

An Examination of DSLs for Concisely Representing
Model Traversals and Transformations

Jeff Gray

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170
gray@cis.uab.edu

Gábor Karsai
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN 37203

gabor@vuse.vanderbilt.edu

Abstract

A key advantage for the use of a Domain-Specific
Language (DSL) is the leverage that can be captured
from a concise representation of a programmer’s
intention. This paper reports on three different DSLs that
were developed for two different projects. Two of the
DSLs assisted in the specification of various modeling
tool ontologies, and the integration of models across
these tools. On another project, a different DSL has been
applied as a language to assist in aspect-oriented
modeling. Each of these three languages was converted to
C++ using different code generators. These DSLs were
concerned with issues of traversing a model and
performing transformations. The paper also provides
quantitative data on the relative sizes of the intention (as
expressed in the DSL) and the generated C++ code.
Observations are made regarding the nature of the
benefits and the manner in which the conciseness of the
DSL is best leveraged.

1. Introduction

An important step in solving a problem is to choose the
notation. It should be done carefully. The time we spend
now on choosing the notation may be well repaid by the
time we save later avoiding hesitation and confusion.
Moreover, choosing the notation carefully, we have to
think sharply of the elements of the problem which must
be denoted. Thus, choosing a suitable notation may
contribute essentially to understanding the problem. [20]

A Domain-Specific Language (DSL) is a

“programming language or executable specification
language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually
restricted to, a particular problem domain” [25]. DSLs
assist in the creation of programs that are more concise
than an equivalent program written in a traditional

programming language. In fact, DSLs are often called
“little languages” [1, 4, 24].

An upward shift in abstraction often leads to a boost in
productivity. It has been observed that a few lines of code
written in a DSL can generate a hundred lines of code in a
traditional programming language [11]. A key advantage
is that a DSL is perspicuous to the domain expert using
the language. A DSL is typically more concise because
the notations and abstractions characterizing the intention
of the domain are built into the generator that synthesizes
a program written in a DSL. This is a key benefit of the
approach that has become known as generative
programming [6]. Another common characteristic of
DSLs is the declarative nature of these languages. A DSL
can be declarative because the domain semantics are
clearly defined, and thus the declarations have a precise
interpretation. DSLs can also offer benefits to individuals
who possess detailed knowledge about a particular
domain, yet lack the technical programming skills needed
to implement a computerized solution. In such cases, “A
DSL allows a computationally naïve user to describe
problems using natural terms and concepts of a domain
with informality, imprecision, and omission of details”
[2].

A DSL can assist in separating programmers from
lower-level details, such as making the decisions about
specific data structures to be used in an implementation.
DSL’s capture the variability of a domain: the user is
allowed to express his/her constructs in terms of this
variability, while the invariants of the domain appear as
“primitives” in the language. By using a DSL, a
programmer uses idioms that are closer to the abstractions
found in the problem domain. This has several
advantages:

• The tedious and mundane parts of writing a
program are automated in the translation from the
DSL to a traditional programming language.
• Repetitive code sequences are generated
automatically instead of the error-prone manual cut-
and-paste method. The generation of such tedious

code also has advantages in the maintenance phase of
a project’s lifecycle. Programs written in a DSL are
usually easier to understand and modify because the
intention of the program is closer to the domain.
• Solutions can be constructed quickly because the
programmer can more easily focus on the key
abstractions. A DSL hides the underlying details of
the solution space as implemented in a traditional
programming language.

This paper describes several advantages that were

realized in using three different DSLs on two separate
projects. In section 2, a tool integration project is
described [12]. This project utilized a DSL to describe the
ontologies of fault-analysis modeling tools in the avionics
vehicle health management domain. Another language
was used to specify the method for transforming a model
from one tool into the format used by a different tool.
These DSLs assisted in isolating the programmer from the
underlying CORBA data structures and service calls that
are needed to perform the model integration. In section 3,
a different project is described. This effort is focused on
the idea of bringing the concept of aspect-oriented
programming [13] to domain modeling [9]. In this project,
a benefit was achieved by using a DSL to specify
navigation within the domain models while performing
transformations. This language shielded the programmer
from the details of the core XML Document Object
Model (DOM) API calls. The paper also contains a
section on general observations, as well as a conclusion.

2. Tool integration

The ability to specify the modeling semantics of new

tools, and to integrate them with a set of previously
defined tools, can be very useful. Often, however,
researchers independently develop similar tools to
perform a specific function (e.g., some type of analysis)
within a particular domain. Each isolated effort defines a
different semantic model and uses diverse persistent
storage mechanisms (e.g., a database, or a set of comma
separated files, etc.). Unfortunately, this poses a problem
when it comes to the important issue of integration – the
result is an inability to provide a seamless exchange of
model representations between tools. This is a serious
problem in bioinformatics [7, 22] and other domains that
foster environments demanding rich toolsets to support
various forms of analysis. The solution presented in this
section describes DSLs to support integration among a set
of engineering tools [12].

