/she may want to simulate the 
proposed design before committing to a particular implementation path.  A functional 
simulation is a representation of a system, which can be executed to verify the behavior 
or function of the models.  By simulating a set of models before proceeding to component 
implementation, a designer can verify the semantics of each piece of the system, perhaps 
uncovering design details which would otherwise only be discovered much later, during 
component implementation or system integration.  A further benefit of a functional 
simulation is that it empowers the designer to perform “back-of-the-envelope” 
calculations when starting a new design concept.  The MatSim interpreter was introduced 
into the ACS toolset to generate a functional simulation from the algorithm models of an 
ACS system design.   

MatSim generates an executable representation of the system structural models in 
the Matlab language.  System designers often use the Matlab language and computational 
environment during initial stages of a design to perform algorithm development and 
simulation.  Matlab is a common choice because of its powerful computational libraries, 
which provide many of the functions required in signal processing applications, as well as 
its data visualization capabilities.  MatSim assumes that the system designer will provide 
a Matlab m-function representing each primitive component in a design to be simulated.  
These user-provided functions simulate the functionality provided by a particular 
component.  MatSim will then generate the glue code to call the user-provided m-
functions, scheduling them in the correct order.  The generated glue code along, with the 
user-provided m-functions, forms an executable simulation that represents the system 
structural models. 

MatSim generates a functional simulation for a single point design, as opposed to 
a design space.  Before the designer invokes MatSim, he/she should invoke the desert 
interpreter to allow the selection of a point design from the modeled design space.  When 
generating a functional simulation, the resource mapping is not taken into account.  
MatSim assumes that all components included in the point-design are to be simulated, 
and will have an associated Matlab-based simulation component, regardless of the 
resource category of the component.   

Matlab Representation of Structural Models 

 MatSim is responsible for generating Matlab code that correctly represents the 
structural models of a system design.  Structural models, as stated in Chapter II, are used 
to model the computations or algorithms of the system.  The three types of structural 
models are ProcessingCompounds, ProcessingTemplates, and ProcessingPrimitives.  
Because MatSim is invoked on a single point design instead of on a design space, 
ProcessingTemplates carry no significance.  A template represents a design alternative.  
When a design is selected from the design space, all possible alternatives are resolved, 



and a template can be thought of as merely a placeholder for that alternative which it 
contains that was selected through design space exploration.  In representing a 
ProcessingTemplate model, MatSim simply uses the selected alternative in the place of 
the template.  Representing compounds and primitives, however, is not so simple. 

ProcessingPrimitives  

 Each processing primitive represents a user-provided system component.  The 
user is required to supply a Matlab m-function, which represents the behavior of the 
system component.  This m-function will be invoked as part of the functional simulation.  
There are no limitations on the contents of the m-function; however, there is a 
correspondence between the function and the parameter signature, or prototype of the 
function.  MatSim assumes that the ports of a model represent parameters of a function.  
Each input port represents an input parameter, and each output port an output parameter 
of the function.  The name of the function is derived from the “Script/Component name” 
attribute of the ProcessingPrimitive model.  Figure 1 depicts a ProcessingPrimitive model 
named DoCorrection.  The model has two input ports, Correction and Position, and 
output port Out.  The “Script/Component name” attribute has been set to “doCorrection.”  
While MatSim assumes that the name of the user-supplied function is similar to the 
scriptname attribute, there is one minor difference.  MatSim generates simulation 
components names by adding the letter “M” to the front of the scriptname, to avoid 
naming conflicts with components which are named according to the scriptname (as will 
be seen in Chapter IV).  The function that simulates the DoCorrection component should 
therefore be named “MdoCorrection”.  The function MdoCorrection, shown in Figure 2, 
correctly represents the DoCorrection model of Figure 1.   

 

Figure 1.  A ProcessingPrimitive model with ports and a scriptname, to be translated into a Matlab function 



 

Figure 2.  User-provided function represented by the Primitive model in Figure 1. 

 The only requirement on the user when creating simulation components is that a 
component’s signature matches the port interface of the model that represents the 
component.  If a model has multiple ports, the order of the parameters is significant.  The 
order of the parameters must match the numbering of the ports.  When models are 
constructed, each data port is assigned a number.  It is the modeler’s responsibility to 
ensure that ports are numbered sequentially, and that all ports are numbered.  Input ports 
are numbered independent of output ports.  In the case of the DoCorrection model of 
Figure 1, the Correction port is input port number 0, and Position is input port number 1.  
This matches the code in Figure 2, where the Correction parameter appears first in the 
input parameter list, followed by Position.  When these conventions are followed, the 
code generated by MatSim will invoke the primitive components properly, with the 
proper data. 

