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Abstract 
 

A key advantage for the use of a Domain-Specific 
Language (DSL) is the leverage that can be captured 
from a concise representation of a programmer’s 
intention. This paper reports on three different DSLs that 
were developed for two different projects. Two of the 
DSLs assisted in the specification of various modeling 
tool ontologies, and the integration of models across 
these tools. On another project, a different DSL has been 
applied as a language to assist in aspect-oriented 
modeling. Each of these three languages was converted to 
C++ using different code generators. These DSLs were 
concerned with issues of traversing a model and 
performing transformations. The paper also provides 
quantitative data on the relative sizes of the intention (as 
expressed in the DSL) and the generated C++ code. 
Observations are made regarding the nature of the 
benefits and the manner in which the conciseness of the 
DSL is best leveraged. 

 
1. Introduction 

 
An important step in solving a problem is to choose the 
notation. It should be done carefully. The time we spend 
now on choosing the notation may be well repaid by the 
time we save later avoiding hesitation and confusion. 
Moreover, choosing the notation carefully, we have to 
think sharply of the elements of the problem which must 
be denoted. Thus, choosing a suitable notation may 
contribute essentially to understanding the problem. [20] 

 
A Domain-Specific Language (DSL) is a 

“programming language or executable specification 
language that offers, through appropriate notations and 
abstractions, expressive power focused on, and usually 
restricted to, a particular problem domain” [25]. DSLs 
assist in the creation of programs that are more concise 
than an equivalent program written in a traditional 

programming language. In fact, DSLs are often called 
“little languages” [1, 4, 24]. 

An upward shift in abstraction often leads to a boost in 
productivity. It has been observed that a few lines of code 
written in a DSL can generate a hundred lines of code in a 
traditional programming language [11]. A key advantage 
is that a DSL is perspicuous to the domain expert using 
the language. A DSL is typically more concise because 
the notations and abstractions characterizing the intention 
of the domain are built into the generator that synthesizes 
a program written in a DSL. This is a key benefit of the 
approach that has become known as generative 
programming [6]. Another common characteristic of 
DSLs is the declarative nature of these languages. A DSL 
can be declarative because the domain semantics are 
clearly defined, and thus the declarations have a precise 
interpretation. DSLs can also offer benefits to individuals 
who possess detailed knowledge about a particular 
domain, yet lack the technical programming skills needed 
to implement a computerized solution. In such cases, “A 
DSL allows a computationally naïve user to describe 
problems using natural terms and concepts of a domain 
with informality, imprecision, and omission of details” 
[2]. 

A DSL can assist in separating programmers from 
lower-level details, such as making the decisions about 
specific data structures to be used in an implementation. 
DSL’s capture the variability of a domain: the user is 
allowed to express his/her constructs in terms of this 
variability, while the invariants of the domain appear as 
“primitives” in the language. By using a DSL, a 
programmer uses idioms that are closer to the abstractions 
found in the problem domain. This has several 
advantages: 

• The tedious and mundane parts of writing a 
program are automated in the translation from the 
DSL to a traditional programming language. 
• Repetitive code sequences are generated 
automatically instead of the error-prone manual cut-
and-paste method. The generation of such tedious 



code also has advantages in the maintenance phase of 
a project’s lifecycle. Programs written in a DSL are 
usually easier to understand and modify because the 
intention of the program is closer to the domain. 
• Solutions can be constructed quickly because the 
programmer can more easily focus on the key 
abstractions. A DSL hides the underlying details of 
the solution space as implemented in a traditional 
programming language. 

 
This paper describes several advantages that were 

realized in using three different DSLs on two separate 
projects. In section 2, a tool integration project is 
described [12]. This project utilized a DSL to describe the 
ontologies of fault-analysis modeling tools in the avionics 
vehicle health management domain. Another language 
was used to specify the method for transforming a model 
from one tool into the format used by a different tool. 
These DSLs assisted in isolating the programmer from the 
underlying CORBA data structures and service calls that 
are needed to perform the model integration. In section 3, 
a different project is described. This effort is focused on 
the idea of bringing the concept of aspect-oriented 
programming [13] to domain modeling [9]. In this project, 
a benefit was achieved by using a DSL to specify 
navigation within the domain models while performing 
transformations. This language shielded the programmer 
from the details of the core XML Document Object 
Model (DOM) API calls. The paper also contains a 
section on general observations, as well as a conclusion. 