2.1 Tool Integration Framework (TIF)

Our tool integration framework provides an
architectural solution to the semantic integration problem.

In our approach, an Integrated Model Server (IMS) is
created for each distinct tool domain. Built into each IMS
instance is a single domain-specific schema that is
capable of representing all of the principal
entities/relations of all tools in a given domain. The IMS
also contains the unique definitions of each tool that is to
be integrated, as well as semantic translators that describe
the mapping between each unique tool and the single tool
domain schema (note that mappings must be described in
both directions – from the tool to the integrated schema,
and from the integrated schema to the tool). As can be
seen in Figure 1, the integrated schema provides a
semantic mapping between similar concepts in different
tools. Using this technique, each new tool, in a sense,
becomes componentized into the IMS.

M M
LR U

FR
FD E

LR U VA R

O BS
U NITM SG

A LR

Figure 1. Semantic mapping of tools using

an integrated domain model

The Common Model Interface (CMI) is a collection of
CORBA interfaces that provides tools with the capability
of exchanging models with the server via a network
connection. The CMI is specified in the CORBA Interface
Definition Language (IDL). It defines the data structures
and rules for accessing the IMS. As can be seen in Figure
2, new “integrated” tools can be created that access the
IMS directly through the CMI. An example of such a tool
is the Java-based Integrated Model Browser, which
provides a view of the contents of the IMS using a
standard web browser.

Legacy tools that were developed without knowledge
of the IMS must have their models transformed by a tool
adapter into a form that can be sent via the CMI. Each
tool adapter must convert the data in native storage format
into a structure that is valid with respect to the CMI. This
process is a simple syntactic transformation, thus tool
adapters are focused on syntactic issues. Currently, we
have created five different tool adapters that permit the
integration of tools within the domain of avionics fault
analysis. The native storage formats for these tools have
been in the form of an Access database, an Excel
spreadsheet, a comma-separated file, a proprietary textual
specification language, and a Microsoft COM-based
modeling tool. The IMS persistently stores the translated
models into a database that is built on top of Microsoft

Repository. The underlying database can be either SQL
Server or Access.

This subsection presented a very brief overview of the
framework. There are many points that have not been
explained. More details can be found in [12]. The
remainder of this section describes the DSLs that are used
to represent the concepts of each tool (see section 2.2) and
the transformations that are performed in conversion
between the tool and the IMS (see section 2.3).

Figure 2. Tool Integration Framework (TIF) with
Integrated Model Server (IMS)

2.2 Model specification language

The first order term in the success equation of reuse is
the amount of domain-specific content and the second
order term is the specific technology chosen in which to
represent that content. [5]

Engineering design tools manipulate models. A model
can be thought of as a graph structure. Each node in the
graph represents some entity in the model, and each link
represents some relation between entities. The links can
represent explicitly defined relations, or they may denote
a more implicit link that is a result of a hierarchical
containment. The models follow a data model (or
schema), which is expressed in the form of a Model
Specification File (MSF). The MSF is written in a
declarative DSL that captures the data model for the
various entities and relationships within a tool. It is an
example of a type of DSL that is used for data structure
representation [23]. The specification in Figure 3a
illustrates a simple example of an MSF, and the bottom of
the figure is a corresponding representation in the UML.
The first step in building a domain-specific integration
solution is to create an MSF for the concepts within the
domain of the set of tools to be integrated; this is the
domain schema. The domain schema is then sent to a
generator that produces C++ code of the equivalent CMI
representation. This C++ code defines and implements

classes that allow the construction and manipulation of
CORBA data structures that are compliant with the CMI
definitions. An MSF file is also specified for each tool
that is participating in the integration. The MSF files for
all of the tools are also passed into the code generator and
translated into a corresponding C++ representation that is
“wrapped around” CMI data structures.

a) MSF representation of tool domain

b) UML representation of tool domain

Figure 3. Sample tool definition (a) with
corresponding UML class diagram (b)

C ORBA

Integrated
M odel

Brow ser

Legacy
T ool 1

T ool
Adapter

Integrated
Tool

 N aming Service

Legacy
T ool N

T ool
Adapter

Com mon M odel Interface

M eta-M odel
Objects

IM S

Semantic T ranslation

Integrated M odel
D atabase

…

entity_2

entity_1

components

subComponents

rel

Entity_2

Top_Model

Entity_1 Component

1

*

paradigm Foo;

model Top_Model {
 part Component components;
}

model Component {
 part Entity_1 entity_1;
 part Entity_2 entity_2;
 part Component subComponents;
 rel Rel rel;
}

entity Entity_1 { ... }

entity Entity_2 { ... }

relation Rel {
 Entity_1 src 1
 <->
 Entity_2 dst *;
}

Figure 4. MSF for the Relex reliability analysis rool (with subset of generated C++)