ProcessingCompounds 

 A ProcessingCompound model represents a collection of components.  MatSim 
generates a Matlab function to represent each compound model in the system.  Every 
model in a system is represented by a Matlab function: templates are resolved through 
design-space exploration, a function representing each primitive is provided by the user, 
and MatSim generates a function for each compound.  The model hierarchy translates 
directly to a set of Matlab functions.  MatSim simply needs to ensure that the functions 
are called in the proper order, and that the parameter passing is performed properly.   
Dataflow and Static Scheduling 

 Components in the ACS modeling language are modeled according to the 
dataflow formalism.  This means that control flow in the execution graph is implied by 
the flow of data.  A function does not execute until its inputs have been generated. A 
function only produces outputs when it executes.  As data flows across the execution 
graph of a system, new functions are triggered.  When MatSim generates code to 
represent the contents of a compound model, this implicit control flow must be translated 
into an explicit order in which functions execute.  MatSim must generate the proper order 
in which to call the functions representing the contents of a compound.  This proper order 
is a static schedule for the execution of the functions.  
 In order to produce the correct static schedule for a model, MatSim must resolve 
the data dependencies between functions in each compound.  The data dependencies 
within a compound can be conveniently represented with a Directed Acyclic Graph 



(DAG).  Nodes of the graph represent the models contained in a compound.  Edges in the 
graph represent a communication path between models.  If two models have multiple 
paths connecting them (in the same direction), only one directed edge in the DAG is 
needed to show the dependency.  Any communication paths in the models in the 
compound which connect directly to the ports of the compound need not be represented 
in the DAG, as it is assumed that input parameters to a function can always be read from, 
and output parameters can always be written to.  The resulting DAG represents the data 
dependencies between the models contained in a parent compound.  For example, Figure 
3 depicts a compound model, GenCorrection, with two submodels, AcquirePosition, and 
DoCorrection.  The DAG representing the data dependencies of this graph is fairly 
simple, and is depicted in Figure 4.  

 

Figure 3.  ProcessingCompound model GenCorrection, with submodels AcquirePosition and DoCorrection 

AcqPos DoCorr

 

Figure 4.  DAG representing the data dependencies of the GenCorrection model shown in Figure 3 

 Once the DAG representing the data dependencies of the components in a model 
has been formed, the static schedule may be derived through a topological enumeration 
algorithm.  A topological enumeration attempts to find an ordering of the nodes of a 
directed graph such that each node that is selected would have an in-degree of zero if all 
edges which are sourced by nodes which have already been selected were removed from 
the graph.  In the case of the DAG in Figure 4, the AcqPos node would be selected first, 
and then by default, DoCorr.  DoCorr could not be selected first, because when the 
enumeration contains no nodes, there are no edges which could be removed from the 
graph, and DoCorr retains an in-degree of 1.  In constrast, after AcqPos is included in the 



enumeration, the only edge in the graph happens to be sourced by AcqPos and can be 
removed.  DoCorr is left with an in-degree of zero and can be included in the 
enumeration.  Figure 5 shows an example of a more complicated DAG and one possible 
topological enumeration. 

A Possible Enumeration
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Figure 5.  A more complex DAG, with one possible topological enumeration 

 The topological enumeration represents the static schedule for calling the 
functions which represent the models contained in a compound.  In the case of Figure 4, 
AcqPos was selected first, so a call to the m-function representing the AcquirePosition 
primitive in Figure 3 will be called first, followed by the function representing 
DoCorrection.  MatSim writes these two function calls to a file.  This file becomes the 
function representing the GenCorrection compound.   
Parameter Naming and Passing 

 As mentioned previously, the ports of a model represent the parameters of the 
model.  This is no different for compound models.  The input parameters of a function 
representing a compound model are named after the input ports of the model, likewise for 
the output parameters with the output ports.  The input and output parameters of a 
function are known as the formal parameters of a function.  This is in contrast to the 
actual parameters, or the parameters which are passed to a function when it is invoked.  A  
connection sourced by an input port of a compound represents a use of the formal 
parameter representing that port.  If the destination of such a connection is an input port 
of a model contained in a compound, the formal parameter is used as the actual parameter 
in the call to the function representing the model.   

Connections between models contained in a compound represent intermediate 
results, for which a temporary variable must be generated.  Temporary variables are 
named according to the name of the port which sources the connection.  This is only a 
naming convention; any temporary name could have been used.  An integer is added to 
the end of the parameter name to guarantee uniqueness.  When a function generates an 
output which is to be used as an input to another function, the temporary variable is used 
as an output parameter for the function call representing the source of the connection, and 
as an input parameter to the function call representing the destination of the connection.  
For example, in the case of Figure 3, the AcquirePosition model sources a single 
connection to the DoCorrections model.  This connection will cause the generation of a 



temporary variable, named after the output port of the AcquirePosition model, which is 
named Position.  The parameter name will use the port name with a unique integer 
attached to the end of the name as the port name, giving “Position_1,” for example.  
Position_1 will be used as an output parameter in the call to the function representing 
AcquirePosition, and as an input parameter to the function representing DoCorrections. 
 After all function calls have been generated for a file representing a particular 
compound, the formal output parameters of that compound must be updated properly.  
The updating of formal output parameters represents input connections to the output ports 
of the compound model.  In order to simplify the algorithm which generates code for a 
compound, temporary variables are generated for every output parameter written to 
during execution of the function.  After the last function has executed, the temporary 
variables which represent the connections to the output ports of the parent compound are 
assigned to the formal output parameters.  For example, the code generator will insert a 
call to the function representing the DoCorrection model in Figure 3.  This call requires 
one output parameter, so the code generator uses a temporary variable, named after the 
output port of the DoCorrection model.  When the code generator discerns that no more 
functions remain to be called, it will update the output parameters of the function being 
generated by assigning the temporary variable generated in the call to the DoCorrection 
function to the formal output parameter Out. 
Generating a Complete Function 

