
Model-Integrated Design Toolset for Polymorphous Computer-Based Systems

Brandon Eames
Vanderbilt University

b.eames@vanderbilt.edu

Ted Bapty
Vanderbilt University

bapty@isis.vanderbilt.edu

Ben Abbott
Southwest Research Institute

babbott@swri.edu

Sandeep Neema
Vanderbilt University

neemask@isis.vanderbilt.edu

Kumar Chhokra
Vanderbilt University

kg.chhokra@vanderbilt.edu

Abstract

 Polymorphous computer-based systems are systems in
which the CPU architecture “morphs” or changes shape
to meet the requirements of the application. Optimized
and efficient design for these systems requires exploration
along axes beyond those of traditional system design. In
this paper we outline a model-integrated toolset to aid in
the specification, analysis and synthesis of polymorphous
applications.
 Polymorphous systems can be developed utilizing a
four-tiered approach, where inherent application
properties and characteristics govern design practices at
each level. We show through the development of the
model-integrated approach that polymorphous system
design is inherently coupled with the search and
exploration of a combinatorial space of design tradeoffs.
Design tools are needed to efficiently evaluate this large
and complex space in order to arrive at near-optimal
application implementations.

1. Introduction

 Embedded systems are computer based systems that are
deployed into the environment, in weapons, factories,
communication devices, medical devices, etc., far from the
usual computer room. They are typically very resource
limited. These systems interface to sensors, extract
information from large volumes of raw data, and make
complex decisions based on the information gathered from
the environment. Achieving a balance between the
minimization of resources and implementing the necessary
capabilities requires efficient implementations.
 The time and resources required to execute an
algorithm or component on a particular platform is not
purely based on clock speed of the underlying hardware.

Rather, the inherent mapping of the component to the
hardware shape often plays a dramatic role in utilization.
Certain types of computations perform better on particular
platforms. Thus, various classes of computers have
evolved. Take for example, SuperScalar (Intel), DSP (TI),
Java Chips (Sun), VLIW (Multiflow), Lisp Processors
(Symbolics), Vector (Cray), etc. Performance in this sense
can have many different metrics, be it actual execution
time, throughput, power consumption, latency, etc. Given
a particular metric, a component’s performance can be
evaluated across several different platforms, and the best
platform selection can be determined. If all components in
a system were allowed to execute on their optimal
platform, ignoring compositional consequences, the
system as a whole would exhibit the best performance
according to that metric. This affinity between
components and platforms is a property of a component,
and forms the basis for a polymorphous embedded system
design.
 Recent advances in VLSI technology have allowed chip
developers to create a new class of computer architectures.
These new architectures are designed to natively support
multiple modes of computation. Examples of such
architectures include Smart Memories [10], Monarch [6],
RAW [19], and Cyclops [4]. Hardware support for
multiple computation modes makes this emerging class of
architectures an ideal candidate for exploiting the affinity
between computations and compute platforms. However,
there exists a large void in the area of tool support for
developing applications for these architectures.
Architecture teams are developing low-level tool support,
such as compilers and runtime systems. However, the
reasoning required to analyze and optimize multimodal
polymorphous systems must be much deeper than what
current compilation technology is capable of. Advanced
tool support with capabilities to reason across the full
application and architecture space is required in order to

develop near-optimal software targeting polymorphous
hardware.
 In the embedded system domain, achieving
performance is critical, along with the performance
guarantees required for real-time systems. A
polymorphous approach to system design can achieve
large increases in performance, at the cost of complexity
in design and implementation. The use of sophisticated
design tools can mitigate not only the complexity involved
in computer-based system design, but the increased
complexity involved in polymorphous system design as
well.