 
2. Tool integration 

 
The ability to specify the modeling semantics of new 

tools, and to integrate them with a set of previously 
defined tools, can be very useful. Often, however, 
researchers independently develop similar tools to 
perform a specific function (e.g., some type of analysis) 
within a particular domain. Each isolated effort defines a 
different semantic model and uses diverse persistent 
storage mechanisms (e.g., a database, or a set of comma 
separated files, etc.). Unfortunately, this poses a problem 
when it comes to the important issue of integration – the 
result is an inability to provide a seamless exchange of 
model representations between tools. This is a serious 
problem in bioinformatics [7, 22] and other domains that 
foster environments demanding rich toolsets to support 
various forms of analysis. The solution presented in this 
section describes DSLs to support integration among a set 
of engineering tools [12]. 
 
2.1 Tool Integration Framework (TIF) 
 

Our tool integration framework provides an 
architectural solution to the semantic integration problem. 

In our approach, an Integrated Model Server (IMS) is 
created for each distinct tool domain. Built into each IMS 
instance is a single domain-specific schema that is 
capable of representing all of the principal 
entities/relations of all tools in a given domain. The IMS 
also contains the unique definitions of each tool that is to 
be integrated, as well as semantic translators that describe 
the mapping between each unique tool and the single tool 
domain schema (note that mappings must be described in 
both directions – from the tool to the integrated schema, 
and from the integrated schema to the tool). As can be 
seen in Figure 1, the integrated schema provides a 
semantic mapping between similar concepts in different 
tools. Using this technique, each new tool, in a sense, 
becomes componentized into the IMS. 
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Figure 1. Semantic mapping of tools using 

an integrated domain model 
 

The Common Model Interface (CMI) is a collection of 
CORBA interfaces that provides tools with the capability 
of exchanging models with the server via a network 
connection. The CMI is specified in the CORBA Interface 
Definition Language (IDL). It defines the data structures 
and rules for accessing the IMS. As can be seen in Figure 
2, new “integrated” tools can be created that access the 
IMS directly through the CMI. An example of such a tool 
is the Java-based Integrated Model Browser, which 
provides a view of the contents of the IMS using a 
standard web browser. 

Legacy tools that were developed without knowledge 
of the IMS must have their models transformed by a tool 
adapter into a form that can be sent via the CMI. Each 
tool adapter must convert the data in native storage format 
into a structure that is valid with respect to the CMI. This 
process is a simple syntactic transformation, thus tool 
adapters are focused on syntactic issues. Currently, we 
have created five different tool adapters that permit the 
integration of tools within the domain of avionics fault 
analysis. The native storage formats for these tools have 
been in the form of an Access database, an Excel 
spreadsheet, a comma-separated file, a proprietary textual 
specification language, and a Microsoft COM-based 
modeling tool. The IMS persistently stores the translated 
models into a database that is built on top of Microsoft 



Repository. The underlying database can be either SQL 
Server or Access. 

This subsection presented a very brief overview of the 
framework. There are many points that have not been 
explained. More details can be found in [12]. The 
remainder of this section describes the DSLs that are used 
to represent the concepts of each tool (see section 2.2) and 
the transformations that are performed in conversion 
between the tool and the IMS (see section 2.3). 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Tool Integration Framework (TIF) with 
Integrated Model Server (IMS) 

 
2.2 Model specification language 
 
The first order term in the success equation of reuse is 
the amount of domain-specific content and the second 
order term is the specific technology chosen in which to 
represent that content. [5] 
 

Engineering design tools manipulate models. A model 
can be thought of as a graph structure. Each node in the 
graph represents some entity in the model, and each link 
represents some relation between entities. The links can 
represent explicitly defined relations, or they may denote 
a more implicit link that is a result of a hierarchical 
containment. The models follow a data model (or 
schema), which is expressed in the form of a Model 
Specification File (MSF). The MSF is written in a 
declarative DSL that captures the data model for the 
various entities and relationships within a tool. It is an 
example of a type of DSL that is used for data structure 
representation [23]. The specification in Figure 3a 
illustrates a simple example of an MSF, and the bottom of 
the figure is a corresponding representation in the UML. 
The first step in building a domain-specific integration 
solution is to create an MSF for the concepts within the 
domain of the set of tools to be integrated; this is the 
domain schema. The domain schema is then sent to a 
generator that produces C++ code of the equivalent CMI 
representation. This C++ code defines and implements 

classes that allow the construction and manipulation of 
CORBA data structures that are compliant with the CMI 
definitions. An MSF file is also specified for each tool 
that is participating in the integration. The MSF files for 
all of the tools are also passed into the code generator and 
translated into a corresponding C++ representation that is 
“wrapped around” CMI data structures. 