 MatSim uses the algorithms described to generate a complete Matlab function for 
each compound in the system.  For a given compound, the function is named after the 
compound model itself, because there is no scriptname attribute for a compound.  Just as 
with primitive models, the letter “M” is attached to the front of the name for consistency. 
For each compound, MatSim generates a separate file, named the same as the function.  
The first line of the file contains, as per Matlab syntax, the function prototype, generated 
from the port interface of the compound for which the file is being generated.  Next, 
Matsim executes the topological enumeration to determine the proper order in which to 
call the functions which represent the models contained in the compound.  Function calls 
are written according to the port interface of the model.  Parameters are passed in the 
proper order as dictated by the port numbering and model connections.  Temporary 
variables are generated to hold the output parameters of function calls, and are used as 
input parameters to subsequent function calls.  After all function calls have been written, 
the output parameters are updated by assigning the appropriate temporary variables to the 
formal output parameters of the function.   
 For each function MatSim generates, it writes a global instance count variable 
inside the function.  In most functions, this instance counter plays no role.  However, for 
models involved in a feedback connection, this global variable plays an important role, 
which will be demonstrated later.  Figure 6 shows the function generated by MatSim 
representing the GenCorrection model shown in Figure 3.  The function name and file 
name correspond to the name of the model, with the “M” added to the front: 
MGenCorrection.  There is a single output parameter, Status, corresponding to the single 
output port of the GenCorrection model, and a single input parameter, Correction, 
corresponding to the input port of the model.  The next line of text corresponds to the 
declaration of the global instance count variable.  This is followed by the calls to the two 



functions representing the models contained in GenCorrection.  The AcquirePosition 
model is selected first in the topological enumeration algorithm, as discussed above.  The 
scriptname attribute of the AcquirePosition primitive model has been set to acqPos, so 
MatSim generates a call to a function named MacqPos.  MatSim passes no input 
parameters to the MacqPos function because the AcquirePosition model contains no input 
ports.  The data generated from the invocation of MacqPos is stored in a temporary 
variable named Pos_4, named after the output port of the AcquirePosition model.  
MatSim next selects the DoCorrection in the topological enumeration, and generates a 
call to the function represented by that model.  The scriptname attribute of DoCorrection 
is set to doCorrection, as was shown in Figure 1, so MatSim generates a call to the 
function MdoCorrection.  The actual parameters of MdoCorrection are passed according 
to the port interface of the DoCorrection model.  The first port of the DoCorrection model 
is connected to the Correction port of the GenCorrection model.  This connection is 
represented as the use of the formal input parameter Correction as an actual parameter in 
the call to MdoCorrection.  The second input port of DoCorrection is connected to the 
single output port of the AcquirePosition model, resulting in the use of the temporary 
variable Pos_4 generated in the call to MacqPos as the second actual input parameter in 
the call to MdoCorrection.  The single output of the MdoCorrection function is stored in a 
temporary variable called Out_7.  Because there are no more models to be processed, 
MatSim now generates code to update the formal output parameters of the function 
before terminating.  The statement Status = Out_7; represents the connection from the 
output port of the DoCorrection model to the Status output port of GenCorrection.  The 
last line of the function updates the instance counter, flagging that the function has been 
invoked at least once. 

 

Figure 6.  Function generated by MatSim representing the GenCorrection compound shown in Figure 3 

A Complete Functional Simulation 

 MatSim iterates over the hierarchy of models and generates a function for each 
compound in the hierarchy.  When generating function calls, if a template is encountered, 
a call is generated instead to the alternate within the template which was selected through 
design-space exploration.  After all functions have been generated, the user may execute 
the functional simulation in the Matlab environment simply by calling the function 
representing the root model in the structural hierarchy.  Executing this function will 
invoke in turn each of the other generated functions, tracing through the hierarchy until 
all user-provided functions have been called as well.  By providing a function to 



represent the behavior of each primitive, the designer can invoke MatSim to generate a 
complete functional simulation of a modeled system. 

Code Generation Issues 

 Some issues of model semantics needed to be resolved in order to represent a real 
modeled system in the Matlab language.  While the generated functional simulation as 
has been described to this point does accurately represent the system models, it does not 
represent the intended execution semantics of system components.  Also, MatSim 
depends on the ability to model data dependencies as a DAG.  When a feedback 
connection is used in a model, the directed graph representation is no longer acyclic, and 
MatSim cannot determine a proper static function schedule.  These two issues required 
some minor, but important, changes to the code generation and modeling environment. 

Accurately Representing Execution Semantics 

Software components are implemented based on a dataflow kernel, masking 
interprocess and interprocessor communication details.  The kernel is responsible for 
periodically re-invoking each component.  Components are written to receive control 
from the kernel, perform their task, and quickly and responsibly return control to the 
kernel.  With the code generation discussed so far, there is no concept of a scheduler to 
ensure all components are repeatedly invoked.  If, for example, the GenCorrection model 
from Figure 3 represented the root model of a system, executing it once in the Matlab 
environment would invoke the MacqPos function once, and the MdoCorrection function 
once.  This does not accurately represent the execution semantics of a modeled system. 

The kernel repeatedly invokes each component.  What is needed in the generated 
system is to repeatedly invoke each component.  MatSim resolves this issue by 
generating a loop around the code representing the root or top-level model in the 
hierarchy.  When the designer invokes this component, instead of simply executing each 
of its function calls once, it will repeatedly execute the scheduled function calls, properly 
mirroring the execution semantics of the final system.  As a means of allowing a 
simulation to terminate gracefully, the loop executes conditionally based on a global 
variable called TERMINATE_SIMULATION, which the user can set in one of the user-
provided component to cause the simulation to terminate.   