Asynchronous

Dataflow
Shared Memory
Multi-threaded Streaming

Superscalar
Architecture

Template

VLIW
Architecture

Template

Design Space Exploration and Mapping

System Synthesis

Figure 1Figure 1Figure 1Figure 1 . Polymorphous . Polymorphous . Polymorphous . Polymorphous approachapproachapproachapproach to embedded to embedded to embedded to embedded

system designsystem designsystem designsystem design

 This paper presents an overview of a model-integrated
toolset which facilitates complex polymorphous
application development. Figure 1 illustrates the role of
the toolset. As complex applications are composed of
heterogeneous components, the tool supports component
capture via models of computation, such as Synchronous
Dataflow [13] or shared memory multithreading. Design
space exploration evaluates design tradeoffs, reasoning
across the full application and architecture space, and
searches for small sets of near-optimal design
implementations. Resource allocation is addressed
through design-space exploration. System synthesis

generates functional implementations directly from system
models. The target platform for a polymorphous design is
a configurable polymorphous architecture, which
facilitates via hardware support the execution of
applications targeting multiple specialized architectures.
To allow the configuration of polymorphous hardware, the
tools support a concept called an architecture template.
An architecture template is a predetermined configuration
of the underlying polymorphous hardware. Software is
developed for a particular architecture template, and then
automatically mapped down to the polymorphous
architecture.
 The remainder of the paper details the various aspects
of the toolset. In section 2, we discuss the model-
integrated approach to system development and how it
applies to polymorphous system design. Section 3
addresses the concept of architecture templates. Section 4
discusses the design space exploration problem, followed
by section 5, which addresses system synthesis. Section 6
shows a brief example of the tools applied in the
polymorphous design of a speech recognition engine.
Section 7 discusses related work and section 8 summarizes
the paper.

2. Model Integrated Computing and
Polymorphous System Design

 Model Integrated Computing (MIC) [18] is an approach
to designing complex computer-based systems. Models
capture system design information, environmental
interactions, and other constraints on system composition.
The models are composed in a customized, multi-aspect,
domain-specific language. Specialized software
generators, called Interpreters, traverse these models to
extract design information, make decisions on system
implementation, and synthesize code, analyses,
simulations, and other tools used in building and verifying
the system. MIC has been successfully applied in several
domains [2][5][8][12].
 Here, we apply MIC techniques to mitigate the
complexity of developing embedded applications for
polymorphic architectures. Such applications are
composed of many heterogeneous components or
subsystems. Heterogeneity arises from the differing
nature of the algorithms employed in the subsystems, as
well as how the algorithms compose. The most natural
way of capturing and characterizing components differs
not only from application to application, but from
component to component within complex applications.
Models of computation (MoC) represent a set of formal
modeling semantics for capturing various classes of
components. We use multiple models of computation as a
semantic basis for domain-specific modeling languages in
the MIC environment. The modeling environment
provides a framework for establishing interactions

between the models of computation. This approach is
similar to the approach taken in the Ptolemy project [14].
The basic models of computation we support are:

• Synchronous streaming model [11], allows
efficient specification of multimedia operations,
where predictable data patterns and interlocking
computations can be fully specified.

• Asynchronous Dataflow, where system
computations must be driven by availability of
data, and computations are ordered in a specified
computational graph. See Figure 2.

• Multithreaded, Shared Memory, where
computations operate concurrently,
communicating via shared memory and
synchronization primitives, as in POSIX threads
(Pthreads). This MoC can be extended for
distributed memory operations, with
communications operations, such as MPI. See
Figure 3.

 Models of computation facilitate efficient design
capture by using formalisms that match the problem. For
example, synchronous, data parallel programs are very
efficiently expressed using a streaming model of
computation. The computer-based system application
domain integrates heterogeneous classes of computations;
therefore we support multiple models of computation to
efficiently and cleanly model each class. Efficient
component capture allows the generation of efficient
implementations directly from the captured design. By
supporting multiple models of computation, the modeling
environment allows the capture of the kinds of
components which span the space of components required
by complex embedded system.
 Figure 2 shows an example of a system modeled using
the dataflow MoC. Boxes represent functions, or blocks
of code which operate on data. The boxes have arbitrary
numbers of inputs and outputs, which are the input tokens
(parameters) and output tokens (results) of the function.
Connections between boxes represent data dependencies
or paths through which data are sent from one component
to another. Data connections are implemented as queues.
Data flows through the system in the form of tokens.
When a process or actor executes, it consumes tokens
from its input queues and enqueues tokens in its output
queues. Dataflow is a common model of computation
used in the signal processing community, and a great deal
of research has occurred in specifying, analyzing, and
implementing the dataflow MoC.

