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An important step in solving a problem is to choose the nota-
tion. It should be done carefully. The time we spend now on 
choosing the notation may be well repaid by the time we save 
later avoiding hesitation and confusion. Moreover, choosing 
the notation carefully, we have to think sharply of the ele-
ments of the problem which must be denoted. Thus, choosing 
a suitable notation may contribute essentially to understand-
ing the problem. (Polya, 1957) 

 

Since the inception of the software industry, models have been a bene-

ficial tool for managing complexity. In fact, the first commercial software 

package that was sold independent of a hardware manufacturer was an appli-

cation for constructing flow chart models, i.e., ADR’s AUTOFLOW (ADR, 

2002). In numerous disciplines, models are constructed to assist in the un-

derstanding of the essential characteristics of some instance from a particular 

domain. Mechanical engineers, architects, computer scientists, and many 

other professionals create models to provide projected views over an entity 

that has been abstracted from the real-world. As tools for creative explora-

tion, even children erect models of real-world structures using Legos, Tinker 

Toys, and other similar materials. 
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As Polya points out in the opening quote, the notation chosen to repre-

sent our abstractions contributes to the ease, or difficulty, with which we un-

derstand the essence of a problem. Selecting the correct modeling abstrac-

tions can make the difference between a helpful aid or a hindrance to com-

prehension. In models for computer-based systems, tool support can also of-

fer assistance in comprehending complex systems. 

In addition to improving comprehension, models are also built to ex-

plore various design alternatives. In many domains, it is often too costly (in 

both time and money) to build variations of the real product in order to ex-

plore the consequences and properties of numerous configuration scenarios. 

For example, a model of the Joint Strike Fighter aircraft, along with configu-

rations of various hostile scenarios, permits the simulation of an aircraft be-

fore it has even left the production line (Vocale, 2000). Models can be the 

source for simulations or analyses that provide a more economical means for 

observing the outcome of modified system configurations. The level of ma-

turity of a chosen modeling tool can greatly influence the benefits of the 
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modeling process, which is especially true when a modeling tool can make 

changes throughout a model’s lifecycle. 

As Gerald Sussman observes (Sussman, 1999), in traditional system 

development, “Small changes in requirements entail large changes in the 

structure and configuration.” A desirable characteristic is to have a change in 

the requirements be proportional to the changes needed in the corresponding 

implementation. Unfortunately, crosscutting requirements (such as high 

availability, security, and scalability in distributed systems) tend to have a 

global impact on system structure, which is hard to manage. 

Our work involves the construction of models that represent a system in 

a particular domain. From these domain-specific models of systems and 

software, various artifacts are generated, e.g., source code, or even simula-

tion scripts. We have found that model-based approaches can help to solve 

problems that often accompany changes to system requirements. For exam-

ple, (Neema et al., 2002) offer an approach for synthesizing models repre-

sented as finite state machines into a contract description language, which is 

then translated to C++. The benefit of this technique is that very small 
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changes to the state machine models often result in large transformations of 

the representative source code. Thus, a single manipulation of a higher-level 

abstraction may correspond to multiple transformations at the concrete level, 

resulting in a conservation of effort when compared to the equivalent effort 

needed to make the same modification at the implementation level. 

As evidenced by the topics covered in other chapters of this book, the 

idea of Aspect-Oriented Software Development (AOSD) is growing in depth 

and breadth. The techniques espoused by AOSD researchers generally pro-

vide new capabilities for modularizing crosscutting concerns that are hard to 

separate using traditional mechanisms. This chapter summarizes our work in 

applying AOSD techniques to domain-specific modeling and program syn-

thesis. The use of weavers, which are translators that perform the integration 

of separated crosscutting concerns, is described at multiple levels of abstrac-

tion. Our research on Aspect-Oriented Domain Modeling (AODM) employs 

the following two-level approach to weaving: 

• At the top-level, weavers are built for domain-specific modeling en-

vironments. The concept of applying AOSD techniques to higher lev-
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els of abstraction is covered in Section 1, where we describe our 

Constraint-Specification Aspect Weaver (C-SAW)1. This section also 

provides an overview of Model-Integrated Computing (MIC). An ex-

ample of AODM is described in Section 2. 