Representing Feedback Connections 

 Feedback connections present a problem when attempting to represent the 
contents of a compound model as a Directed Acyclic Graph.  Figure 7 shows a root 
compound model named SimpleControl.  The connection from the output of 
GenCorrection to the input of Comparison represents a feedback connection.  While 
attempting to perform a topological enumeration on the graph representing the data 
dependencies between the models contained in SimpleControl, MatSim encounters the 
graph represented in Figure 8.  MatSim can successfully determine that ReadSensorA and 



ReadSensorB can be properly scheduled.  However, this graph shows that Comp is 
dependent on GenCor, and GenCor is dependent on Comp.  MatSim cannot schedule one 
function before the other because it will violate the presumed data dependencies.   
 

 

Figure 7.  Compound SimpleControl, with a feedback connection from GenCorrection to Comparison 

 

Comp GenCor

 

Figure 8.  An unschedulable DAG, caused by the feedback connection 

 This directed graph, however, does not accurately represent the actual data 
dependency which feedback represents.  In most applications, the component that 
receives data from the feedback connection does not receive data from the connection in 
the initial invocation of the function.  That component simply generates an initial output 
and feeds the result forward in the network.  Not until the component which generates the 
data to be fed back has had a chance to execute will the initial feedback data be 
generated.  So the missing dimension which is not shown in the directed graph is time.  
While Comp does depend on GenCor, on the ith invocation of Comp, Comp depends on 
the data which was generated in the i-1st invocation of GenCor.  It cannot be expected 
that GenCor produce an output before it can execute, so Comp is constructed “knowing” 
an initial state for the feedback input. 



 In order to resolve the feedback connection in such a way that the proper results 
are computed in the functional simulation, the user must implement Comp to “know” the 
initial state of the feedback connection.  Further, the modeler must denote in the model 
which function “knows” to execute without receiving the initial data.  This information is 
critical, because MatSim has no means of knowing if Comp is the component which 
should ignore the cyclic input, or DoCor.  The modeling language has been augmented 
with an atom to allow the modeler to make such a distinction.  Figure 9 shows an updated 
SimpleControl model, with an initializer atom and connection in place.  The initializer 
atom allows the user to specify where to “break” a cycle in a directed data dependency 
graph containing a cycle.  With this updated information, MatSim can now determine that 
Comparison has been written to ignore the initial input from the feedback connection, and 
can therefore be scheduled before the function representing GenCorrection. 

 

Figure 9.  SimpleControl compound with Initializer atom and connection 

 MatSim must make a provision for passing a parameter which is involved in a 
feedback connection.  When MatSim generates the call to the function representing 
Comparison, the input parameter representing the first input will not exist.  The variable 
will be generated as an output parameter in the call to the function representing 
GenCorrection.  This is not a problem, because Comparison has been written to ignore 
the input parameter on the first invocation.  However, Matlab syntax dictates that some 
variable be passed as the actual parameter to the function on every invocation.  MatSim 
therefore creates a variable to pass to the function.  The variable must be assigned some 
value before Matlab will allow it to be cleanly passed as a parameter, so on the initial 
invocation of the function, the variable is initialized to the empty matrix.  After the call to 
the Comparison function returns, the call to the GenCorrection function is executed, 
generating the feedback parameter which is to be passed to the Comparison function on 



the next invocation.  All temporary variables are created as local variables and are 
destroyed when a function returns to its caller.  In the case of this feedback parameter that 
is generated in invocation i, and then used on invocation i+1, the scope of the parameter 
must extend beyond the local scope.  MatSim therefore declares the temporary variable as 
global before it is used in the call to the first function, so on the next invocation of the 
function the first feedback function will receive as an actual parameter the proper value 
generated by the second feedback function in the previous invocation.  Figure 10 shows 
the code MatSim generated from the SimpleControl model.  The function inherits the 
name just as before, and the instance counter is declared, as before.  The next line 
declares global the variable that will act as the loop condition controller, and initializes it 
to the empty matrix.  The next line begins the loop which will repeatedly execute the 
functions representing the model hierarchy.  The functions representing the ReadSensor 
components are called, followed by the statement declaring a variable called Status_3 as 
global.  This variable is the parameter to be used to store the feedback connection results.  
The next statements will initialize the Status_3 variable to the empty matrix when the 
instance counter dictates that the function has not been executed before.  Next, the 
function representing the Comparison model is called, using Status_3 as an input 
parameter.  This function will ignore the value of the first parameter during its first 
invocation.  The next function generates the Status_3 variable to be used as input to the 
Mcomp function on the next iteration.  Because this function represents a root model, it 
was not technically necessary to declare Status_3 as a global variable, because the 
variable will not leave scope before it is needed again.  However, in general, the 
generated function will not contain a loop, and allowing the execution of the code as is 
has a relatively mild impact on performance, and produces the correct results.  Therefore 
MatSim simply generates code representing the common case.   