 

 
 

a) MSF representation of tool domain 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) UML representation of tool domain 
 

Figure 3. Sample tool definition (a) with 
corresponding UML class diagram (b) 
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paradigm Foo; 
 
model Top_Model { 
 part Component components; 
} 

 
model Component { 
 part Entity_1 entity_1; 
 part Entity_2 entity_2; 
 part Component subComponents; 
 rel Rel rel; 
} 

 
entity Entity_1 { ... } 
 
entity Entity_2 { ... } 
 
relation Rel { 
 Entity_1 src 1 
       <-> 
 Entity_2 dst *; 
} 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. MSF for the Relex reliability analysis rool (with subset of generated C++) 

 
 
An example of a tool that was included in our 

integration effort is shown in Figure 4. The left side of 
this figure specifies the entities and relationships for a 
subset of Relex – a commercially available reliability 
analysis tool that uses Access for persistent storage [21]. 
This figure also shows a portion of the generated code 
from a single line of the Relex MSF. The MSF code 
generator will build wrapper classes (e.g., 
RELEX_Model_M and RELEX_Object_E in the right 
side of the figure) that are extensions of the CMI 
representation in CORBA. These wrapper classes provide 
the definition of attributes and relationships, as well as the 
access methods needed to retrieve the attribute values 
using the CMI. Our contention is that there are many 
advantages to writing the pertinent characteristics of a 
tool using the MSF, and then having the code generator 
produce the details for building the scaffolding to interact 
with the underlying CMI data structures within CORBA 
(i.e., we would rather write the specification on the left 
side of Figure 4, rather than the code on the right side). 

 
 

2.2.1 Comparing MSF and generated code. To our 
knowledge, there have been very few studies that have 
quantified the actual productivity improvements offered 
by DSLs. One of the earliest studies demonstrated an 
order of magnitude difference [11]. The most detailed 
study of this topic can be found in [3], where it was 
discovered that a DSL for specifying data structures led to 
a reduction of programming time by a factor of 3. It was 
also determined in that study that the number of lines of 
code needed to represent a specific intention was reduced 
by a factor of 4. 

Table 1 lists several measurements taken between the 
MSF and the generated C++ along the criteria of lines of 
code, and size of code (number of bytes). A ratio of 
differences between the sizes of these two representations 
is also provided within each cell of the table. The 
representative samples come from the five tools that were 
integrated in our initial effort. An examination of these 
comparisons shows a significant improvement in the 
conciseness of representation when using a DSL like the 
MSF. 

paradigm RELEX; 
 
model RELEX_Model { 
  attr string Name; 
  part RELEX_Object objects; 
  part Failure_Mode failure_Modes; 
  rel  RELEX_Failure_Mode rel_FM; 
} 
 
entity RELEX_Object { 
    attr string Name; 
    attr string Part_Number; 
    attr string User_Text; 
    attr string Reference; 
    attr double Failure_Rate; 
} 
 
entity Failure_Mode { 
    attr string Failure_Mode; 
    attr string Local_Effects; 
    attr string Next_Effects; 
    attr string End_Effects; 
    attr string Failure_Detection_Method; 
    attr long   Mode_Severity_Code; 
    attr double Failure_Mode_Ratio; 
    attr double Failure_Effect_Probability; 
    attr double Failure_Rate; 
} 
 
relation RELEX_Failure_Mode { 
  RELEX_Object Owner 1 
          <-> 
  Failure_Mode Failures *; 
} 

… 
 
int RELEX_Model_M::get_objects(vector<RELEX_Object_E>& _res) { 
   int count = 0; 
   MetaEntity* type = MetaData::LookupEntity("RELEX","RELEX_Object"); 
   vector<InstEntity*>::iterator itr; 
   vector<InstEntity*>* list = obj->parts(); 
   for(itr = list->begin(); itr != list->end(); itr++) { 
      if((*itr)->type() == type) { 
        _res.push_back(RELEX_Object_E(*itr)); count++; 
      } 
   } 
   return count; 
} 
 