• The second level of weaving occurs during model interpretation. 

Synthesis of source code from models typically proceeds as a map-

ping from each modeling element to the generation of a set of seman-

tically equivalent source code statements. When a library of compo-

nents is available, the model interpreter can leverage a larger granu-

larity of reuse by generating configurations of the available compo-

nents. It is hard, however, to synthesize certain properties described 

in a model, e.g., those related to quality of service (QoS), due to the 

closed nature of the components. An aspect-oriented solution can 

provide the ability to instrument components with features that are 

specified in the model. Section 3 presents an approach and an exam-

                                                 

1 According to Webster’s Revised Unabridged Dictionary, a crosscut saw (or c-saw,) is “A saw, the teeth of which 

are so set as to adapt it for sawing wood crosswise of the grain rather than lengthwise.” 
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ple for generating AspectJ (Kiczales et al., 2001) source code from 

domain-specific models. 

The chapter concludes with summary remarks and a description of current 

and future work in this area. 

X.1 MODEL-INTEGRATED COMPUTING AND AOSD 

To support this focus on the development of interacting subsys-
tems with multiply-redundant design requires the development 
of languages that allow description of the function and rela-
tionships between different parts of the overall system. These 
descriptions "let go" of the specific logic of individual proc-
esses to capture the interactions that are necessary for the re-
dundancy and robustness of multiple processes. When stated in 
this way we see that it is the description of constraints between 
functional units of the system that are the essential parts of the 
collective description of the system.  (Sussman, 1999) 

 

The aim of Domain-Specific Modeling (DSM) is similar to the objective of 

textual domain-specific languages (DSL) (van Deursen et al., 2000) in that 

expressive power is gained from notations and abstractions aligned to a spe-

cific problem domain. A DSM approach typically employs graphical repre-

sentations of the domain abstractions rather than the textual form of a tradi-
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tional DSL. A program in a DSL is also usually given a fixed interpretation, 

but a model created from DSM may have multiple interpretations. For ex-

ample, one interpretation may synthesize to C++, whereas a different inter-

pretation may synthesize to a simulation engine or analysis tool. 

Like DSLs, domain-specific modeling raises the level of abstraction to 

highlight the key concerns of the domain in a manner that is intuitive to a 

subject matter expert or systems engineer. A Domain-Specific Visual Lan-

guage (DSVL) (DSVL03, 2003) can decouple designers from specific nota-

tions, such as UML (Booch et al., 1998). In domain-specific modeling using 

a DSVL, a design engineer describes a system by constructing a visual 

model using the terminology and concepts from a specific domain. 

X.1.1 Model-Integrated Computing 

An approach called Model-Integrated Computing (MIC) (Karsai, 1995) has 

been refined at Vanderbilt University over the past decade to assist the crea-

tion and synthesis of computer-based systems. A key application area for 

MIC is those domains (such as embedded systems areas typified by automo-
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tive and avionics systems) that tightly integrate the computation structure of 

a system and its physical configuration. In such systems, MIC has been 

shown to be a powerful tool for providing adaptability in frequently chang-

ing environments. An example of the flexibility provided by MIC is docu-

mented in (Long et al., 1998), where an installed system at the Saturn auto-

mobile factory was shown to offer significant improvements in throughput 

by being able to adapt to changes in business needs and the physical envi-

ronment. Other example domains where MIC has been successfully applied 

are the DuPont chemical factory (Garrett et al., 2000), numerous government 

projects supported by DARPA and NSF, electrical utilities (Moore et al., 

2000), and even courseware authoring support for educators (Howard, 2002). 