Figure 2Figure 2Figure 2Figure 2 . Model of a speech recognition algorithm . Model of a speech recognition algorithm . Model of a speech recognition algorithm . Model of a speech recognition algorithm

expressed in dataflow semanticsexpressed in dataflow semanticsexpressed in dataflow semanticsexpressed in dataflow semantics

 Figure 3 illustrates the modeling syntax of the shared-
memory multithreaded modeling language. Boxes
represent threads, with lines representing dependencies
between threads, implemented as thread synchronizations.

Figure 3Figure 3Figure 3Figure 3 . Model showing multithreaded modeling . Model showing multithreaded modeling . Model showing multithreaded modeling . Model showing multithreaded modeling

language syntaxlanguage syntaxlanguage syntaxlanguage syntax

 As heterogeneous applications are composed of
components which are best modeled using distinct models
of computation, the toolset supports the interaction of
component implementations at runtime. The runtime
system provides memory management support through
buffers. How individual components utilize data depends
on the model of computation used in developing the
component. For example, in a synchronous streaming

model of computation, data tokens or records are packed
together in a buffer, and are accessed as a stream.
Individual records from a stream can be distributed to
stream kernels which process data in a data parallel
fashion. The results are collected and packed into a stream
buffer. Such a stream buffer can be processed by a
component implemented in a dataflow model of
computation simply by viewing the stream buffer as a
collection of dataflow tokens. Records are extracted from
the stream buffer one record at a time and enqueued into
the appropriate input queues of a component one token at
a time. The dataflow component simply extracts these
tokens when they are available. Dataflow components
can send data to a streaming component simply by having
the output tokens of a dataflow component collected and
packed into a stream buffer.
 In a similar vein, streaming components can interact
with components implemented using the multithreaded
model of computation. A stream buffer can be viewed as
a shared memory location whereby multiple threads of
execution can extract records as needed. Similarly, a
shared memory buffer written to by a multithreaded
component can be re-packed into a stream buffer for
access by a streaming component. Dataflow components
can interact with multithreaded components following
similar semantics.

3. Architecture Templates

 Many years of effort in the fields of computer
architecture research and associated compiler support have
been invested in search of optimizing computer
performance assuming specific classes of problems [7].
The last three decades have seen significant development
in techniques to exploit fine-grained or instruction-level
parallelism (ILP). Examples of successful architectures
are VLIW, superscalar, vector, SIMD, etc. Previously, we
discussed the affinity between algorithms and
architectures, characterizing the occurrence of significant
performance gains when algorithms map well to
architectures. With the extreme heterogeneity exhibited in
complex embedded applications, it is not possible to select
a single architecture class as an implementation platform
for an application, and achieve high affinity between the
platform and the application’s constituent algorithms.
 Polymorphous computing can emulate multiple
architectures in the same device. Given this capability,
designers can tailor component implementations to those
architectures to which the algorithms exhibit the strongest
affinity. These tailored implementations must then be
translated and mapped to an underlying polymorphous
architecture by the synthesis tools. These tools require
formal structuring information, in architecture models. We
refer to these architecture models as architecture
templates.