… 



Table 1. Comparison of MSF to generated code 
 

 Lines of Code Bytes of Code 
Advise 

 
MSF: 33 
C++: 506 

Ratio: 1::15.33 

MSF: 761b 
C++: 14.79k 

Ratio: 1::19.44 
Relex 

 
MSF: 34 
C++: 538 

Ratio: 1::15.82 

MSF: 819b 
C++: 17.54k 

Ratio: 1::21.42 
FMECA 

 
MSF: 44 
C++: 802 

Ratio: 1::18.22 

MSF: 1.26k 
C++: 27.32k 

Ratio: 1::21.68 
AEFR 

 
MSF: 49 
C++: 639 

Ratio: 1::13.04 

MSF: 870b 
C++: 21.42k 

Ratio: 1::24.62 
GME 

 
MSF: 58 
C++: 922 

Ratio: 1::15.89 

MSF: 1.19k 
C++: 28.71k 

Ratio: 1::24.13 
 
2.3 Semantic translation specification language 

 
The final stage of the process for integrating a new tool 

into the IMS is focused on the creation of a mapping 
strategy between the various tools and the specific IMS 
domain schema. The developers who perform this task 
must have an understanding of the tool semantics and the 
IMS schema semantics. The translation process must link 
the entities and relations in the tools with the 
corresponding modeling elements in the IMS (or vice 
versa). The process for creating semantic translators is at 
the core of our tool integration technology. The most 
difficult task in creating a semantic translator is the 
specification of a strategy that will traverse/visit one 
graph and transform it into a different graph. To assist in 
this process, we have constructed a generator for another 
DSL, which is based on Adaptive Programming (AP) 
[16]. 

In AP, a key focus is the separation of behavior from 
structure. To aid in the modularization of this concern, 
visitor and traversal strategies are used. This 
modularization prevents the knowledge of the program’s 
class structure from being tangled throughout the code, a 
desirable property that is called “structure shyness.” 
Traversal strategies can be viewed as a specification of 
the class graph that does not require the hardwiring of the 
class structure throughout the code [17]. An example of a 
traversal/visitor language for supporting such 
modularization is described in [19]. Our application of the 
idea of AP is being applied toward the tool integration 
problem and the transformation of models. Our approach 
differs from traditional AP, however, in that our focus is 
on model representations of tools, not programs written in 
traditional languages. 

In a semantic translator, the specification of the 
traversal, and the actions to be performed at each 

traversed node, are separated. Separation of concerns is 
evident in our tool integration process in the following 
ways: 

 
• Separation of the structure of the models - what 
are the possible paths for traversals? 
(see the left side of Figure 3) 
• Separation of the traversal sequences - what are 
the desired paths for traversals? 
(see the right side of Figure 5) 
• Separation of the visitors - what are the 
transformation actions at each node? 
(see the left side of Figure 5) 

 
An instance of another DSL is shown in Figure 5, 

which demonstrates the traversal/visitor specifications 
that appear within a translator. This DSL is called the 
Traversal/Visitor Language (TVL). The translation 
process begins with the Top_Model and follows along 
the traversal specifications. At visitor nodes, a specific 
action is performed that executes the required 
transformation (these are elided inside of the inline code, 
denoted as <<…>>). For nodes that contain other entities 
(like Component), it is necessary for the respective visitor 
to further traverse the contained entities (see the lower 
arrow in Figure 5). In Figure 5, the first two steps in the 
model translation are shown by two arrows. The 
remaining traversal/visitor sequence would follow 
similarly. Although it is not shown in Figure 5, there are 
also constructs in the TVL that permit multiple passes 
through the model structure. 

The code shown in Figure 6 represents an actual piece 
of a semantic translator that converts a model from a tool 
into the IMS schema for representing fault-analysis tools. 
This code is just one of several traversal specifications 
included in this tool’s semantic translator – in this case, 
the partial specification describes the manner in which a 
Component is to be traversed. 

The generated C++ code in Figure 7 corresponds to the 
traversal fragment of Figure 6. There are a few things to 
notice about this generated code. Perhaps the most 
obvious observation is that the majority of the code is 
concerned with iterating over collections. In fact, a large 
percentage of the code is a replicated template for 
iteration over vectors. Manual construction of repetitive 
code, like that in Figure 7, is often a ripe area for 
introducing errors. Automatically generating such code 
can offer more assurance that the translator is correctly 
constructed. A second observation that can be made from 
the generated code is that the code generator for TVL also 
knows about the tool definitions contained in the MSF 
file. Notice names like GME_4_0::Component_M and 
GME_4_0::FailureMode_E in Figure 7. These 
names represent classes that were generated from the 
MSF file for a specific tool (the GME). 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Traversal/Visitor specifications (based on the model from Figure 3) 
 
 
 
 
 
 
 
 
 