An example of a tool that was included in our

integration effort is shown in Figure 4. The left side of
this figure specifies the entities and relationships for a
subset of Relex – a commercially available reliability
analysis tool that uses Access for persistent storage [21].
This figure also shows a portion of the generated code
from a single line of the Relex MSF. The MSF code
generator will build wrapper classes (e.g.,
RELEX_Model_M and RELEX_Object_E in the right
side of the figure) that are extensions of the CMI
representation in CORBA. These wrapper classes provide
the definition of attributes and relationships, as well as the
access methods needed to retrieve the attribute values
using the CMI. Our contention is that there are many
advantages to writing the pertinent characteristics of a
tool using the MSF, and then having the code generator
produce the details for building the scaffolding to interact
with the underlying CMI data structures within CORBA
(i.e., we would rather write the specification on the left
side of Figure 4, rather than the code on the right side).

2.2.1 Comparing MSF and generated code. To our
knowledge, there have been very few studies that have
quantified the actual productivity improvements offered
by DSLs. One of the earliest studies demonstrated an
order of magnitude difference [11]. The most detailed
study of this topic can be found in [3], where it was
discovered that a DSL for specifying data structures led to
a reduction of programming time by a factor of 3. It was
also determined in that study that the number of lines of
code needed to represent a specific intention was reduced
by a factor of 4.

Table 1 lists several measurements taken between the
MSF and the generated C++ along the criteria of lines of
code, and size of code (number of bytes). A ratio of
differences between the sizes of these two representations
is also provided within each cell of the table. The
representative samples come from the five tools that were
integrated in our initial effort. An examination of these
comparisons shows a significant improvement in the
conciseness of representation when using a DSL like the
MSF.

paradigm RELEX;

model RELEX_Model {
 attr string Name;
 part RELEX_Object objects;
 part Failure_Mode failure_Modes;
 rel RELEX_Failure_Mode rel_FM;
}

entity RELEX_Object {
 attr string Name;
 attr string Part_Number;
 attr string User_Text;
 attr string Reference;
 attr double Failure_Rate;
}

entity Failure_Mode {
 attr string Failure_Mode;
 attr string Local_Effects;
 attr string Next_Effects;
 attr string End_Effects;
 attr string Failure_Detection_Method;
 attr long Mode_Severity_Code;
 attr double Failure_Mode_Ratio;
 attr double Failure_Effect_Probability;
 attr double Failure_Rate;
}

relation RELEX_Failure_Mode {
 RELEX_Object Owner 1
 <->
 Failure_Mode Failures *;
}

…

int RELEX_Model_M::get_objects(vector<RELEX_Object_E>& _res) {
 int count = 0;
 MetaEntity* type = MetaData::LookupEntity("RELEX","RELEX_Object");
 vector<InstEntity*>::iterator itr;
 vector<InstEntity*>* list = obj->parts();
 for(itr = list->begin(); itr != list->end(); itr++) {
 if((*itr)->type() == type) {
 _res.push_back(RELEX_Object_E(*itr)); count++;
 }
 }
 return count;
}

…

Table 1. Comparison of MSF to generated code

 Lines of Code Bytes of Code
Advise

MSF: 33
C++: 506

Ratio: 1::15.33

MSF: 761b
C++: 14.79k

Ratio: 1::19.44
Relex

MSF: 34
C++: 538

Ratio: 1::15.82

MSF: 819b
C++: 17.54k

Ratio: 1::21.42
FMECA

MSF: 44
C++: 802

Ratio: 1::18.22

MSF: 1.26k
C++: 27.32k

Ratio: 1::21.68
AEFR

MSF: 49
C++: 639

Ratio: 1::13.04

MSF: 870b
C++: 21.42k

Ratio: 1::24.62
GME

MSF: 58
C++: 922

Ratio: 1::15.89

MSF: 1.19k
C++: 28.71k

Ratio: 1::24.13

2.3 Semantic translation specification language

The final stage of the process for integrating a new tool

into the IMS is focused on the creation of a mapping
strategy between the various tools and the specific IMS
domain schema. The developers who perform this task
must have an understanding of the tool semantics and the
IMS schema semantics. The translation process must link
the entities and relations in the tools with the
corresponding modeling elements in the IMS (or vice
versa). The process for creating semantic translators is at
the core of our tool integration technology. The most
difficult task in creating a semantic translator is the
specification of a strategy that will traverse/visit one
graph and transform it into a different graph. To assist in
this process, we have constructed a generator for another
DSL, which is based on Adaptive Programming (AP)
[16].