 

Figure 10.  Code generated by MatSim representing the SimpleControl model displayed in Figure 9 

Bit-Width Simulation 



 When a designer explores different algorithms, it is often desired to perform an 
analysis of the effects of fixed-point limitations on the correctness of an algorithm.  This 
type of trade-off analysis is most appropriate in a simulation setting, allowing a designer 
to determine the optimal bit-width required for a particular application, without needing 
to implement and test each solution. 
 MatSim provides a limited support to the designer to perform bit-width tradeoff 
analysis.  When a modeler represents a system, he/she includes in the attributes of each 
data port the datapath width to be used for that communication path.  MatSim ensures 
that the widths specified in the source and destination ports of each connection are 
consistent.  Matlab performs all mathematics in double-precision floating point format, 
and MatSim cannot change that.  However, between computations, MatSim can round 
parameters to the equivalent widths specified in the ports.  This is what is done when the 
user specifies to include a fixed-point arithmetic simulation during code generation.  The 
rounding is performed by a function called roundfix, which takes a vector and a bit-width 
as inputs, and outputs the vector with each element rounded to the precision specified.  
Figure 11 shows the function generated by MatSim representing the GenCorrection 
model from Figure 3 with bit-width arithmetic simulation code included.  The first 
statement after the function declaration is now a call to roundfix to round the formal input 
parameter Correction.  After the call to MacqPos, the output Pos_4 is rounded as well.  
Each call to roundfix contains the parameter 16, representing the bit-widths specified in 
the model on each port.  In this case, each port happened to be set to 16 bits. 

 

Figure 11.  Code generated for GenCorrection model with fixed-point simulation code included 

 By including the fixed-point simulation in the functional simulation, the designer 
is allowed a somewhat closer view of what to really expect during component execution 
on a fixed-point architecture.  If the user provides components which accurately represent 
fixed-point arithmetic during functional simulation, a better fixed-point simulation will 
result. 

Functional Simulation Conclusions 



 MatSim provides the designer with the capability to generate a Matlab 
representation of system algorithm models.  This representation can then be executed, 
along with user-provided simulation components representing system primitives, to 
verify the models and experiment with algorithms.  MatSim allows a developer to apply 
model-integrated design techniques at the very earliest stages of a system design, during 
algorithm development and concept design.   
 

 

VIRTUAL PROTOTYPING 

 A virtual system prototype is a simulation-based representation of a system that 
can demonstrate core design behaviors.  A virtual prototype in the context of the ACS 
toolset is distinct from the functional simulation discussed in Chapter III.  A functional 
simulation is used to experiment and test models.  The functional simulation does not 
simulate the runtime middleware, and has no concept of system resources.  A virtual 
prototype not only simulates the functionality of the system, but also can interface to the 
system hardware, allowing the exchange of data between the simulation environment and 
actual system components at runtime.  The virtual prototype executes on a layer of 
simulated middleware, just as system software components execute.  A virtual prototype 
provides a more accurate representation of the system, and provides a unique platform on 
which to perform component and system testing, as well as system integration. 

Extending the Modeling Environment and Synthesis Tools 

Modeling Environment Extensions 

 Supporting the generation of a virtual prototype from system models requires a 
few extensions to the modeling environment.  The extensions allow the user to explicitly 
represent simulation components, and to interface those components to other components 
in the network.  The resource modeling capabilities were extended to allow the modeler 
to represent the Matlab processing environment as a processing element in the system.  
Figure 12 depicts a resource model for a heterogeneous network, with the Matlab 
environment modeled as a processing resource in the network.  The modeling language 
requires that there be only one connection to the Matlab model, and that connection must 
connect to the host.  A network is allowed to contain only one Matlab model. 



 

Figure 12.  Resource Model showing the Matlab environment interfaced to the host 

 To facilitate the exchange of data between the Matlab environment and the 
network, a new communication protocol was established.  Figure 13 shows some of the 
attributes of the port of the Matlab environment model, showing the Matlab Protocol 
being selected as the communication protocol.  The port on the host processor which 
connects to this port must also have Matlab Protocol selected. 

 

Figure 13.  Port Attributes showing Matlab Protocol as the selected communication protocol 

 The modeling language has been extended to allow the designer to explicitly 
create simulation components to be integrated into a system.  Setting the resource 
category of a ProcessingPrimitive model to Matlab creates a simulation component.  By 
selecting Matlab for the resource category of a particular component, the designer 
dictates that a particular component will be implemented in the Matlab language and 



should be executed in the Matlab environment.  All primitives whose resource categories 
have been set to Matlab will be mapped to the Matlab resource during synthesis. 

Extending Codflow: Prototype Synthesis   

 The codflow interpreter was extended to allow the synthesis of a virtual prototype 
from the system models.  Because the Matlab environment was modeled as a kind of 
processor, similar to a DSP, codflow could treat it as just another node in the network 
when generating middleware initializations and configurations.  However, a few 
modifications were needed to perform some configurations of the simulated middleware 
in the Matlab environment.  These modifications included the generation of a list of 
simulation components which are to be executed in the Matlab environment, and the 
generation of an initialization file stipulating the number of streams and processes needed 
in the Matlab environment.  Specification of how the streams in the execution graph to 
execute in the Matlab middleware is generated in the form of commands in the runtime 
command file.  It was not required to modify codflow to perform this command 
generation for the Matlab node because to codflow, the Matlab node appeared as a typical 
processor node.   