A specific instance of the type of domain-specific modeling supported 

by MIC is implemented using the Generic Modeling Environment (GME) 

(Lédeczi et al., 2001). The GME is a modeling environment that can be con-

figured and adapted from meta-level specifications (called the modeling 

paradigm) that describe the domain (Nordstrom et al., 1999). When using 
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the GME, a modeler loads a modeling paradigm into the tool to define an 

environment containing all the modeling elements and valid relationships 

that can be constructed in a specific domain. 

The process for applying MIC is shown in Figure 1. The left-hand side 

of this figure describes the task of creating new modeling environments. 

From meta-level specifications, new modeling environments are generated 

using meta-level translators (note that this process is self-descriptive – the 

meta-level specifications are also created with the GME). These meta-level 

specifications define the domain ontology, the specifications that identify the 

pertinent entities of the domain, as well as their related associations. 

After a modeling environment has been generated, a domain expert can 

then create models for the particular domain associated with the environment 

(see the middle of Figure 1). Once a model has been created, it can then be 

processed by domain interpreters, which traverse the internal data structures 

that represent the model and generate new artifacts. These interpreters can 

synthesize an application that is customized for a specific execution plat-
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form, as well as generate input to analysis tools. The synthesis/interpretation 

task is represented by the right-hand side of Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1: Process for Applying Model-Integrated Computing 
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model is described with UML class diagrams and constraints that are speci-
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At the meta-modeling level, OCL constraints are used to specify the seman-

tics of the domain that cannot be captured with the static relationships de-
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and relationships among collaborators in a middleware publisher/subscriber 

service, such as a CORBA event channel (Harrison et al, 1997). For instance, 

the meta-model contains the representation of several types of connecting 

ports, as well as various methods (e.g., call-back or notify) that are needed to 

realize the event channel. Constraints are not explicitly shown in this 

screenshot, but an informal example of a constraint for Figure 2 would state, 

“Every data object that is attached to a call-back and compute method must 

also be associated with a corresponding notify method.” The meta-model can 

itself be interpreted to produce a new modeling environment. In fact, this 

particular meta-model defines the ontology for the subset of the Bold Stroke 

avionics models that we present in Section 2, i.e., Figure 6 is an instance of 

the meta-model of Figure 2. The environment generated from this meta-

model will provide semantic checks to ensure that the constructed models 

conform to the semantics of the meta-model (Sztipanovits et al., 2002). 

Other mature meta-modeling environments include MetaEdit+ (Pohjonen 

and Kelly, 2002) and DOME (DOME, 2003). A similar approach that also 
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also uses OCL has been adopted recently in the Kent Modeling Framework 

(KMF) (KMF, 2003). 

 

Figure 2: A GME Meta-model for Bold Stroke Avionics Mission Computing 
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X.1.2 Crosscutting Concerns in Domain Modeling 

As described in other chapters of this book, a distinguishing feature of 

AOSD is the notion of crosscutting, which characterizes the phenomenon 

whereby some representation of a concern is scattered among multiple 

boundaries of modularity, and tangled amongst numerous other concerns. 

Aspect-Oriented Programming (AOP) languages, such as AspectJ (Kiczales 

et al., 2001), permit the separation of crosscutting concerns into aspects. We 

have found that the same crosscutting problems that arise in code also exist 

in domain-specific models (Gray et al., 2001). For example, it is often the 

case that the meta-model forces a specific type of decomposition, such that 

the same concern is repeatedly applied in many places, usually with slight 

variations at different nodes in the model (this is a consequence of the 

“dominant decomposition” (Tarr et al., 1999), which occurs when a primary 

modularization strategy is selected that subjects other concerns to be de-

scribed in a non-localized manner).  

A concrete example of crosscutting in models will be shown in Section 

2 based on the meta-model in Figure 2. An abstract illustration of the effect 
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of crosscutting constraints is presented in Figure 3. In this figure, a hierar-

chical decomposition is evident. Yet, such a decomposition has forced an-

other concern (represented by the checkered boxes, all pointing toward the 

existence of a global crosscutting constraint) to be distributed across the hi-

erarchy of the model. This results in much redundancy and replicated struc-

ture because the concern is tailored to the context of numerous nodes in the 

model. 

