
A Framework for Creating Aspect Weavers

Jeff Gray

Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville TN 37235

jgray@vuse.vanderbilt.edu
http://www.vuse.vanderbilt.edu/~jgray

ABSTRACT

Several new modularity technologies have been proposed
that improve separation of concerns in programming
languages. In particular, research in Aspect-Oriented
Programming (AOP) has been promoted as a means
toward the separation of concerns that crosscut the
modularity of an implementation. This brief summary
presents two research objectives for extending AOP.
First, the concept of AOP is investigated at a higher level
of abstraction. A core focus of this objective is the
application of aspect-oriented (AO) techniques to model-
integrated computing. The second research objective
involves the creation of a framework that aids in the
construction of new aspect weavers. The framework
utilizes several domain-specific languages (DSLs) and
generators to provide variability among weaver
instances.

1. INTRODUCTION

Even though separation of concerns is an old idea, one
can witness the nascence of a research area devoted to
exploring new techniques to support advanced separation
of concerns [7]. In AOP, the focus is on capturing, in a
modular way, the crosscutting concerns of a system [5].
AOP recognizes that crosscuts are inherent in most
systems and are generally not random. An aspect,
therefore, is a piece of code that describes a recurring
property of a program that crosscuts the system. The goal
of AOP is to support the programmer in cleanly
separating components and aspects from each other by
providing new language constructs that make it possible
to abstract and compose them to produce an overall
system.

Our core research area at ISIS is model-integrated
computing [6]. This work is focused on domain-specific
modeling environments that are created from metalevel
specifications of a particular domain. Several of the
domain models that we have created are embedded real-
time systems that are highly adaptive. These models
contain constraints that stipulate design criteria and limit
design alternatives. Such constraints are tangled
throughout the hierarchy. The crosscutting nature of these
constraints makes it difficult to maintain and reason about
their effects and purpose.

In AOP, a translator called a weaver is responsible for taking
code specified in a traditional programming language and
additional code specified in an aspect language, and weaving the
concerns together. We are uniting our core research area with
the powerful new techniques offered in AOP by extending the
purview of applicability by developing weavers for constraints
in domain-specific models.

2. GOALS

The goals of this thesis can be summarized by two research
objectives:

• Raise the concepts of AO to a higher level of
abstraction

An Aspect-Oriented (AO) approach can be beneficial
at different stages of the software lifecycle and at
various levels of abstraction. Whenever the
description of a software artifact exhibits crosscutting
structure, the principles of modularity espoused by AO
offer a powerful technology for supporting separation
of concerns. This thesis makes a novel contribution to
the literature on advanced separation of concerns by
investigating the application of AO techniques to
domain-specific modeling [3].

• Assist in the creation of new weavers using a

metaweaver framework

Because the syntax and semantics of each modeling
domain are dissimilar, a different weaver is needed for
each domain. A metaweaver framework is proposed as
an aid toward constructing new domain-specific
weavers. This framework will make use of several
code generators that take metalevel specifications
(described in a DSL) as input and produce code that
will serve as a hook into the framework.

Additionally, the initial domain-specific metaweaver
framework already developed will undergo several
modifications so that a weaver for programming and
aspect languages other than Java and AspectJ can be
constructed. Initial results for this research objective
are described in [2].

3. APPROACH

The specific details of the approach for applying AO
techniques to domain-specific models are covered in [3].
One of the key elements of the approach is the application
of a DSL (we have developed an extension to OCL [8])
that is used to navigate the domain model and to quantify
the location of specific model constraints. The same DSL
is used to specify strategies that implement the
computations and propagations of constraints that are
peculiar to a particular domain.

A generative programming approach has been adopted
such that the DSL is processed by a generator that
produces C++ code [1]. This C++ code is used to
implement the domain-specific strategy and is linked into
a weaver framework.

From experience in other work [4], we have found that a
framework that uses software generators greatly reduces
the amount of time needed to create new applications.
The concepts that are used in the framework for creating
domain-specific weavers will be extended to offer support
in the creation of weavers for programming and aspect
languages. More concrete details of this concept are
described in [2].

4. STATUS AND FUTURE

The framework for creating domain-specific weavers has
been under development for over a year. Instantiations of
the weaver have been used to assist in the quantification
of constraints in two different domains. The weavers were
used to apply constraints that focused on power
consumption and processor assignment in models that
represent real-time embedded systems. Future extensions
are planned to permit more powerful strategies to be
specified in the DSL.

The weavers created from this framework currently
accept as input models that have been stored using a
specific XML DTD. We plan to expand on this work by
creating another generator that will provide variability
with respect to the XML format that is understood by a
weaver.

The work on extending the framework to include weavers
for programming and aspect languages is still in an
immature state. The continued development of these
enhancements is the focus of the remaining work needed
to accomplish the research objectives of this thesis.

5. ACKNOWLEDGEMENT

This work has been supported by the DARPA
Information Technology Office (DARPA/ITO), under the
Program Composition for Embedded Systems (PCES)
program, Contract Number: F33615-00-C-1695.

6. REFERENCES

1. Czarnecki, K., and Eiseneker, U., Generative

Programming: Methods, Tools, and Applications , Addison-
Wesley, 2000.

2. Gray, J., “Using Software Component Generators to
Construct a Meta-Weaver Framework,” 23rd International
Conference on Software Engineering (ICSE 2001),
Doctoral Symposium, Toronto, Ontario, Canada, May
2001.

3. Gray, J., Bapty, T., Neema, S., and Tuck, J., “Handling
Crosscutting Constraints in Domain-Specific Modeling,”
Communications of the ACM, October 2001.

4. Karsai, G., and Gray, J., “Component Generation
Technology for Semantic Tool Integration,” IEEE
Aerospace Conference, Big Sky, MT, March 2000.

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W., “Getting Started with AspectJ,”
Communications of the ACM, October 2001.

6. Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi,
A., “Metamodeling - Rapid Design and Evolution of
Domain-Specific Modeling Environments,” IEEE ECBS
Conference, Nashville, TN, April 1999.

7. Tarr, P., Ossher, H., Harrison, W., and Sutton, S., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns,” International Conference on Software
Engineering (ICSE), Los Angeles, CA, May 1999.

8. Warmer, J., and Kleppe, A., The Object Constraint
Language: Precise Modeling with UML, Addison-Wesley,
1999.