An Execution Environment for Running Matlab Processes 

 An execution or runtime environment supports the execution system components 
on a node in the resource network.  Each node in the network provides a stand-alone 
execution environment, which can communicate with other nodes in the network.  The 
execution environment allows the runtime system to be easily configured from the model 
interpreter.  It also provides services to system components, abstracting the details of 
inter-process and inter-processor communications.  The runtime environment simplifies 
the details of building components.  In order to allow Matlab components to accurately 
represent their implementation counterparts, a Matlab execution environment was 
constructed to simulate the execution environment of a processor node in the network.  
The Matlab execution environment allows simulation components to be constructed 
following the same semantics as other software components.  The execution environment 
also supports and abstracts communications with the rest of the network, allowing Matlab 
components to exchange data with other components in the network.  The 
implementation of the Matlab execution environment follows closely from the concepts 
implemented in the execution environment run on a processor. 

The Processor Execution Environment 

 Each processor in the network runs a small dataflow kernel which implements the 
concepts of the execution environment Error! Reference source not found..  The 
kernel, based on a previous kernel implementation Error! Reference source not found., 
supports deterministic dynamic memory management, stream-based inter-process 
communication, inter-processor communication, and process scheduling and 



management.  Simple services are made available to components through an API.  Figure 
14 depicts the organization of the runtime kernel of a network processor.  The processes 
on top represent user-provided components, which were represented as primitives in the 
system models.  The API layer services calls made by the processes.  Through servicing 
these calls, the API layer interacts with the stream, memory, and process management 
facilities of the kernel.  When it is determined that data needs to be exchanged with 
another node in the network, the inter-node communication protocols are invoked, which 
transfer data via the communication hardware.  Each layer abstracts details about the 
lower layers and provides services to the upper layers. 
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Figure 14.  Organization of runtime kernel executing on a processor in the network 

 The models are used to configure the kernel on each node in the network.  A 
minimal amount of configuration information is compiled into the runtime environment.  
Instead of compiling this configuration information into the runtime environment, the 
network nodes are configured to receive command messages from the host containing 
configuration information.  Through these command messages a kernel is instructed to, 
for example, install a stream, to connect a stream to a particular port of a source process, 
to activate a process, or to unhalt the node.  Only when a node is unhalted can it begin to 
execute processes.  All commands are generated by the codflow interpreter from the 
models. 

Once the execution of system processes has begun, the kernel cycles through all 
the processes which it has been instructed to execute.  A process is simply a subroutine 
that the kernel calls.  The subroutine is required to check the status of any input streams it 
is to read from before attempting to perform computations, to ensure the presence of data 
to operate on.  It must also check that there is sufficient room in its output streams to 
store the results of the computations.  In this manner, the dataflow formalism is adhered 
to, in that the flow of data across the processing graph dictates the control flow of the 
graph.  After the kernel invokes each function, it invokes the inter-processor 
communication facilities to attempt to send any pending messages, and to receive into the 
kernel data structures any messages which the hardware may have received.  Next, the 



kernel checks the command message stream and appropriately dispatches any messages 
sent from the host.   

Kernel state is maintained through persistent data structures.  Processes can gain 
access to the contents of these data structures through the API.  When a process fills a 
buffer to be passed to another process, it passes that buffer to the kernel through the API.  
This buffer is held in a stream send queue data structure, waiting to be sent by the 
communication hardware.  The stream management layer will enqueue a send request 
with the communication protocol layer.  When the protocol, or interface, layer services 
the send request, it will retrieve the buffer to be sent from the stream and will invoke the 
communication hardware to send the buffer.  How the protocol layer and communication 
hardware send the buffer depends on the protocol that is used and the capabilities of the 
communication hardware.  The communication hardware on the receiving node will 
receive the buffer and will wait to be serviced by the remote protocol layer.  When the 
remote protocol layer services the receive request it will pass the received buffer to the 
remote stream management layer, which stores the buffer into the stream data structures.  
When the process that is designated as the destination for the stream is invoked, it will 
retrieve the buffer from the kernel stream through the API, and can then use the data.  In 
this fashion data can be exchanged between processes on different nodes in the network.  
When the source process and destination process reside on the same node in the network, 
the stream management layer simply forwards all sent buffers to the receiving stream, 
instead of passing the buffers through communication hardware.  These streams are 
referred to as “local” streams. 

Interface functions implement the communication protocols used by the kernel.  
There are two types of interface functions, a send and a receive.  A send function on one 
node matches with a receive function on a remote node.  A receive function expects data 
in the order and format that its counterpart send function emits.  Each node may have 
several communication ports or channels.  Each channel is assigned a particular set of 
interface functions.  The interpreter coordinates the assignment of interface functions, 
ensuring that two connected nodes “speak the same language” by having valid pairs of 
interface functions across each channel.   

Matlab Execution Environment 

 In order to execute processes in the Matlab computational environment, and be 
able to exchange data with the processing network, a simulated execution environment 
was developed for Matlab.  This execution environment consists of many of the same 
concepts as the execution environment for the other processor nodes in the system.  
Figure 15 depicts how the Matlab execution environment, or kernel layer, is organized.  
Processes execute in the Matlab environment, with services provided by the kernel layer 
through an API, just as before with network processes.  The API exchanges data and 
invokes services from the Stream / Process Management layer.  There is no need for 
memory management in the Matlab kernel layer because all memory allocation is 
performed by the Matlab computational environment implicitly.  The kernel on one of the 
nodes in the network would at this point invoke services from the interface functions to 
perform message passing between nodes.  In the case of the Matlab kernel layer, when 
the stream and process management facilities are invoked, they store data and state 



updates to a set of data structures which maintain the kernel layer state in a persistent 
fashion.  The mechanics of how data is exchanged with other nodes in the network will 
be discussed in the next section.  The process management section of the kernel invokes 
one process every time it is invoked, and each process must query the status of its input 
and output streams via the API before it performs computation.  Each process is invoked 
in a round-robin fashion, with dataflow dictating which process will actually perform its 
computations. 