In AP, a key focus is the separation of behavior from
structure. To aid in the modularization of this concern,
visitor and traversal strategies are used. This
modularization prevents the knowledge of the program’s
class structure from being tangled throughout the code, a
desirable property that is called “structure shyness.”
Traversal strategies can be viewed as a specification of
the class graph that does not require the hardwiring of the
class structure throughout the code [17]. An example of a
traversal/visitor language for supporting such
modularization is described in [19]. Our application of the
idea of AP is being applied toward the tool integration
problem and the transformation of models. Our approach
differs from traditional AP, however, in that our focus is
on model representations of tools, not programs written in
traditional languages.

In a semantic translator, the specification of the
traversal, and the actions to be performed at each

traversed node, are separated. Separation of concerns is
evident in our tool integration process in the following
ways:

• Separation of the structure of the models - what
are the possible paths for traversals?
(see the left side of Figure 3)
• Separation of the traversal sequences - what are
the desired paths for traversals?
(see the right side of Figure 5)
• Separation of the visitors - what are the
transformation actions at each node?
(see the left side of Figure 5)

An instance of another DSL is shown in Figure 5,

which demonstrates the traversal/visitor specifications
that appear within a translator. This DSL is called the
Traversal/Visitor Language (TVL). The translation
process begins with the Top_Model and follows along
the traversal specifications. At visitor nodes, a specific
action is performed that executes the required
transformation (these are elided inside of the inline code,
denoted as <<…>>). For nodes that contain other entities
(like Component), it is necessary for the respective visitor
to further traverse the contained entities (see the lower
arrow in Figure 5). In Figure 5, the first two steps in the
model translation are shown by two arrows. The
remaining traversal/visitor sequence would follow
similarly. Although it is not shown in Figure 5, there are
also constructs in the TVL that permit multiple passes
through the model structure.

The code shown in Figure 6 represents an actual piece
of a semantic translator that converts a model from a tool
into the IMS schema for representing fault-analysis tools.
This code is just one of several traversal specifications
included in this tool’s semantic translator – in this case,
the partial specification describes the manner in which a
Component is to be traversed.

The generated C++ code in Figure 7 corresponds to the
traversal fragment of Figure 6. There are a few things to
notice about this generated code. Perhaps the most
obvious observation is that the majority of the code is
concerned with iterating over collections. In fact, a large
percentage of the code is a replicated template for
iteration over vectors. Manual construction of repetitive
code, like that in Figure 7, is often a ripe area for
introducing errors. Automatically generating such code
can offer more assurance that the translator is correctly
constructed. A second observation that can be made from
the generated code is that the code generator for TVL also
knows about the tool definitions contained in the MSF
file. Notice names like GME_4_0::Component_M and
GME_4_0::FailureMode_E in Figure 7. These
names represent classes that were generated from the
MSF file for a specific tool (the GME).

Figure 5. Traversal/Visitor specifications (based on the model from Figure 3)

…

 from Component[IMS::Component_M& parent]
 to {
 failureModes[parent,fMap],
 discrepancies[parent,dMap],
 monitors[parent,mMap],
 faultReports[parent],
 subComponents[parent,pcMap],
 fmMonitor[parent,fMap,mMap],
 fmDiscrepancy[parent,fMap,dMap]
 };

…

Figure 6. Single traversal specification in

GME2IMS

…
void Traversal_T::traverse(GME_4_0::Component_M& self,
 IMS::Component_M& parent) {
 vector<GME_4_0::FailureMode_E> _lst;
 self.get_failureModes(_lst);
 vector<GME_4_0::FailureMode_E>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::FailureMode_E arg=GME_4_0::FailureMode_E(*_itr);
 vis->visit(arg,parent,fMap); }
 vector<GME_4_0::Discrepancy_E> _lst;
 self.get_discrepancies(_lst);
 vector<GME_4_0::Discrepancy_E>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::Discrepancy_E arg=GME_4_0::Discrepancy_E(*_itr);
 vis->visit(arg,parent,dMap); }
 vector<GME_4_0::Monitor_E> _lst;
 self.get_monitors(_lst);
 vector<GME_4_0::Monitor_E>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::Monitor_E arg = GME_4_0::Monitor_E(*_itr);
 vis->visit(arg,parent,mMap); }
 vector<GME_4_0::Fault_Report_E> _lst;
 self.get_faultReports(_lst);
 vector<GME_4_0::Fault_Report_E>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::Fault_Report_E arg=GME_4_0::Fault_Report_E(*_itr);
 vis->visit(arg,parent); }
 vector<GME_4_0::Component_M> _lst;
 self.get_subComponents(_lst);
 vector<GME_4_0::Component_M>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::Component_M arg = GME_4_0::Component_M(*_itr);
 vis->visit(arg,parent,pcMap); }
 vector<GME_4_0::FMMonitor_R> _lst;
 self.get_fmMonitor(_lst);
 vector<GME_4_0::FMMonitor_R>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::FMMonitor_R arg = GME_4_0::FMMonitor_R(*_itr);
 vis->visit(arg,parent,fMap,mMap); }
 vector<GME_4_0::FMDiscrepancy_R> _lst;
 self.get_fmDiscrepancy(_lst);
 vector<GME_4_0::FMDiscrepancy_R>::iterator _itr;
 for(_itr = _lst.begin(); _itr != _lst.end(); _itr++) {
 GME_4_0::FMDiscrepancy_R arg=GME_4_0::FMDiscrepancy_R(*_itr);
 vis->visit(arg,parent,fMap,dMap); }
}
…