 An architecture template serves two purposes. First, it
provides a framework for leveraging proven techniques for
exploiting fine-grained parallelism. Second, it provides a
means of mapping applications to a complex, configurable
platform. Preliminary techniques for selecting architecture
templates for a polymorphous architecture are under
development (described in the Design Space Exploration
section below). The architecture template models allow
the user to assert hints and constraints to assist the design
space mapping. Architecture templates allow existing
compiler technology to be leveraged in translating
algorithms to machine code for the polymorphous
platform. Template-specific compilation translates code to
an intermediate form, which is then mapped down to the
polymorphous architecture using hints provided as part of
the template definition.
 An architecture template captures a class of physical
computer architectures. We use parameterized modeling
to represent variability within an architecture class. For
example, a VLIW has parameters such as number of
functional units, e.g. 4-wide VLIW or 8-wide VLIW.
Parameters in architecture templates allow the template to
be tuned to best exploit the performance characteristics of
an algorithm. Other example parameters for various
templates are: length of vector for vector template; issue
width for VLIW template, issue width for superscalar
template.
 The hierarchical system composition using Models of
Computation permit a fine-grained component
representation. These fine-grained components represent
the fundamental computational algorithms and building
blocks of the system. We associate fine-grained
components with architecture templates, and then map the
association onto polymorphous hardware. A visual
representation of an architecture template is shown in the
context of an example application in Section 6 (see Figure
5).

4. Exploration of a Polymorphous Design
Space

 Classic system design involves searching and trading
between various tradeoffs. For example, if a particular
architecture is chosen, then what clock speed and power
will be necessary to avoid missing system deadlines?
Polymorphous systems add a further dimensions of
complexity to this search space, multiple and dynamic
architecture shapes. Accordingly, successful
polymorphous system design involves many tradeoff
decisions. There are decisions to be made at the level of
application composition, such as what type of algorithm
should be used to perform a particular task (i.e. spatial vs.
spectral filtering of an image). As applications are
resolved into collections of fine-grained components,
decisions must be made about associations with

architecture templates. Further, as each architecture
template is parameterized, an optimal set of values for
each parameter must be obtained for each component-
template association. Finally, how architecture template-
component pairings must be allocated actual hardware
resources on the underlying polymorphous architecture.
All of these tradeoff decisions must be analyzed in the
context of global application requirements or goals. If an
application is required to consume less than 10 watts of
power, all tradeoff decisions (or perhaps only those which
are relevant) must be evaluated under this light.

We call the space of alternative implementations
formed by every possible combination of tradeoff
decisions a design space. Formally we can define the
design space in the following manner.

Let, iA be the set of alternatives for an application

component i , and let cN be the number of components
in the application. Then, we can define the application
space AS as the cross-product set:

∏=
cN

i
iAAS

Now, let jD be the domain of parameter j , and let

kP be the set of parameters in a parameterized

architecture template k . Then, we can define the set of
possible instantiations kPS of the architecture template

k as:

∏=
kP

j
jk DPS

In this formalism, we consider a polymorphous

computer as a collection of two distinct types of unit
resources, a) shareable –multiple architecture templates
instantiated on the polymorphous computer can
simultaneously be assigned these units e.g. floating-point
unit, caches, etc. on the IBM-Cyclops reference
architecture [4], and 2) non-shareable – each architecture
template instantiated on a polymorphous computer is
uniquely assigned these units, e.g. thread unit on Cyclops.
Thus, here we define a polymorphous computer PC simply
as:

nss RRPC Υ=

where, sR is the set of shareable resource units, and nsR
is the set of non-shareable resource units.

Based on this definition of a polymorphous computer,
we can define the possible instantiations of an architecture
template on a polymorphous computer, in terms of the
resource requirements of an architecture template instance

mt and its mapping on the resource units in the

polymorphous computer PC . Let, ()mtS and ()mtNS
be the shareable and non-shareable resource requirements,
respectively, of km PSt ∈ . Then, the set of possible

mappings ()mtMS of mt is defined as:

() () ()

×

=

m

ns

m

s
m tNS

R
tS

R
tMS

The set of all mappings kMS of architecture template k ,
can now be defined as:

()Υ
km TSt

mk tMSMS
∈∀

=

For implementing an application the polymorphous
computer can be partitioned to accommodate zero or more
instances of each architecture template k . If we let kL be
the number of instances of architecture template k, then
we can define the possible set of partitions and mappings
of the polymorphous computer as:

∏∏=
k

L

j
j

k

MSRS

We designate the set RS as the resource space, because it
captures all possible ways in which the polymorphous
computer can be configured to deploy an application. Note
that kL is bounded such that the sum of non-shareable
resource units required by all architecture template
instances is less than nsR .

