
Handling Crosscutting Constraints in
Domain-Specific Modeling

Jeff Gray, Ted Bapty, Sandeep Neema, James Tuck

Institute for Software Integrated Systems (ISIS)

Vanderbilt University, Nashville TN 37235
{jgray, bapty, neemask, tuckjm}@vuse.vanderbilt.edu

http://www.isis.vanderbilt.edu

ABSTRACT

Domain-specific models for embedded systems often
contain constraints that aid in stipulating design criteria.
These constraints, however, are typically scattered across
a model hierarchy in such a manner that it is difficult to
reason about the effect and purpose of each constraint.
This poster describes an approach for providing better
separation of concerns with respect to constraints.

1. PROBLEM BACKGROUND

Our core research area at ISIS is model-integrated
computing (MIC) [6]. A major focus of MIC is on
domain-specific modeling environments that are created
from metalevel specifications of a particular domain. A
metaCASE tool called the Generic Modeling
Environment (GME) has been developed for this purpose.

In many real-time embedded systems it is advantageous
to model the design space of an application. In fact, this is
mandatory for self-adaptive systems that must chose at
run-time among numerous alternatives. Several of the
domain models that we have created are embedded real-
time systems that are highly adaptive. Our approach to
modeling self-adaptive embedded systems uses a form of
OCL [8] constraints to help prune the size of the design
space during exploration. These constraints stipulate
design criteria and limit design alternatives [5].

Unfortunately, such constraints are tangled throughout the
model hierarchy. These constraints cut across the modular
boundaries of a model. The crosscutting nature of these
constraints makes it difficult to maintain and reason about
their effects and purpose.

The specific details of the work presented in this poster
can be found in [3]. In this poster presentation we seek a
forum for engaging in one-on-one discussions that were
not possible with the initial description of our work.

2. APPROACH

Our solution to the problem of tangled constraints
involves the separation of constraints from modeling

elements. The solution allows modular specifications of
constraints to be propagated throughout a model via a domain-
specific weaver. The purpose of a weaver is to integrate
constraints back into a model. In general, the solution is an
extension to research in Aspect-Oriented Programming (AOP)
[4] and is based on the concepts of generative programming [1].

Domain-specific weavers rely on specification aspects and
strategies to carry out their duty. Specification aspects, similar to
pointcuts in AspectJ [4], are used to specify where the
constraints will be applied in the model. Strategies describe how
a constraint is applied in the context of a particular node in the
model. The description of specification aspects and strategies
allows a modeler to quantify properties of the model in a module
that is separate from the model structure.

Domain-specific weavers are created as a particular instantiation
of a metaweaver framework. A core component of this
framework is a code generator that translates high-level
descriptions of strategies, specified as a domain-specific
language (DSL), into C++ source code. We call this DSL the
Embedded Constraint Language (ECL). It is based on the OCL
[8].

3. FUTURE RESEARCH FOCUS

Extensions to the initial domain-specific weaver framework are
continuing to be developed. For instance, although strategies
allow for variability among different GME paradigms, there are
other improvements that can be made to the framework in order
to extend its variability. Each extension requires a new DSL and
generator.

The input to a weaver built with our framework assumes that the
separation of constraints is being performed on models created
with the GME and exported as an XML file. The limitation
imposed by this assumption precludes other modeling tools (that
can also export models using XML) from being able to employ
the benefits of a constraint weaver. A goal of this research will
be to demonstrate that additional variability can be achieved by
generating pieces of the XML parser from the underlying DTD
of the modeling tool.

As noted previously, the metaweaver framework for domain-
specific modeling uses the ECL for expressing both strategies

and specification aspects. A point of variation within the
framework is an extension that would allow the
specification aspect parser to be replaced with some other
language. To provide variation with respect to the aspect
parser, the output of a parser generator (e.g., YACC or
PCCTS) needs to be integrated into the framework. It is
also uncertain at this point whether a framework that
provides this level of variability needs the capabilities of
strategies. In place of strategies, it may be the case that a
traversal/visitor language is needed [7].

Building on the ideas of extension just described, we are
developing a weaver framework that will make it easier to
mix and match different base languages (e.g., Ada,
Delphi, Prolog) with various aspect languages. The details
of this extension were first presented in [2].

4. ACKNOWLEDGEMENT

This work has been supported by the DARPA
Information Technology Office (DARPA/ITO), under the
Program Composition for Embedded Systems (PCES)
program, Contract Number: F33615-00-C-1695.

5. REFERENCES

1. Czarnecki, K., and Eiseneker, U., Generative

Programming: Methods, Tools, and Applications ,
Addison-Wesley, 2000.

2. Gray, J., “Using Software Component Generators to
Construct a MetaWeaver Framework,” International
Conference on Software Engineering (ICSE),
Doctoral Symposium, Toronto, Ontario, Canada,
May 2001.

3. Gray, J., Bapty, T., Neema, S, and Tuck, J.,
“Handling Crosscutting Constraints in Domain-
Specific Modeling,” Communications of the ACM,
October 2001.

4. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., and Griswold, W., “Getting Started with
AspectJ,” Communications of the ACM, October
2001.

5. Neema, S., and Ledeczi, A., “Constraint Guided
Self-Adaptation,” International Workshop on Self-
Adaptive Software, Balatonfured, Hungary, May
2001.

6. Nordstrom, G., Sztipanovits, J., Karsai, G., and
Ledeczi, A., “Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling
Environments,” IEEE ECBS Conference, Nashville,
TN, April 1999.

7. Ovlinger, J., and Wand, M., “A Language for
Specifying Recursive Traversals of Object
Structures,” Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) , Denver,
CO, November 1999, pp. 70-81.

8. Warmer, J., and Kleppe, A., The Object Constraint
Language: Precise Modeling with UML, Addison-
Wesley, 1999.