Figure 7. Generated C++ code from GME2IMS
traversal specification

visitor Visitor
{

at Component[...]
<<...>>
 traverse[...];

at Entity_1[...]
<<...>>;

at Entity_2[...]
<<...>>;

at Rel[...]
<<...>>
 traverse[...];

}

traversal Traversal using Visitor
{
 from Top_Model ->[…]
 <<...>>
 to
 {
 components[...]
 }
 <<...>>;
 from Component[...]
 <<...>>
 to
 {

 entity_1[...], entity_2[...],
 subComponents[...], rel[...]

 }
<<...>>;
from Rel[...]

 <<...>>
to
{
 src[...], dst[...]
}
<<...>>;

}

2.3.1 Comparing TVL and generated code. A
comparison between the TVL specification, and the
generated code, is presented in Table 2. The five rows
represent the five semantic translators that are used to
import the tool model into the IMS. There also exist
semantic translators for the reverse direction (i.e., from
the IMS back to the tools), but are not shown in this table
(although they have similar ratios).

Table 2. Comparison of TVL to generated code

 Lines of Code Bytes of Code

Advise2IMS

TVL: 155
C++: 355

Ratio: 1::2.29

TVL: 4.03k
C++: 8.78k

Ratio: 1::2.18
Relex2IMS

TVL: 351
C++: 523

Ratio: 1::1.49

TVL: 10.15k
C++: 17.54k
Ratio: 1::1.73

FMECA2IMS

TVL: 248
C++: 435

Ratio: 1::1.75

TVL: 7.85k
C++: 12.10k
Ratio: 1::1.54

AEFR2IMS

TVL: 192
C++: 497

Ratio: 1::2.59

TVL: 6.49k
C++: 13.39k
Ratio: 1::2.06

GME2IMS

TVL: 251
C++: 523

Ratio: 1::2.08

TVL: 7.22k
C++: 14.27k
Ratio: 1::1.98

3. Aspect-oriented domain modeling

Separate from the tool integration research described

previously, this section introduces our work on using a
DSL to improve separation of concerns in visual
modeling tools. The following subsections provide only a
brief overview of our work in Aspect-Oriented Domain
Modeling (AODM). We invite the reader to consult [10]
for more comprehensive details.

3.1 Problem: Crosscutting modeling constraints

The core research area at the Institute for Software

Integrated Systems (ISIS) is Model-Integrated Computing
(MIC) [15]. For over a decade, a major focus of MIC has
been on domain-specific modeling environments that are
created from metalevel specifications of a particular
domain. The Generic Modeling Environment (GME) is a
metaprogrammable CASE tool that supports the
generation of new modeling environments. Using the
GME, code generators (interpreters) for domain-specific
visual languages are used to synthesize applications from
models.

One key application area of MIC is that of real-time
embedded systems. Here, MIC is applied in the modeling,
analysis, and synthesis of the system. Several of the

domain models that we have created using the GME are
embedded real-time systems that are highly adaptive. In
many real-time embedded systems, it is advantageous to
model the design space of an application. In fact, this is
mandatory for self-adaptive systems that must choose at
run-time among numerous alternatives [18]. Our approach
to modeling self-adaptive embedded systems uses a form
of OCL [26] constraints to help prune the size of the
design space during exploration. These constraints
stipulate design criteria and limit design alternatives.

Unfortunately, we have found that such constraints are
tangled throughout the model hierarchy [9]. These
constraints cut across the modular boundaries of a model.
The crosscutting nature of these constraints makes it
difficult to maintain and reason about their effects and
purpose.

It is often the case that a global property, such as
processor assignment, is scattered across all nodes in a
model. This creates a difficulty because any change to the
model, or to the details of the global requirement, will
necessitate the modification of multiple nodes in the
model. This would require the modeler to visit, by hand,
each modeling element in the GME. This is a time
consuming task that, in some cases, makes it impossible
to view the effect of different constraints.

3.2 Solution: Aspect-oriented techniques

Several new modularity technologies have been

proposed that improve separation of concerns in
programming languages. In particular, research in Aspect-
Oriented Programming (AOP) has been promoted as a
means toward the separation of concerns that crosscut the
modularity of an implementation [13]. In AOP, a
translator called a weaver is responsible for taking code
specified in a traditional programming language and
additional code specified in an aspect language, and
weaving the concerns together. We are uniting our core
research area with the powerful new techniques offered in
AOP by extending the purview of applicability by
developing weavers for constraints in domain-specific
models.