The design space for the system is then defined as:
RSASDS ×=

 We call the process of evaluating tradeoffs across this
space design space exploration. Based on the above
definition it is easy to observe that the size of the design
space can be extremely large. Some preliminary work in
developing the speech recognition system described in
Section 6 indicate a design space on the order of 10^25
alternative design implementations. Clearly, an
enumerative search through this space for feasible and
near optimal solutions will be prohibitively expensive.
Therefore, we require efficient and scalable search
techniques to rapidly evaluate the design space for feasible
solutions.
 In prior research, Neema [15] has developed a tool to
address design space exploration. In his approach, non-
functional requirements of the system are viewed as
constraints, and the process of exploring the design space
amounts to a constraint satisfaction problem. He used
Ordered Binary Decision Diagrams [3] to symbolically
represent the design space, and encoded constraints as
operations on OBDD’s to efficiently explore the space.

The application of a constraint amounts to pruning out
designs invalid with respect to the applied constraints, and
produces a much smaller space, from which designs can
be chosen for synthesis, or the reduced space may be
further explored with finer-grained performance analysis
tools and simulation. Neema did not attempt to search
parametric design spaces with his approach. Parametric
spaces do not map cleanly onto the OBDD approach, since
it requires a large number of binary variables to encode the
domain of parameters, and may result in “exponential
blow-up” in the computational complexity.

In this research we are investigating other techniques
for efficient design space exploration, and their efficient
integration into the OBDD-based symbolic constraint
satisfaction approach. Techniques under consideration
include integer linear programming using branch and
bound, genetic algorithms, constraint logic programming,
and simulated annealing.

5. System Synthesis

 System synthesis is the process of converting a point in
the design space into a physically realizable
implementation. This process entails generating all of the
necessary artifacts for:

• Configuring architectures – the parameters to
make the architecture morph into VLIW, MIMD,
etc, or implementing a specific communication
topology. This can include code sequences,
tables, memory controller maps, network switch
settings, etc.

• Configuring the middleware (morphware) for the
application and architecture. This can include the
link tables of required OS facilities, static
schedules for processors, message routing tables,
DMA engine sequences, etc.

• Generating the application software, composing
the software from libraries and glue code.
Architecture-efficient implementations are pulled
from libraries. Interface code for communication
and synchronization must be generated and
inserted as wrappers around the components.
Interfaces to access the morphware facilities must
also be created and integrated.

6. Polymorphous Design of Speech
Recognition Software

 We are applying our approach to polymorphous system
design in the development of a speaker-independent
speech recognition system, based on Sphinx [17]. Figure
2 shows the top-level view of the Sphinx application,
utilizing dataflow semantics. Sphinx takes sampled audio

data, applies some signal processing algorithms on the
front end, collects samples into 10ms speech frames, and
then passes those speech frames on to a recognition
engine. The recognition engine generates feature vectors
for each frame, and then compares those feature vectors
against several pre-computed vectors characterizing basic
acoustic sounds in the English language. The best score
for each feature is calculated and the result is passed to a
Hidden Markov Model search engine, which attempts to
piece together words from simple sounds. For simple
vocabularies, system execution time is dominated by the
calculations to compare feature vectors (a distance
calculation), and to discover highest scores of distances.
Figure 4 shows a hierarchical decomposition of the
Proc_Frame component. The Proc_frame component is
responsible for calculating distances between feature
vectors, as well as scoring the results of the computations.