There are several different types of constraints that may be applied 

throughout a model. Figure 4 shows a set of resource constraints that indi-

cate specific hardware resources needed by software. Several of the models 

created using the GME tool contain thousands of components, with several 

layers of hierarchy. In the presence of a dominant decomposition, the con-

straints of a complex model become tangled throughout the model, which 

makes them hard to understand. The AODM approach can isolate the cross-

cutting constraints to modularize these global system properties more effec-

tively. 
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Figure 3: Crosscutting Constraints in Domain-Specific Modeling 
 

A

B

d
B

d

F

B

d

Multiple Levels 
of Hierarchy 

Replicated 
Structures 

Context 
Sensitive 

 

Crosscutting Constraints 



Chapter X: Two-Level Aspect Weaving to Support Evolution in Model-Driven Software 

 

 

 
 
 
 
 

Figure 4: Crosscutting Resource Constraints 
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differs from traditional programming language weavers. Programming lan-

guage weavers support better modularization at a lower level of abstraction 

by processing source code, but a domain-specific modeling weaver processes 

the structured description of a visual model. In particular, this new weaver 

requires the capability of reading a model that has been stored in the Exten-

sible Markup Language (XML). This weaver also requires the features of an 

enhanced constraint language. The standard OCL is strictly a declarative 

language for specifying assertions and properties on UML models. Our need 

to extend the OCL is motivated by the fact that we require an imperative 

language for describing the actual model transformations. We have created 

the Constraint Specification Aspect Weaver (C-SAW) to provide support for 

modularizing crosscutting modeling concerns in the GME. 

Our approach to model weaving involves the following concepts: 

Model Constraints: This type of constraint appears as attributes of mod-

eling elements. It is these constraints that are traditionally scattered across 

the model. These constraints are typically represented by a specialized entity 

in the meta-model, e.g., the OCLConstraint meta-type in Figure 2. 
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Modeling Pointcuts: A modeling pointcut is a new modular construct 

that specifies crosscutting concerns across a model hierarchy. Each modeling 

pointcut describes the binding and parameterization of strategies to specific 

nodes in a model. A modeling pointcut is conceptually similar to a pointcut 

in AspectJ (Kiczales et al., 2001). Like an AspectJ pointcut designator, a 

modeling pointcut is responsible for identifying the specific locations of a 

crosscutting concern and offers the capability to make quantifiable state-

ments across the boundaries of a model (Filman and Friedman, 2000). Quan-

tification permits statements such as, “For all the places where properties X, 

Y, and Z hold, then also make sure that property A and B are also true, but 

not property C.” In the context of modeling pointcuts, the general notion of 

quantification refers to the ability to make projected assertions and transfor-

mations across a space of conceptual representation, e.g., models or even 

source code. 

Strategies: A strategy is used to specify elements of computation, con-

straint propagation, and the application of specific properties to the model 

nodes (Note: we refer to “model nodes” as being those modeling elements 
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that have a definition in the meta-model and serve as visualization elements 

in the domain model). The name “strategy” is inspired by the strategy design 

pattern (Gamma et al., 1995). We use this term to define a collection of in-

terchangeable heuristics. Strategies are generic in the sense that their de-

scriptions are not bound to particular model nodes. Each weaver that sup-

ports a specific meta-level GME paradigm will have disparate strategies. A 

strategy provides a hook that the weaver can call to process node-specific 

constraint application and propagation. Strategies therefore offer numerous 

ways for instrumenting nodes in the model with crosscutting concerns. Sec-

tion 2.2 of this chapter provides an example strategy for assigning eager/lazy 

evaluation within a CORBA event channel. 