… 
 
  from Component[IMS::Component_M& parent]  
  to {  
       failureModes[parent,fMap], 
       discrepancies[parent,dMap], 
       monitors[parent,mMap], 
       faultReports[parent], 
       subComponents[parent,pcMap], 
       fmMonitor[parent,fMap,mMap], 
       fmDiscrepancy[parent,fMap,dMap] 
         }; 

 
… 

 
Figure 6. Single traversal specification in 

GME2IMS 
 

 
 
 
 
 
 
 

 
 

… 
void Traversal_T::traverse(GME_4_0::Component_M& self, 
                           IMS::Component_M& parent) {  
    vector<GME_4_0::FailureMode_E> _lst; 
    self.get_failureModes(_lst); 
    vector<GME_4_0::FailureMode_E>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
     GME_4_0::FailureMode_E arg=GME_4_0::FailureMode_E(*_itr); 
     vis->visit(arg,parent,fMap);   } 
    vector<GME_4_0::Discrepancy_E> _lst; 
    self.get_discrepancies(_lst); 
    vector<GME_4_0::Discrepancy_E>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
     GME_4_0::Discrepancy_E arg=GME_4_0::Discrepancy_E(*_itr); 
     vis->visit(arg,parent,dMap);    } 
    vector<GME_4_0::Monitor_E> _lst; 
    self.get_monitors(_lst); 
    vector<GME_4_0::Monitor_E>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
     GME_4_0::Monitor_E arg = GME_4_0::Monitor_E(*_itr); 
     vis->visit(arg,parent,mMap);    } 
    vector<GME_4_0::Fault_Report_E> _lst; 
    self.get_faultReports(_lst); 
    vector<GME_4_0::Fault_Report_E>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
    GME_4_0::Fault_Report_E arg=GME_4_0::Fault_Report_E(*_itr); 
     vis->visit(arg,parent);    } 
    vector<GME_4_0::Component_M> _lst; 
    self.get_subComponents(_lst); 
    vector<GME_4_0::Component_M>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
     GME_4_0::Component_M arg = GME_4_0::Component_M(*_itr); 
     vis->visit(arg,parent,pcMap);    } 
    vector<GME_4_0::FMMonitor_R> _lst; 
    self.get_fmMonitor(_lst); 
    vector<GME_4_0::FMMonitor_R>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
     GME_4_0::FMMonitor_R arg = GME_4_0::FMMonitor_R(*_itr); 
     vis->visit(arg,parent,fMap,mMap);    } 
    vector<GME_4_0::FMDiscrepancy_R> _lst; 
    self.get_fmDiscrepancy(_lst); 
    vector<GME_4_0::FMDiscrepancy_R>::iterator _itr; 
    for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) { 
  GME_4_0::FMDiscrepancy_R arg=GME_4_0::FMDiscrepancy_R(*_itr); 
     vis->visit(arg,parent,fMap,dMap);    } 
} 
… 

Figure 7. Generated C++ code from GME2IMS 
traversal specification 

 
 
 
visitor Visitor  
{ 

at Component[...] 
<<...>> 
  traverse[...]; 

 
at Entity_1[...] 
<<...>>; 

 
at Entity_2[...] 
<<...>>; 

 
at Rel[...] 
<<...>> 
  traverse[...]; 
 

} 

traversal Traversal using Visitor  
{ 
 from Top_Model ->[…] 
 <<...>> 
 to 
 { 
   components[...] 
 } 
 <<...>>; 
 from Component[...]  
 <<...>> 
 to 
 { 

  entity_1[...], entity_2[...], 
  subComponents[...], rel[...] 

 } 
<<...>>; 
from Rel[...] 

 <<...>> 
to 
{ 
  src[...], dst[...]  
} 
<<...>>; 

} 



  
2.3.1 Comparing TVL and generated code. A 
comparison between the TVL specification, and the 
generated code, is presented in Table 2. The five rows 
represent the five semantic translators that are used to 
import the tool model into the IMS. There also exist 
semantic translators for the reverse direction (i.e., from 
the IMS back to the tools), but are not shown in this table 
(although they have similar ratios). 