Domain-specific weavers are created as a particular
instantiation of a metaweaver framework. A core
component of this framework is a code generator that
translates high-level descriptions of strategies, specified
as a DSL, into C++ source code. We call this DSL the
Embedded Constraint Language (ECL). It is based on the
OCL [26].

Our solution to the problem of tangled constraints
involves the separation of constraints from modeling
elements. The solution allows modular specifications of
constraints to be propagated throughout a model via a
domain-specific weaver, whose purpose is to integrate
constraints back into a model. Domain-specific weavers

rely on specification aspects and strategies to carry out
their duty. Specification aspects, similar to pointcuts in
AspectJ [14], are used to specify where the constraints
will be applied in the model. Strategies describe how a
constraint is applied in the context of a particular node in
the model. The description of specification aspects and
strategies allows a modeler to quantify properties of the
model in a module that is separate from the model
structure.

…
components.models("")->select(c |
 c.id() == refID)->DetermineLaziness();
…

Figure 8. Fragment of the EagerLazy strategy

Figure 8 contains a single statement from a strategy

defined in [10]. This statement finds all of the models that
match a specific id and then calls the DetermineLaziness
strategy on those selected models. The amount of C++
code that is generated by our code generator, however, is
far from being concise or simple (see Figure 9). Much of
the code for implementing this strategy statement is
focused on iterating over a collection and selecting
elements of the collection that satisfy the predicate. The
C++ code calls an XML Parser wrapper class that
retrieves a set of all models.

CComPtr<IXMLDOMNodeList> mods=XMLParser::models(components,"");
nodeTypeVector selectVec1 = XMLParser::ConvertDomList(mods);
nodeTypeVector selectVecTrue1 = new std::vector<nodeType>;
vector<nodeType>::iterator itrSelect1;
for(itrSelect1 = selectVec1->begin();
 itrSelect1 != selectVec1->end(); itrSelect1++) {
 nodeType selectNode1 = (*itrSelect1);
 nodeType c;
 c = selectNode1;
 CComBSTR id0 = XMLParser::id(c);

 ClData varforward1(id0);
 ClData varforward2(refID);
 bool varforward3 = varforward1 == varforward2;
 if(varforward3)
 selectVecTrue1->push_back(*itrSelect1);
}

vector<nodeType>::iterator itrCollCall1;
for(itrCollCall1 = selectVecTrue1->begin();
 itrCollCall1 != selectVecTrue1->end(); itrCollCall1++)
 DetermineLaziness::apply(…);

Figure 9. Sample of generated C++ code (generated
from ECL in Figure 8)

3.3 Comparing ECL and generated code

Similar to the previous two tables in Section 2, the data

presented in Table 3 is a comparison of the conciseness
offered by DSLs like ECL. The subjects of this study
were a subset of several of the strategies that were created
to support our research on aspect-oriented domain

modeling. The details of each strategy can be found in
[10].

Table 3. Comparison of ECL to generated code

 Lines of Code Bytes of Code

Power
Distribution

ECL: 43
C++: 140

Ratio: 1::3.25

ECL: 859b
C++: 3.08k

Ratio: 1::3.50
Processor

Assignment

ECL: 39
C++: 137

Ratio: 1::3.50

ECL: 954b
C++: 3.28k

Ratio: 1::3.44
Eager/Lazy

ECL: 85
C++: 230

Ratio: 1::2.71

ECL: 2.03k
C++: 6.24k

Ratio: 1::3.07
Exhaustive State

Transition

ECL: 70
C++: 184

Ratio: 1::2.62

ECL: 1.92k
C++: 5.14k

Ratio: 1::2.68
State Generation

ECL: 128
C++: 242

Ratio: 1::1.89

ECL: 3.42k
C++: 6.76k

Ratio: 1::1.98

4. Observations

In many pieces of code the problem of disorientation is
acute. People have no idea what each component of the
code is for and they experience considerable mental
stress as a result. [8]

It is reasonable to assume that any language which

raises the level of abstraction will be more concise than
the underlying representation unto which it is mapped at
generation time. A simple analogy of this would be a
comparison of any high-level programming language to
the equivalent assembly or object code that resides closer
to the execution space. Typically, the representation of a
single executable statement in a programming language
translates to several assembly instructions, or more than a
few bytes of object code. The same is true regarding the
constructs offered by a DSL and their equivalent mapping
to a programming language.

As Dick Gabriel observed in the above quote, stress
can result from the disorientation caused by the mismatch
of expression between the intention of an objective and
the underlying implementation needed to realize that
objective. This is particularly evident with respect to the
maintenance and evolution of a piece of software. For
example, the right side of Figure 4, the method of Figure
7, and the method in Figure 9 are representations of
implementation details that are at a level of abstraction
much lower than their counterparts expressed in a DSL.
The maintenance of such code would intuitively seem to
be more problematic.