The three items listed above differ in purpose and in application, yet 

each is based on the same underlying language. We call this language the 

Embedded Constraint Language (ECL). The ECL is an extension of the OCL 

and provides many of the common features of OCL, such as arithmetic op-

erators, logical operators, and numerous operators on collections (e.g., 

size, forAll, exists, select). A unique feature of ECL that is not 
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provided within OCL, however, is a set of reflective operators for navigating 

the hierarchical structure of a model. These operators can be applied to first 

class model objects (e.g., a container model or primitive model element) to 

obtain reflective information needed in either a strategy or pointcut. 

Figure 5 shows the use of model weaving with C-SAW. In this figure, 

the solid arrows represent the output from tools that generate, or transform, a 

model. The GME can export the contents of a model in the form of an XML 

document (see step “1” in Figure 5; in this case, the exported XML is related 

to the meta-level paradigm from which the model was constructed, such as 

the one in Figure 2). In our approach, the exported XML representing a 

model is often devoid of any constraints. The constraints are not present in 

such cases because they are modularized by the pointcuts and strategies. 

The input to the domain-specific weaver consists of the XML represen-

tation of the model, as well as a set of modeling pointcuts provided by the 

modeler (step “2”). In Figure 5, these entities are positioned to the left of the 

domain-specific weaver. The output of the weaving process is a new XML 

description of the model (step “3”). This enhanced model, though, contains 
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new concerns that have been integrated throughout the model by the weaver, 

and can be reloaded into the GME (step “4”). 

 

 
 

 

 

 

 

 

 

 
 
 
 

Figure 5: Process of Using a C-SAW Model Weaver with the GME 
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scattered and tangled throughout the model. As a result, it would be hard to 

isolate the effects of latency or resource constraints on the design. By using 

aspects to represent these concerns, however, designers can apply modeling 

pointcuts separately to see how the system is affected in each case. In this 

way, areas of the system that will have more difficulty meeting a require-

ment may be given more relaxed constraints, and other parts of the system 

may be given tighter constraints.  

In general, AODM enables designers to isolate and study the effects of 

concerns (such as constraints) across an entire model. This approach is de-

sirable with respect to application-constraint tuning, i.e., the separation of 

concerns provided by the modeling pointcuts improves the modular under-

standing of the effect of each constraint. The plugging/unplugging of various 

sets of modeling pointcuts into the model can be described as creating “what 

if” scenarios. These scenarios help explore constraints that may have con-

flicting goals. The insertion and removal of design alternatives is analogous 

to AspectJ’s ability to plug/unplug certain aspects into a core piece of Java 

code (Kiczales et al., 2001). 
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Our previous work (Gray et al., 2001) investigated the idea of a meta-

weaver framework that used generative programming techniques (Czarnecki 

and Eisenecker, 2000) to produce new model weavers based upon the strate-

gies specified for a specific domain. The framework could therefore be in-

stantiated to produce a specific weaver for a particular domain (e.g., avion-

ics) and could also be instantiated with different strategies to generate an-

other weaver for an additional domain (e.g, automotive electronics). The de-

tails of the meta-weaver framework are described in (Gray et al., 2001). 

X.2 EXAMPLE: MODEL WEAVING OF EAGER-LAZY 

EVALUATION CONSTRAINTS 

The point of time at which the resources are acquired can be 
configured using different strategies. The strategies should 
take into account different factors, such as when the re-
sources will be actually used, the number of resources, their 
dependencies, and how long it takes to acquire the resources. 
Regardless of what strategy is used, the goal is to ensure that 
the resources are acquired and available before they are ac-
tually used.  (Kircher, 2002) 
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This section  introduces a modeling domain and an example to explain the 

process of model weaving with C-SAW. Section 3 expands on this example 

by presenting an approach for generating AspectJ code from models. 

