
Using Software Component Generators to Construct a
Meta-Weaver Framework1

Jeff Gray

Institute for Software Integrated Systems (ISIS), Vanderbilt University, Nashville TN 37235
jgray@vuse.vanderbilt.edu (http://www.vuse.vanderbilt.edu/~jgray)

1 This work has been supported by the DARPA Information Technology Office (DARPA/ITO), under the Program Composition for Embedded Systems
program, Contract Number: F33615-00-C-1695.

Abstract

 Several new modularity technologies have been
proposed that improve separation of concerns in
programming languages. The initial efforts to
demonstrate these technologies are usually focused on a
single programming language. Since we live in a
polyglot world, this proposal addresses the goal of
being able to take these new powerful technologies to
other languages. The approach uses software
generators that create new “weavers” from meta-
specifications of programming languages.

1. Introduction

Aspect-Oriented Programming (AOP) provides a
strategy for dealing with concerns that crosscut
modularity [1]. Crosscutting results in tangled code that
is often redundant and difficult to reason about and
change. A goal of AOP is to provide new language
constructs that allow a better separation of concerns for
these crosscutting aspects. For a detailed example of
how AOP was used to improve modularity, see [2].

In AOP, a translator called a weaver is responsible
for taking code specified in a traditional (base)
programming language, and additional code specified in
an aspect language, and merging the two together.
Because the aspect code describes numerous behaviors
that crosscut a system, the concerns must eventually be
integrated into the base code. This is the purpose of a
weaver. The most mature AOP weaver is bound to Java
and a generic aspect language called AspectJ (see
http://aspectj.org)

Obviously, the benefits espoused by AOP will be
desired by those who use programming languages other
than Java, or those who want to use an aspect language
other than the one provided in AspectJ. This proposal
addresses the problem of creating new weavers for these
other languages.

2. Proposed Solution

A weaver framework is proposed that will support
the concept of a meta-weaver, or weaver-compiler, that
creates new weavers from the meta-specifications of a
base language and an aspect language. Thus, once the
initial meta-specifications are provided for all of the
base and aspect languages, we could have an Ada,
Prolog, or even PL/SQL version of a weaver for several
different aspect languages that we have also defined. In
order to build a new weaver using this approach, the
following must be provided to the framework:

1. A meta-level description of the key elements of the

base language is needed, as well as a description of
the relations between each element (e.g., classes
contain methods and attributes). In a previous
project, we have developed a meta-specification
language to accomplish this [3]. The same meta-
level description is also needed for the aspect
language. Each meta-level description is fed into a
generator that creates C++ code representing the
description.

2. The weaver must know how to parse the base
programming language. Therefore, this must be
described using a parser generator like PCCTS. The
weaver must also know how to parse the aspect
language. The parser will build a parse tree based
on the code generated from the meta-level language
descriptions.

3. An interpreter must be able to walk the generated
parse trees of the base and aspect languages and be
able to integrate the crosscutting concerns. In a past
project we also have gained experience in
specifying higher-level traversal/visitor sequences
[3]. An adaptation of this method could be useful
here and would build on the work of [4] and [5].

Note that the framework depends on three different
types of code generators. Each base and aspect language
becomes componentized into each new weaver that is
generated.

3. Related Work

Several researchers are working in the area of Multi-
Dimensional Separation Of Concerns (MDSOC) to
provide new language constructs to handle crosscutting;
see, for example, Subject Oriented Programming (SOP)
[6]. A recent book provides a detailed discussion of the
issues involved in this area [7].

Perhaps the work that is closest in intent to this
proposal can be found in [8]. The Jakarta Tool Suite
(JTS) contains the basic tools to support the addition of
new programming features to the Java language. It
assists in the construction of new preprocessors for
domain specific languages (DSLs) that are transformed
into a host language. The supported host language in
JTS is called Jak. Jak is described as a superset of Java
that supports meta-programming. It seems likely that
JTS could be used to create a weaver for new aspect
languages to support Java. This work differs from our
approach in that it is fixed to a superset of Java (Jak).
We are interested in not only extending the DSL, or
aspect language, but also the base programming
language.

4. Status and Future

As an exercise to show the feasibility of the approach, a
weaver for subsets of two core and aspect languages will
be created. The meta-weaver will also be applied at new
levels of abstraction. For example, in the types of
models that we build at ISIS/Vanderbilt to support our
research, constraints represent a type of crosscutting
concern. The meta-weaver framework will be used to
create a weaver for handling these models and
constraints. This will apply the principles of aspect-
orientation to a higher level of abstraction; from
programming to modeling [9]. In fact, a primitive
version of a weaver to support these crosscutting model
constraints has already been created. It allows different
weavers to be generated based on specifications of the
domain represented in our reconfigurable modeling
environment [10].

5. Summary

From experience in other work [3], we have found that a
framework that uses software generators greatly reduces
the amount of time needed to create new applications.
The meta-specification for a particular language permits
the language itself to be treated as a kind of component
that can be plugged into the framework. Inserting the
meta-specifications into the weaver framework can
create new weavers for different languages.

A meta-weaver can offer the distinguishing
advantage of being able to take the concepts of AOP to
new base and aspect languages. The power of AOP
would be available to many new developers who use
languages other than Java and AspectJ. In fact, the meta-
weaver concept can be positioned as a tool to assist in
areas outside of AOP. This proposal actually applies to
any situation where a base programming language is
extended with a new type of DSL.

References

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Videira Lopes, J. Loingtier, and J. Irwin,
“Aspect-Oriented Programming,” European
Conference on Object-Oriented Programming
(ECOOP ’97), Finland, 1997.

2. M. Lippert and C. V. Lopes, “A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming,” International Conference on
Software Engineering (ICSE 2000), Limmerick,
Ireland. 2000.

3. G. Karsai and J. Gray, “Component Generation
Technology for Semantic Tool Integration,” IEEE
Aerospace Conference, Big Sky, MT, 2000.

4. J. Ovlinger and M. Wand, “A Language for
Specifying Recursive Traversals of Object
Structures,” Conference on Object-Oriented
Programming, Systems, Languages, and
Applications (OOPSLA ’99), Denver, CO, 1999.

5. K. Lieberherr, Adaptive Object-Oriented Software,
International Thomson Publishing, 1996.

6. P. Tarr, H. Ossher, W. Harrison, and S. Sutton, “N
Degrees of Separation: Multi-Dimensional
Separation of Concerns,” International Conference
on Software Engineering (ICSE ’99), Los Angeles,
CA, 1999.

7. K. Czarnecki and U. Eiseneker, Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

8. D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS:
Tools for Implementing Domain-Specific
Languages,” Fifth International Conference on
Software Reuse, Victoria, Canada, 1998.

9. J. Gray, T. Bapty, and S. Neema, “Aspectifying
Constraints in Model-Integrated Computing,”
OOPSLA 2000: Workshop on Advanced Separation
of Concerns, Minneapolis, MN, 2000.

10. G. Karsai, G. Nordstrom, A. Ledeczi, and J.
Sztipanovits, “Specifying Graphical Modeling
Systems Using Constraint-based Meta-models,”
IEEE Symposium on Computer Aided Control
System Design, Anchorage, Alaska, 2000.