 
Table 2. Comparison of TVL to generated code 

 
 Lines of Code Bytes of Code 

Advise2IMS 
 

TVL: 155 
C++: 355 

Ratio: 1::2.29 

TVL: 4.03k 
C++: 8.78k 

Ratio: 1::2.18 
Relex2IMS 

 
TVL: 351 
C++: 523 

Ratio: 1::1.49 

TVL: 10.15k 
C++: 17.54k 
Ratio: 1::1.73 

FMECA2IMS 
 

TVL: 248 
C++: 435 

Ratio: 1::1.75 

TVL: 7.85k 
C++: 12.10k 
Ratio: 1::1.54 

AEFR2IMS 
 

TVL: 192 
C++: 497 

Ratio: 1::2.59 

TVL: 6.49k 
C++: 13.39k 
Ratio: 1::2.06 

GME2IMS 
 

TVL: 251 
C++: 523 

Ratio: 1::2.08 

TVL: 7.22k 
C++: 14.27k 
Ratio: 1::1.98 

 
3. Aspect-oriented domain modeling 

 
Separate from the tool integration research described 

previously, this section introduces our work on using a 
DSL to improve separation of concerns in visual 
modeling tools. The following subsections provide only a 
brief overview of our work in Aspect-Oriented Domain 
Modeling (AODM). We invite the reader to consult [10] 
for more comprehensive details.  

 
3.1 Problem: Crosscutting modeling constraints 

 
The core research area at the Institute for Software 

Integrated Systems (ISIS) is Model-Integrated Computing 
(MIC) [15]. For over a decade, a major focus of MIC has 
been on domain-specific modeling environments that are 
created from metalevel specifications of a particular 
domain. The Generic Modeling Environment (GME) is a 
metaprogrammable CASE tool that supports the 
generation of new modeling environments. Using the 
GME, code generators (interpreters) for domain-specific 
visual languages are used to synthesize applications from 
models. 

One key application area of MIC is that of real-time 
embedded systems. Here, MIC is applied in the modeling, 
analysis, and synthesis of the system. Several of the 

domain models that we have created using the GME are 
embedded real-time systems that are highly adaptive. In 
many real-time embedded systems, it is advantageous to 
model the design space of an application. In fact, this is 
mandatory for self-adaptive systems that must choose at 
run-time among numerous alternatives [18]. Our approach 
to modeling self-adaptive embedded systems uses a form 
of OCL [26] constraints to help prune the size of the 
design space during exploration. These constraints 
stipulate design criteria and limit design alternatives. 

Unfortunately, we have found that such constraints are 
tangled throughout the model hierarchy [9]. These 
constraints cut across the modular boundaries of a model. 
The crosscutting nature of these constraints makes it 
difficult to maintain and reason about their effects and 
purpose. 

It is often the case that a global property, such as 
processor assignment, is scattered across all nodes in a 
model. This creates a difficulty because any change to the 
model, or to the details of the global requirement, will 
necessitate the modification of multiple nodes in the 
model. This would require the modeler to visit, by hand, 
each modeling element in the GME. This is a time 
consuming task that, in some cases, makes it impossible 
to view the effect of different constraints. 

 
3.2 Solution: Aspect-oriented techniques 

 
Several new modularity technologies have been 

proposed that improve separation of concerns in 
programming languages. In particular, research in Aspect-
Oriented Programming (AOP) has been promoted as a 
means toward the separation of concerns that crosscut the 
modularity of an implementation [13]. In AOP, a 
translator called a weaver is responsible for taking code 
specified in a traditional programming language and 
additional code specified in an aspect language, and 
weaving the concerns together. We are uniting our core 
research area with the powerful new techniques offered in 
AOP by extending the purview of applicability by 
developing weavers for constraints in domain-specific 
models. 

Domain-specific weavers are created as a particular 
instantiation of a metaweaver framework. A core 
component of this framework is a code generator that 
translates high-level descriptions of strategies, specified 
as a DSL, into C++ source code. We call this DSL the 
Embedded Constraint Language (ECL). It is based on the 
OCL [26]. 

Our solution to the problem of tangled constraints 
involves the separation of constraints from modeling 
elements. The solution allows modular specifications of 
constraints to be propagated throughout a model via a 
domain-specific weaver, whose purpose is to integrate 
constraints back into a model. Domain-specific weavers 



rely on specification aspects and strategies to carry out 
their duty. Specification aspects, similar to pointcuts in 
AspectJ [14], are used to specify where the constraints 
will be applied in the model. Strategies describe how a 
constraint is applied in the context of a particular node in 
the model. The description of specification aspects and 
strategies allows a modeler to quantify properties of the 
model in a module that is separate from the model 
structure. 

 
… 
components.models("")->select(c | 
         c.id() == refID)->DetermineLaziness(); 
… 

 
Figure 8. Fragment of the EagerLazy strategy 

 
Figure 8 contains a single statement from a strategy 

defined in [10]. This statement finds all of the models that 
match a specific id and then calls the DetermineLaziness 
strategy on those selected models. The amount of C++ 
code that is generated by our code generator, however, is 
far from being concise or simple (see Figure 9). Much of 
the code for implementing this strategy statement is 
focused on iterating over a collection and selecting 
elements of the collection that satisfy the predicate. The 
C++ code calls an XML Parser wrapper class that 
retrieves a set of all models.  