Figure 4Figure 4Figure 4Figure 4 . Proc_Frame component of the Sphinx . Proc_Frame component of the Sphinx . Proc_Frame component of the Sphinx . Proc_Frame component of the Sphinx

applicationapplicationapplicationapplication

 An examination of the Get_scores component reveals a
very static structure, tending towards a VLIW
implementation. The Get_scores component merges the
results of the distance calculations across the four features.
It performs similar, data independent operations for each
of the four feature types, across a large array of distances.
It forms a merged distance score for each speech frame.
An analysis of the available fine-grained parallelism in the
get_scores component leads us to associate the component
with a VLIW template, with a four instruction issue width.
Figure 5 depicts the representation of this association, as
well as a definition of the four-issue VLIW template.

 A template is captured as a mapping between the
logical architectural concepts of the template and the
physical architecture resources of the underlying
polymorphous computer. As seen in Figure 4, in this
example we capture the IBM Cyclops [4] reference
architecture as a basic polymorphous computer. We show
only one tile of the Cyclops architecture. The VLIW
template view shows how logical concepts map onto the
architectural features of the Cyclops architecture. For
example, the logical single threaded instruction stream of
the VLIW architecture maps onto four separate thread
execution units of the Cyclops architecture. This resource
mapping provides information to the resource allocation
stage of design space exploration.

Figure 5Figure 5Figure 5Figure 5 . Models representing the Getscores fine. Models representing the Getscores fine. Models representing the Getscores fine. Models representing the Getscores fine----
grained component, with grained component, with grained component, with grained component, with aaaa VLIW4 template VLIW4 template VLIW4 template VLIW4 template applied applied applied applied

to a Cyclops hto a Cyclops hto a Cyclops hto a Cyclops hardware architecture ardware architecture ardware architecture ardware architecture

 After the application is fully modeled, and associations
are made between fine-grained components and
architecture templates, the full system is synthesized from
the models, and executed on the final platform. At this
stage of the tool development, associations between fine-
grained components and architecture templates must be
made explicitly. As part of the design space exploration
toolset, we are developing algorithms to automate this
decision process. The output of the synthesis stage is glue
code targeting runtime middleware (morphware) to
support inter-component communication and
synchronization.

7. Related Work

 While we believe our approach to polymorphous
system development to be unique, there are many related
research areas, and we leverage work from several
previous projects as well.
 In prior work at Vanderbilt University, the ACS toolset
[2] was developed to synthesize embedded applications
targeting heterogeneous processing platforms including
FPGAs, DSPs, and general purpose processors. Synthesis
of component-based software was addressed.
 The Ptolemy project [14] at UC Berkeley researches
models of computation and semantic interactions of
models of computation. A goal of the Ptolemy project is
to allow the utilization of those models of computation
which best fit the problem, and to facilitate the interaction
of components modeled in distinct models of computation.
 Design space exploration as a research topic has
received much attention in the System-on-Chip design tool
community, with the goal of finding optimal or near-
optimal hardware-software partitions [1], or of configuring
parameterized hardware components for a particular
application [16]. One such project is the PICO project[9]
under development at HP Labs. PICO seeks to synthesize
custom VLIW-based processors which are tailored for a
particular application or class of applications.
Parameterized models are searched using a tool called the
Spacewalker to determine optimal settings for a particular
application class.
 While these search techniques improve space
exploration times dramatically over exhaustive search
techniques, they are still too expensive to apply to
combinatorial spaces such as the types observed in
polymorphous system design. However, hybrid
techniques involving fast OBDD-based searches and
parametric design space search techniques can be
developed to improve the overall search coverage and
search time.

8. Conclusions

 Polymorphic system design is a novel approach to
system development, offering an opportunity to achieve
new levels of performance and efficiency. This potential
efficiency gain comes at the cost of increased system
design complexity. Sophisticated design tools are required
to support the development of polymorphous applications,
due to the complex interactions between subsystems and
the increased number of design variables which must be
considered.

We have described the model-integrated toolset, under
development at ISIS, which supports the development of
high-performance, near-optimal polymorphous systems.
The tool allows developers to express software at a high
level of abstraction, independent of the underlying

architecture. Generation tools navigate the design space,
resolving design issues, such as architecture selection,
choosing appropriate implementation options, mapping to
resources, etc.. The tools automate the process of
designing near-optimal system implementations, using
information captured in the models, design-space
navigation techniques, and software generation methods.