The three languages introduced in this paper each
highlight a specific type of benefit that can result from

using a DSL. Each of these advantages is discussed in the
following three sections.

4.1 Generation of data structures from higher-
level specifications

The examples of the MSF, as shown in Figures 3 and
4, draw attention to the succinct expression of the
pertinent characteristics of a modeling tool. The
corresponding translation into a programming language
contains many details that complicate expressibility. By
hiding these details, the user of the MSF can focus their
attention more on the essential elements that need to be
specified. The nastier minutiae of moving into the
execution/implementation space are concealed and
abstracted away by the MSF.

Our observations from working with the MSF lead us
to the conclusion that there are many advantages of
generating data structures from specifications written in a
DSL. This finding is also confirmed in [23]. The code
generator for a DSL can contain the detailed knowledge
needed to create the intricate wrappers for a complex set
of inter-related data structures (like the CMI and its
underlying CORBA interfaces).

4.2 Synthesis of iterative representations

There are often programming tasks that are repetitive

in nature. That is, a pattern emerges as a technique for
implementing a commonly occurring situation. An
example of this can be seen in the code of Figure 7, where
a common form of iteration is performed over different
collections. The tedious nature of such repetitive
duplication of code can be a source for introducing
programming errors. With respect to iterating over
collections, we have found much benefit in the ability to
concisely specify our intention and have a generator
create the solution.

The visitor actions that are specified in the TVL often
consist of inlined C++ code. The inlined code is directly
copied by the translator into the generated file.
Conciseness should be improved by the ability to specify,
at a higher level of abstraction, the functional changes
needed in the transformation. With such an addition, it is
possible that the TVL could offer even more benefit than
is made evident in Table 2. This is an area of future
investigation.

Considering Table 3, an observation can be made
regarding the State Generation strategy. Its translation
yielded the lowest ratio in comparison. This strategy also
contains the least amount of ECL collection statements,
suggesting the somewhat obvious fact that all of the code
needed to iterate over a collection increases the amount of
generated C++ code.

4.3 Wrapping of API calls

Any programmer who has written an application that

makes frequent use of the XML DOM will testify that it is
not a pleasant experience. This is often true of any library
that offers a rich, yet complicated, set of APIs. It takes
concentrated discipline to follow the strict sequence of
API calls that are needed to accomplish a specific task.
This can sometimes force a programmer to spend their
time tangled in a morass of implementation details. The
XMLParser adapter methods (two of these can be found
in Figure 9) shield the ECL programmer from the
concerns of calling the DOM to retrieve values. The ECL
generator is able to make use of these wrapper methods in
order to permit statements, like the one in Figure 8, to be
more abstract. This is also true of the example in Figure 4.
Many of the CORBA method calls are collected in
adapters and facades.

5. Conclusion

We must recognize the strong and undeniable influence that
our language exerts on our ways of thinking and, in fact,
delimits the abstract space in which we can formulate –
give form to – our thoughts. [27]

Domain-Specific Languages gain their power by

raising the intentionality of programmer expression. With
a DSL, it is argued, a programmer can express their
objective in a concise manner using a language that is
much higher in expressiveness than that typically offered
in a traditional programming language. Because of this, it
is often asserted that programs written in DSLs are much
easier to maintain and modify.

As described in this paper, observations from our work
on three different DSLs suggest that an upward shift in
abstraction does indeed permit a more concise
specification of an intention. The paper also contains
observations that suggest situations that would best
benefit from a generative approach using DSLs (e.g.,
isolating the programmer from the details of complicated
data structures and API calls). This is our first attempt at
using our experience to categorize the essential
characteristics that make DSL use beneficial.

Our comparisons focused solely on the relative sizes of
lines of code. It is not clear that a programmer would
write code that is similar to that produced from a DSL
generator. Although the results suggest a benefit for using
DSLs, a future area for further research would investigate
the usefulness of our DSLs with respect to improving
programmer productivity. That is, an important question
is: How much time, if any, can be saved in development
when using our DSLs? We believe that our initial studies
suggest that decreased development time will result, due
to the reduced complexity of expressing an objective in

the problem space and then automatically translating that
into the solution space.

A topic that we are currently studying concerns the use
of visual DSLs, so-called domain-specific visual
languages (DSVLs). In particular, we have several ideas
that we are investigating with respect to notations for
visually describing the semantic equivalent of the ECL
using the GME. We do not have plans, however, to
further explore DSVL equivalents for the tool integration
DSLs. The language processors for these DSLs, and their
respective outputs, are tied to Visual Studio projects in
such a way that a textual specification works well. The
tool integration DSLs also contain many fragments of
inlined code, suggesting a textual solution.