X.2.1 Modeling Bold Stroke Components in GME 

Boeing’s Bold Stroke project (Sharp, 1998) uses COTS hardware and mid-

dleware to produce non-proprietary, standards-based component architecture 

for avionics mission computing capabilities, such as heads-up display, navi-

gation, data link management, and weapons control. A driving objective of 

Bold Stroke was to support reusable product-line applications (Clements and 

Northrop, 2001), leading to a highly configurable application component 

model and supporting middleware services. There have been efforts within 

the DARPA MoBIES and PCES programs to model the structure, behavior, 

and interactions of subsets of applications built from Bold Stroke compo-

nents. A modeling effort for a subset of Bold Stroke components has been 

conducted using the GME. 
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Figure 6: A GME Model of the Bold Stroke Component Interactions 

Figure 6 represents a simple model that contains five components. All 

of these components have specified parameters (e.g., frequency, latency, 

Worst-Case Execution Time (WCET)) that affect end-to-end quality of ser-

vice (QoS) requirements. The first component is an inertial sensor. This sen-

sor outputs the position and velocity deltas of an aircraft. A second compo-

nent is a position integrator. It computes the absolute position of the aircraft 
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given the deltas received from the sensor. It must at least match the sensor 

rate such that there is no data loss. The weapon release component uses the 

absolute position to determine at which time to deploy a weapon. A mapping 

component is responsible for obtaining visual location information based on 

the absolute position. A map must be constructed such that the current abso-

lute position is at the center of the map. A fifth component is responsible for 

displaying the map on an output device. The specific values of component 

properties will likely differ depending on the type of aircraft represented by 

the model, e.g., the latencies and WCETs for an F-18 are often lower than 

those of a helicopter. The core modeling components describe a product 

family with the values for each property indicating the specific characteris-

tics of a member of the family. A more detailed description of WCET within 

the context of Bold Stroke can be found in (Gu and Shin, 2003). 

The internals of the components in Figure 6 permit their realization us-

ing the CORBA Component Model (CCM) (Siegel, 2000). The CCM pro-

vides capabilities that offer a greater level of reuse and flexibility for devel-

opers to deploy standardized components (Wang et al., 2001). Each of the 
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components in Figure 6 has internal details, in support of the CCM, that also 

are modeled. For instance, the contents of the Compute Position component 

are rendered in Figure 7. This figure specifies the interactions of entities 

within a middleware event channel, e.g., call-back function, notification pro-

cedure, local data store (Position). The ports and Receptacle/Facet entities 

provide the connection points to other components and events. 

 
Figure 7: The Internals of the Compute Position Component 
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X.2.1.1 Eager/Lazy Evaluation 

In the interactions among the various components in the weapons deploy-

ment example, there is a protocol for computing a value and notifying other 

components of a completed computation. These interactions are the result of 

a publish/subscribe model that uses the CORBA Event Service, which con-

sists of suppliers who publish events to an event channel, which then deliv-

ers the events to the appropriate consumers in a timely and reliable manner 

(Harrison et al., 1997). The typical scenario for these interactions is: 

1. One component (C) receives an event from another component 

(S), indicating that a new value is available from S. 

2. C then invokes the get_data() function of S to retrieve the 

most recent data value from S. C then performs a computation 

based upon the newly retrieved value. 

3. Component C subsequently notifies all of the other components 

that subscribed to the event published by C. 
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Figure 8: Description of Eager/Lazy Strategy 
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Because there are situations where early acquisition and computation of 

data can waste resources, the determination concerning how often a compu-

tation should be made is an optimization decision, as described below: 

• In an eager evaluation, all the steps to perform the computation 

for a component are done at once. An eager evaluation would 

follow the three steps above in a strict sequential order (see the 

top part of Figure 8 for a depiction of the eager evaluation pro-

tocol) each time an event is received from a supplier component.  