9. Acknowledgements

 This work was supported under the DARPA PCA
program, under contract F30602-01-C-0078. The authors
wish to thank the members of the M3T team for their
inputs to this work.

10. References

[1] Azzedine A., Diguet J., and Philippe J. “Large Exploration
for HW/SW Partitioning of Multirate and Aperiodic Real-Time
Systems”, Proceedings of the 10th International Symposium on
Hardware/Software Codesign, Colorado, May, 2002.

[2] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S.
“Model-Integrated Tools for the Design of Dynamically
Reconfigurable Systems”, VLSI Design, 10, 3, pp. 281-306,
2000.

[3] Bryant R., “Symbolic Manipulation with Ordered Binary
Decision Diagrams,” School of Computer Science, Carnegie
Mellon University, Technical Report CMU-CS-92-160, July
1992.

[4] Cascaval, C. el al. “Evaluation of a Multithreaded
Architecture for Cellular Computing.” 8th International
Symposium on High-Performance Computer Architecture, Feb
02-06 2002. Boston MA.

[5] Davis J., Scott J., Sztipanovits J., Martinez M.: Multi-
Domain Surety Modeling and Analysis for High Assurance
Systems, Proceedings of the Engineering of Computer Based
Systems, pp. 254-260, Nashville, TN , March, 1999.

[6] Granacki, J. and Vahey, M. “Monarch: A High
Performance Embedded Processor Architecture with Two Native
Computing Modes.” High Performance Embedded Computing
Workshop, September 2002.

[7] Hennessy J. and Patterson D. Computer Architecture: A
Quantitative Approach, 2nd Edition. Morgan Kauffman Inc, San
Francisco CA, 1996.

[8] Karsai G., DeCaria F. “Model-Integrated On-line Problem-
Solving Environment for Chemical Engineering”, IFAC Control
Engineering Practice, 5, 5, pp. 1-9, 1997.

[9] Kathail V., Aditya S., Schreiber, R., Rau B. R., Cronquist
D., Sivaraman M. “PICO: Automatically Designing Custom
Computers” IEEE Computer, September 2002, pp. 39-47.

[10] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M.
Horowitz. “Smart Memories: A Modular Reconfigurable

Architecture.” International Symposium on Computer
Architecture, June 2000.

[11] Peter Mattson, Programming System for the Imagine Media
Processor, Ph.D. thesis, Stanford University, 2002.

[12] Misra A., Karsai G., Sztipanovits J., Ledeczi A., Moore M.
“A Model-Integrated Information System for Increasing
Throughput in Discrete Manufacturing”, International
Conference and Workshop on Engineering of Computer Based
Systems, pp 203-210, Monterey, CA, March 24, 1997

[13] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”,
Proceedings of the IEEE, vol. 83, no.5, pp. 773-801, May, 1995.

[14] Edward A. Lee, "Overview of the Ptolemy Project,"
Technical Memorandum UCB/ERL M01/11, University of
California, Berkeley, March 6, 2001.

[15] Neema, S. “Design Space Representation and Management
for Model-Based Embedded System Synthesis.” Technical
Report # ISIS-01-203. Vanderbilt University, February 2001.

[16] Palesi, M. and Givargis, T. “Multi-Objective Design Space
Exploration Using Genetic Algorithms”, Proceedings of the 10th
International Symposium on Hardware/Software Codesign,
Colorado, May, 2002.

[17] M. Raveshankar. “Efficient Algorithms for Speech
Recognition.” Ph.D. thesis, Carnegie Mellon University, 1996.

[18] Sztipanovits J., Karsai G. “Model-Integrated Computing”,
IEEE Computer, pp. 110-112, April, 1997.

[19] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, and A. Agarwal. “Baring It All to Software: RAW
Machines.” IEEE Computer, September 1997, pp. 86-93.