Acknowledgements

We thank Sandeep Neema, Ted Bapty, and Beatrice
Richardson for their assistance on portions of this work.
We also thank the reviewers for their numerous helpful
suggestions. The research presented in this paper was
conducted at ISIS and partially supported by Boeing. This
work has also benefited from support by the DARPA
Information Exploitation Office (DARPA/IXO), under the
Program Composition for Embedded Systems (PCES)
program. Early versions of this work were supported by
the DARPA EDCS MIC project.

References

[1] John Aycock, “Compiling Little Languages in Python,”
Proceedings of the 7th International Python Conference,
Houston, Texas, November 1998, pp. 69-77.
[2] David Barstow, “Domain-Specific Automatic
Programming,” IEEE Transactions on Software Engineering,
November 1985, pp. 1321-1336.
[3] Don Batory, Jeff Thomas, and Marty Sirkin, “Reengineering
a Complex Application Using a Scalable Data Structure
Compiler,” ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), New Orleans,
Louisiana, December 1994, pp. 111-120.
[4] Jon Bentley, “Programming Pearls: Little Languages,”
Communications of the ACM, August 1986, pp. 711-721.
[5] Ted Biggerstaff, “A Perspective on Generative Reuse,”
Annals of Software Engineering, Vol. 5, 1998, pp. 169-226.
[6] Krzysztof Czarnecki and Ulrich Eisenecker, Generative
Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.
[7] Susan Davidson, G. Christian Overton, and Peter Buneman,
“Challenges in Integrating Biological Data Sources,” Journal of
Computational Biology, vol. 2., no 4., 1995, pp. 557-572.
[8] Richard P. Gabriel, “The Column Without a Name: Software
Development as Science, Art and Engineering,” C++ Report,
July/August 1995.
[9] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck,
“Handling Crosscutting Constraints in Domain-Specific
Modeling,” Communications of the ACM, October 2001, pp. 87-
93.

[10] Jeffrey G. Gray, “Aspect-Oriented Domain-Specific
Modeling: A Generative Approach Using a Metaweaver
Framework,” Ph.D. Dissertation, Department of Electrical
Engineering and Computer Science, Vanderbilt University,
March 2002.
[11] Robert M. Herndon and Valdis Berzins, “The Realizable
Benefits of a Language Prototyping Language,” IEEE
Transactions on Software Engineering, June 1988, pp. 803-809.
[12] Gábor Karsai and Jeff Gray, “Component Generation
Technology for Semantic Tool Integration,” IEEE Aerospace
Conference, Big Sky, Montana, March 2000.
[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin, “Aspect-Oriented Programming,” European Conference
on Object-Oriented Programming (ECOOP), LNCS 1241,
Springer-Verlag, Jyväskylä, Finland, June 1997, pp. 220-242.
[14] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold, “Getting Started with
AspectJ,” Communications of the ACM, October 2001, pp. 59-
65.
[15] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter
Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and Gábor
Karsai, “Composing Domain-Specific Design Environments,”
IEEE Computer, November 2001, pp. 44-51.
[16] Karl Lieberherr, Adaptive Object-Oriented Software,
International Thomson Publishing, 1996.
[17] Karl Lieberherr, Doug Orleans, and Johan Ovlinger,
“Aspect-Oriented Programming with Adaptive Methods,”
Communications of the ACM, October 2001, pp. 39-41.
[18] Sandeep Neema and Ákos Lédeczi, “Constraint Guided
Self-Adaptation,” International Workshop on Self-Adaptive
Software, Balatonfured, Hungary, May 2001.
[19] Johan Ovlinger and Mitchell Wand, “A Language for
Specifying Recursive Traversals of Object Structures,” Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, November 1999, pp. 70-81.
[20] George Polya, How to Solve It, Princeton University Press,
1957.
[21] http://www.relexsoftware.com/
[22] Adam Siepel, Andrew Tolopko, Andrew Farmer, Peter
Steadman, Faye Schilkey, Dawn Perry, William Beavis, “An
Integration Platform for Heterogeneous Bioinformatics Software
Components,” IBM Systems Journal, vol. 40, no. 2, 2001, pp.
570-591.
[23] Diomidis Spinellis, “Notable Design Patterns for Domain-
Specific Languages,” Journal of Systems and Software,
February 2001, pp. 91-99.
[24] Arie van Deursen and Paul Klint, “Little Languages: Little
Maintenance?” First ACM SIGPLAN Workshop on Domain-
Specific Languages, Paris, France, January 1997, pp. 109-127.
[25] Arie van Deursen, Paul Klint, and Joost Visser, “Domain-
Specific Languages: An Annotated Bibliography,” ACM
SIGPLAN Notices, June 2000, pp. 26-36.
[26] Jos Warmer and Anneke Kleppe, The Object Constraint
Language: Precise Modeling with UML, Addison-Wesley, 1999.
[27] Niklaus Wirth, “On the Design of Programming
Languages,” Proceedings of the IFIP Congress, 1974, pp. 386-
93.