 
 
CComPtr<IXMLDOMNodeList> mods=XMLParser::models(components,""); 
nodeTypeVector selectVec1 = XMLParser::ConvertDomList(mods); 
nodeTypeVector selectVecTrue1 = new std::vector<nodeType>; 
vector<nodeType>::iterator itrSelect1; 
for(itrSelect1 = selectVec1->begin(); 
    itrSelect1 != selectVec1->end(); itrSelect1++) { 
  nodeType selectNode1 = (*itrSelect1);  
  nodeType c; 
  c = selectNode1; 
  CComBSTR id0 = XMLParser::id(c); 
 
  ClData varforward1(id0); 
  ClData varforward2(refID); 
  bool varforward3 = varforward1 == varforward2; 
  if(varforward3) 
     selectVecTrue1->push_back(*itrSelect1); 
} 
 
vector<nodeType>::iterator itrCollCall1; 
for(itrCollCall1 = selectVecTrue1->begin();  
    itrCollCall1 != selectVecTrue1->end(); itrCollCall1++) 
  DetermineLaziness::apply(…); 

 
 

Figure 9. Sample of generated C++ code (generated 
from ECL in Figure 8) 

 
3.3 Comparing ECL and generated code 

 
Similar to the previous two tables in Section 2, the data 

presented in Table 3 is a comparison of the conciseness 
offered by DSLs like ECL. The subjects of this study 
were a subset of several of the strategies that were created 
to support our research on aspect-oriented domain 

modeling. The details of each strategy can be found in 
[10]. 

 
Table 3. Comparison of ECL to generated code 

 
 Lines of Code Bytes of Code 

Power 
Distribution 

 

ECL: 43 
C++: 140 

Ratio: 1::3.25 

ECL: 859b 
C++: 3.08k 

Ratio: 1::3.50 
Processor 

Assignment 
 

ECL: 39 
C++: 137 

Ratio: 1::3.50 

ECL: 954b 
C++: 3.28k 

Ratio: 1::3.44 
Eager/Lazy 

 
ECL: 85 
C++: 230 

Ratio: 1::2.71 

ECL: 2.03k 
C++: 6.24k 

Ratio: 1::3.07 
Exhaustive State 

Transition 
 

ECL: 70 
C++: 184 

Ratio: 1::2.62 

ECL: 1.92k 
C++: 5.14k 

Ratio: 1::2.68 
State Generation 

 
ECL: 128 
C++: 242 

Ratio: 1::1.89 

ECL: 3.42k 
C++: 6.76k 

Ratio: 1::1.98 
 
4. Observations 
 
In many pieces of code the problem of disorientation is 
acute. People have no idea what each component of the 
code is for and they experience considerable mental 
stress as a result. [8] 

 
It is reasonable to assume that any language which 

raises the level of abstraction will be more concise than 
the underlying representation unto which it is mapped at 
generation time. A simple analogy of this would be a 
comparison of any high-level programming language to 
the equivalent assembly or object code that resides closer 
to the execution space. Typically, the representation of a 
single executable statement in a programming language 
translates to several assembly instructions, or more than a 
few bytes of object code. The same is true regarding the 
constructs offered by a DSL and their equivalent mapping 
to a programming language. 

As Dick Gabriel observed in the above quote, stress 
can result from the disorientation caused by the mismatch 
of expression between the intention of an objective and 
the underlying implementation needed to realize that 
objective. This is particularly evident with respect to the 
maintenance and evolution of a piece of software. For 
example, the right side of Figure 4, the method of Figure 
7, and the method in Figure 9 are representations of 
implementation details that are at a level of abstraction 
much lower than their counterparts expressed in a DSL. 
The maintenance of such code would intuitively seem to 
be more problematic. 

The three languages introduced in this paper each 
highlight a specific type of benefit that can result from 



using a DSL. Each of these advantages is discussed in the 
following three sections. 

 
4.1 Generation of data structures from higher-
level specifications 
 

The examples of the MSF, as shown in Figures 3 and 
4, draw attention to the succinct expression of the 
pertinent characteristics of a modeling tool. The 
corresponding translation into a programming language 
contains many details that complicate expressibility. By 
hiding these details, the user of the MSF can focus their 
attention more on the essential elements that need to be 
specified. The nastier minutiae of moving into the 
execution/implementation space are concealed and 
abstracted away by the MSF. 