• A lazy evaluation is less aggressive in computing the most re-

cent value. The second step, from above, is performed late, i.e., 

the value from the supplier and the actual computation, are per-

formed after a client component requests a data value. The com-

putation is therefore performed only when needed, not during 

each reception of an event from a supplier. The concept of a lazy 

evaluation is shown in the bottom part of Figure 8. 
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X.2.2 Strategies for Eager/Lazy Evaluation 

The manner by which a determination of eager/lazy evaluation is made can 

be modeled as an aspect. The determination is typically made according to 

some optimization protocol, which is spread across each component of the 

model. If it is essential to change properties of the model, it would be neces-

sary to revisit each modeling element and modify the eager/lazy assignment 

of each node. The dependent nature of the eager/lazy evaluation on proper-

ties in the model makes change maintenance a daunting task for non-trivial 

models. 

It would be useful to be able to separate the criteria used to assign an 

evaluation. Such separation would support changeability and exploration of 

different protocols. A specific strategy for determining eager/lazy evaluation 

is given in Figure 9. This figure shows how the EagerLazy strategy simply 

determines the location of the start and end nodes of a range of elements 

within the model to which the strategy is applied. It also finds the context of 

folders and models that will be needed during the distribution of the concern. 

The parameterization of the start and end nodes – and also the latency 
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threshold – enables this strategy to be called by a modeling pointcut in nu-

merous ways. This AO design permits the weaving of different constraints 

into the model in a more efficacious manner by quantifying over the model 

space and parameterizing the heuristic that is applied. Without such capabili-

ties, a modeler would have to visit every node of the model that is affected 

by the concern and manually apply the modification. 

The DetermineLaziness strategy is invoked on the start node (be-

cause the strategy works backwards, the start node is actually the node that is 

nearest to the end of the interaction). This strategy performs a simple compu-

tation to determine the evaluation assignment for the current node. The intent 

of the strategy is to assign a component to an eager evaluation until the la-

tency threshold is exceeded. After the threshold is exceeded, all subsequent 

components are assigned as lazy. If the current node is not the end node of 

the interaction, then the strategy named BackFlow is fired (this strategy is 

not shown in order to conserve space). The BackFlow strategy collects all 

of the suppliers of the current node (this is done by finding the components 
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that are on the current component’s data flow, and serve as suppliers) and 

invokes a continuation on the collection. 

 
defines EagerLazy, DetermineLaziness; 
 
strategy EagerLazy(EndName : string; latencyThreshold : integer) 
{ 
 
  declare components, interactions, startNode, endNode : node; 
 
  components := findFolder("Components"); 
  interactions := findModel("Interaction"); 
 
  startNode := self; 
  endNode := components.findModel(EndName); 
 
  startNode.DetermineLaziness(components, interactions, endNode, 
                              latencyThreshold); 
 
} 
 
strategy DetermineLaziness(components, interactions, endNode : node;  
                           latencyThreshold : integer) 
{ 
 
  declare static accumulateLatency : integer; 
  declare latency : integer; 
  declare currentID, endID : string; 
 
  if (accumulateLatency < latencyThreshold) then 
   AddConstraint("EagerLazy", "assignment = lazy"); 
  else 
   AddConstraint("EagerLazy", "assignment = eager"); 
  endif; 
 
  latency := self.compute.latency; 
  accumulateLatency := accumulateLatency + latency; 
  
  getID(currentID); 
  endNode.getID(endID); 
 
  if(currentID <> endID) then 
 
     self.BackFlow(components, interactions, endNode, 
                   latencyThreshold); 
     
  endif; 
 
} 
 

 
Figure 9: Eager/Lazy Strategy Specified in the ECL 
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A simple modeling pointcut is shown in Figure 10. This specification 

binds the EagerLazy strategy to the data flow path starting with the “Iner-

tialSensor” component (the “start” node), and ending with the “LocDisplay” 

component (the “end” node). The specific parameter for the latency thresh-

old could be changed, which would weave in different constraints into the 

base model. Of course, the start and end nodes of the data flow can also be 

changed. A more complex declaration of the starting and ending node could 

also be denoted, e.g., a declaration on properties of the nodes, such as 

whether or not a node has a publisher or consumer port. 