Stream / Process Management

Matlab Kernel Layer Process API

P1 P2 P3

Persistent Kernel
State Storage

 

Figure 15.  Organization of Matlab kernel layer  

 The kernel layer stores its state in a set of global data structures.  It maintains a 
table to track all kernel layer streams and a process table to manage processes allocated to 
the Matlab execution environment.  These data structures are configured through the 
receipt and dispatch of host messages on system startup.  However, as with the other 
nodes in the network, the interpreter provides a small set of “bare bones” setup code, to 
provide for the initialization of communications with the host node in the form of an 
initialization function. 

 Communicating With the Host 

 The kernel layer, in order to perform its basic function, must exchange data with 
the host node in the network.  Matlab provides an interface, called the Matlab engine 
Error! Reference source not found., whereby a standalone program can manipulate and 
use the Matlab computational environment.  The engine allows a standalone C program, 
for example, to create Matlab variables and place them into the Matlab workspace, to 
invoke native Matlab functions, and to retrieve the results of the functions to use in other 
computations in the C program.  The engine gives to a C program the full functionality of 
the Matlab command line interface.   



 Through the Matlab engine interface, the system kernel executing on the host PC 
can exchange data with the Matlab kernel layer.  The Matlab protocol was implemented 
as a set of interface functions to enable this exchange.  The send function in the host 
kernel passes data to a receive function in the Matlab kernel layer.  The Matlab receive 
function is written in native Matlab code.  There is also a native Matlab send function, 
which has a corresponding receive function on the host kernel.  These interface functions 
mask the details of buffer exchanges from their respective kernels. 
 The Matlab kernel layer does not execute as a stand-alone process on the host PC.  
It executes as a slave to the host kernel.  The host kernel must periodically invoke the 
Matlab kernel layer, allowing it to send and receive data, and to execute processes.  The 
Matlab kernel layer has been designed to perform its tasks quickly and efficiently, and to 
responsibly return control to the host kernel promptly after being invoked.  The details of 
how the Matlab kernel layer is invoked is abstracted by the host interface functions from 
the rest of the host and network.  Outside of the interface functions, it appears as though 
the Matlab kernel layer is executing concurrently with the other nodes in the network.  
The kernel layer is invoked after every buffer send and buffer receive, in order to allow 
Matlab processes to perform their computations and send and receive data.  The kernel 
layer is invoked through the Matlab engine by calling a Matlab function designated as the 
kernel layer entry point.  This entry point invokes the process scheduling and stream 
management facilities of the kernel layer, and then returns control to the host kernel.   
 The interface functions are responsible for exchanging data with the Matlab 
environment.  Data is always exchanged between processes in the form of messages.  A 
message consists of a header and a body.  A message header contains information as to 
the source node, stream and channel, as well as the destination node, stream, and channel 
of the message.  The stream and channel management facilities of a kernel use this 
information to route messages to their proper destinations.  A message in the Matlab 
execution environment is represented as two vectors.  Each field of a message header has 
a corresponding index into a header vector.  A message body in the host kernel is 
represented as simply an array of numbers.  This is consistent with the Matlab 
representation: a vector of numbers.  When the host send function prepares to send a 
message to the Matlab kernel layer, it allocates two vectors from the Matlab workspace, 
one for the header and another for the body.  The data from the host header is then 
copied, field-by-field, into the header vector.  The message body is then copied into the 
body vector. 

The Matlab computational environment supports only the double-precision 
floating-point data type, so all fields are cast to doubles then they are copied.  When a 
message body is copied, the interface function must make an assumption about the 
current data format of the host message body.  Regardless of the explicit type declared in 
the message body data structure, a component can store in a message whatever data in 
whatever format is desired, as long as the source component is consistent with the 
receiving component.  However, the interface functions between the host and Matlab 
must make an assumption about the format a message body is in, because it must convert 
the data into double precision format.  By convention, the interface functions assume that 
all message bodies are currently stored in single-precision floating-point format, and the 
responsibility for ensuring that this is the case is placed on the developer of the 
components.  Because there is no characterization of the type of information being passed 



in a buffer, the interface functions are left with no other choice but to assume a format, 
otherwise, it has no means of knowing how to perform the conversion to/from double. 

Once the send function copies the header and body into Matlab vector variables, 
the Matlab kernel layer receive function is invoked.  The host send function through a 
Matlab engine call, invokes a Matlab m-function representing the receive function, 
passing the header and body vectors as parameters.  This function simply verifies that the 
message passed is consistent, and copies the message into the kernel layer global stream 
table for later reference through the API.  The Matlab send function then returns control 
back to the host send function.  The send function then frees the vectors which were 
allocated from the Matlab workspace.  Next, the send function invokes through an engine 
call, the Matlab kernel layer entry point, passing control momentarily to the kernel layer 
to allow process execution.  When the call returns, the send function returns control to the 
host kernel.   