Our observations from working with the MSF lead us 
to the conclusion that there are many advantages of 
generating data structures from specifications written in a 
DSL. This finding is also confirmed in [23]. The code 
generator for a DSL can contain the detailed knowledge 
needed to create the intricate wrappers for a complex set 
of inter-related data structures (like the CMI and its 
underlying CORBA interfaces). 

 
4.2 Synthesis of iterative representations 

 
There are often programming tasks that are repetitive 

in nature. That is, a pattern emerges as a technique for 
implementing a commonly occurring situation. An 
example of this can be seen in the code of Figure 7, where 
a common form of iteration is performed over different 
collections. The tedious nature of such repetitive 
duplication of code can be a source for introducing 
programming errors. With respect to iterating over 
collections, we have found much benefit in the ability to 
concisely specify our intention and have a generator 
create the solution. 

The visitor actions that are specified in the TVL often 
consist of inlined C++ code. The inlined code is directly 
copied by the translator into the generated file. 
Conciseness should be improved by the ability to specify, 
at a higher level of abstraction, the functional changes 
needed in the transformation. With such an addition, it is 
possible that the TVL could offer even more benefit than 
is made evident in Table 2. This is an area of future 
investigation. 

Considering Table 3, an observation can be made 
regarding the State Generation strategy. Its translation 
yielded the lowest ratio in comparison. This strategy also 
contains the least amount of ECL collection statements, 
suggesting the somewhat obvious fact that all of the code 
needed to iterate over a collection increases the amount of 
generated C++ code. 

 

4.3 Wrapping of API calls 
 
Any programmer who has written an application that 

makes frequent use of the XML DOM will testify that it is 
not a pleasant experience. This is often true of any library 
that offers a rich, yet complicated, set of APIs. It takes 
concentrated discipline to follow the strict sequence of 
API calls that are needed to accomplish a specific task. 
This can sometimes force a programmer to spend their 
time tangled in a morass of implementation details. The 
XMLParser adapter methods (two of these can be found 
in Figure 9) shield the ECL programmer from the 
concerns of calling the DOM to retrieve values. The ECL 
generator is able to make use of these wrapper methods in 
order to permit statements, like the one in Figure 8, to be 
more abstract. This is also true of the example in Figure 4. 
Many of the CORBA method calls are collected in 
adapters and facades. 

 
5. Conclusion 
 
We must recognize the strong and undeniable influence that 
our language exerts on our ways of thinking and, in fact, 
delimits the abstract space in which we can formulate – 
give form to – our thoughts. [27] 

 
Domain-Specific Languages gain their power by 

raising the intentionality of programmer expression. With 
a DSL, it is argued, a programmer can express their 
objective in a concise manner using a language that is 
much higher in expressiveness than that typically offered 
in a traditional programming language. Because of this, it 
is often asserted that programs written in DSLs are much 
easier to maintain and modify. 

As described in this paper, observations from our work 
on three different DSLs suggest that an upward shift in 
abstraction does indeed permit a more concise 
specification of an intention. The paper also contains 
observations that suggest situations that would best 
benefit from a generative approach using DSLs (e.g., 
isolating the programmer from the details of complicated 
data structures and API calls). This is our first attempt at 
using our experience to categorize the essential 
characteristics that make DSL use beneficial. 

Our comparisons focused solely on the relative sizes of 
lines of code. It is not clear that a programmer would 
write code that is similar to that produced from a DSL 
generator. Although the results suggest a benefit for using 
DSLs, a future area for further research would investigate 
the usefulness of our DSLs with respect to improving 
programmer productivity. That is, an important question 
is: How much time, if any, can be saved in development 
when using our DSLs? We believe that our initial studies 
suggest that decreased development time will result, due 
to the reduced complexity of expressing an objective in 



the problem space and then automatically translating that 
into the solution space. 

A topic that we are currently studying concerns the use 
of visual DSLs, so-called domain-specific visual 
languages (DSVLs). In particular, we have several ideas 
that we are investigating with respect to notations for 
visually describing the semantic equivalent of the ECL 
using the GME. We do not have plans, however, to 
further explore DSVL equivalents for the tool integration 
DSLs. The language processors for these DSLs, and their 
respective outputs, are tied to Visual Studio projects in 
such a way that a textual specification works well. The 
tool integration DSLs also contain many fragments of 
inlined code, suggesting a textual solution. 
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