The host receive function is very similar to the send function, only performing the 
actions in the reverse order.  The receive function first invokes the Matlab kernel layer 
send function through an engine call.  If during processing, a Matlab process has 
enqueued a message to be sent to the host, a flag is set in the state storage.  When the 
kernel layer send function is invoked, it queries the flag and retrieves the message to be 
sent.  The message is returned as two parameters, a header vector and a body vector.  
When the send function returns control to the host receive function, the receive function 
retrieves pointers to the two output parameters of the kernel layer send function, and 
determines if a message was in fact sent.  When a message is sent, the receive function 
allocates a message buffer from the host memory management, and copies, field-by-field, 
the header vector and body vector into their appropriate locations.  Again, the host must 
assume that the format that the message body is supposed to be in is single precision 
floating point.  When the message is successfully copied, it is passed to the stream 
management layer of the host kernel, for later access by system processes.  After storing 
the copied message, the receive function invokes the entry point of the kernel layer 
through an engine call, and then returns. 

These interface functions allow the Matlab execution environment to exchange 
data at runtime with processes running on the network.  When a process executing on a 
DSP in the network sources a stream connected to a process mapped to the Matlab 
execution environment, the interpreter facilitates the exchange of data via the insertion of 
forwarding components on the host and any other nodes in the path to the DSP executing 
the source process.  A forwarding component simply forwards a message from one 
stream to another, allowing a message to propagate across a node.  This communication 
framework allows data to be exchanged between Matlab processes and any other process 
in the network. 

Figure 16 depicts the full kernel layer software and how it communicates with the 
host kernel.  Processes written in the Matlab language execute, interacting with the kernel 
layer through the API.  The API allows access to the stream and process management 
facilities of the kernel, which are responsible for updating the kernel layer data structures.  
The kernel layer is periodically given control by the host kernel, where it invokes one 
process and then performs communications housekeeping, checking whether the 
communications layer has updated any streams with new information.  The actual 
communications functions are not invoked by the kernel layer itself, but rather by the 



host communications layer.  The host send function translates message data structures to 
the Matlab kernel layer representations of those data structures, as vectors, and then 
invokes the Matlab receive, which updates the kernel layer state storage.  The host 
receive function invokes the Matlab send function, which retrieves a message needing to 
be sent to the host.  The receive function then retrieves the Matlab message, and 
translates it to the host kernel message format, and passes it along to the host kernel 
stream management facilities, and processing continues. 
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Figure 16.  The Matlab kernel layer and interface to the host kernel 

Virtual Prototyping 

 With the extensions to the runtime environment and modeling tools, a developer 
can now construct a virtual prototype of a system.  A system can be modeled as a set of 
simulation components, which can be implemented using the Matlab language and kernel 
layer API.  A functional system can be synthesized from the models with the codflow 
interpreter, and can be loaded onto the resource network.  At first, this resource network 
could consist of a host PC with the Matlab environment.  After compiling and loading the 
code, the developer may test the system to verify its behavior.  After the behavior has 
been verified, the resulting system represents a virtual system prototype, exhibiting the 
functionality of the target system, but implemented using a simulation language. The 
virtual prototype will obviously not meet the performance constraints of the target 
system, but will demonstrate the core behaviors of the target. 
 After the virtual prototype has been constructed, it can be used during the 
component implementation design phase.  The modeling tools automate the selection of 
implementation alternatives from the models.  When a system is modeled, alternative 
implementations for each component can be explicitly included in the models.  As one 



alternative implementation for a component, the user provides a Matlab-based simulation 
implementation.  Another implementation would be the target implementation.  When 
constructing the virtual prototype, the target implementations for system components 
need not be constructed, nor even modeled.  However, the user should make use of 
template models to allow alternative implementations to be modeled later.  Through the 
design-space exploration utility, the designer may select the simulation implementation 
for each component, and then use codflow to generate the simulation implementation.  
After verification of the virtual prototype, the user can use the prototype as a testing 
framework for testing component implementations.  When a component is implemented, 
the tools can be used to select the simulation implementations of all system components 
except for that particular component, whose target implementation is included in the final 
design.  After this design is synthesized and loaded, the user can verify that the 
component’s target implementation exhibits the same behavior as the simulation 
implementation.  The virtual prototype provides an ideal framework because each 
simulation component has at this point already been verified, and the Matlab components 
can be used to manipulate the inputs and display the outputs of the component under test.  
Each component is tested in the context of the system, and the designer is saved the effort 
of building a testbench framework for each component.   
 The virtual prototype also provides an excellent framework to perform system 
integration.  As components are implemented and tested, they may be integrated into the 
prototype system, replacing their simulation-based counterparts.  As more components 
are included in this system, integration issues may be uncovered.  Previously, integration 
issues could not be thoroughly examined until most or all of the components had been 
implemented and could be included into the system.  Because the virtual prototype 
system allows components to be integrated seamlessly, integration issues can be 
examined much earlier in the design phase.  Systems can be synthesized consisting of 
half simulation-based components, and half target implementation components.  Through 
testing these systems, the designer can examine how components interact in a more 
controlled environment.  
 Matlab components can be used as a debugging tool.  Because network 
components can exchange data with Matlab components at runtime, the designer can 
insert a Matlab component in the data path between two components to visualize the 
messages being exchanged.  Matlab components can also be used to modify the inputs to 
a network component, allowing a greater versatility in testing.   
 The user is provided with a powerful tool to perform verification, debugging, 
component testing and system integration through virtual prototyping.  By providing an 
interface between the Matlab computational environment and the processing network, a 
developer is allowed to utilize the power of Matlab at runtime, intermixed with 
implemented components. 
 