 
 
aspect EagerLazyWeaponsComponents 
{ 
  models("")->select(m | m.name() = 
                        “InertialSensor”)->EagerLazy(“LocDisplay”, 20); 
} 

 
 

Figure 10: Modeling Pointcut for Eager/Lazy Evaluation 
 

The effect of applying the EagerLazy strategy across the set of mod-

eled components can be seen in Figure 11. That figure displays the modifica-

tions made to the internals of the Update Map component. The internals of 

Update Map are similar to those of Compute Position, as shown in Figure 7. 
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In this case, a new constraint has been added (called EagerLazy) and the 

specific value of this constraint is “assignment = Lazy” (this can be 

seen in the “Constraint Equation” box in the bottom-right of Figure 11).  

 

 

Figure 11: Effects of Eager/Lazy Strategy within Update Map Component 

For application developers who are creating new instantiations of Bold 

Stroke, a model-based approach provides a facility for describing component 

configuration, assembly, and deployment information at higher-levels of ab-
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straction, i.e., with visual models, as an alternative to hand-coded XML rep-

resentations. Additionally, the availability of model weavers like C-SAW 

permits the rapid exploration of design alternatives, which are captured in 

constraints that specify crosscutting global properties of the modeled system. 

X.3 GENERATING ASPECT CODE FROM  

DOMAIN-SPECIFIC MODELS 

The traditional approach for generating artifacts from a domain-specific 

model involves the construction of an interpreter, or generator, which is then 

used to traverse a tree-like representation of the model. The actions per-

formed at each visited node result in the synthesis of a new representation of 

the model. The GME provides a rich API for extracting model information. 

Often, the generated artifact is represented as source code in a pro-

gramming language, such as Java, C++, or C. In such cases, the interpreter 

has built-in knowledge of the semantics of the domain and the programming 

language to which it is mapped. The interpreter may also be aware of a li-
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brary, or set of components, from which the synthesized implementation in-

stantiates. When an interpreter produces a source code artifact that relies on 

pre-existing libraries of components (i.e., the libraries are static and not a 

part of the generated artifact), it can be hard to map crosscutting properties 

of the model into the component. This is typically true even if the component 

library is available in source form (unless there is provision within the inter-

preter to parse and transform the component library itself during the model 

synthesis). The reason is that the component, during generation-time, is often 

treated as being closed to modification – the granularity of the component 

representation is typically at the interface level, not the individual statements 

within the component implementation. 

An aspect-oriented approach can assist in the generation of component 

customizations that extend the component with properties declared in the 

model. The focus of this section is to introduce a generation technique that 

relies on an aspect-oriented language to encode the extended features that are 

added to a component. 
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X.3.1 Synthesizing Aspects 

It is possible to generate the configuration of Bold Stroke components from 

domain-specific models in such a way that specific parts of each component 

are weaved together as an aspect. This goal fits well with the OMG’s Model 

Driven Architecture (MDA) (Bézivin, 2001), (Burt et al., 2001) and also the 

concept of “fluid” AOP, which “involves the ability to temporarily shift a 

program (or other software model) to a different structure to do some piece 

of work with it, and then shift it back” (Kiczales, 2001). 

A technique for realizing this objective is the generation of AspectJ 

(Kiczales et al., 2001) code from models, as shown in Figure 12. In this fig-

ure, the model (top-left of figure) and modeling pointcuts (top-right of fig-

ure) are sent through a C-SAW weaver that constrains the model. Here, 

modeling pointcuts represent the description of crosscutting concerns that 

are to be weaved into the model (Gray et al., 2001). The constrained model 

(bottom-left of figure) can then be sent to a GME interpreter/generator that 

generates the aspect code. This figure illustrates that there are two stages of 

weaving that are performed. A higher level of weaving is done on the model 
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itself, as illustrated by the Bold Stroke example in Section 2. This weaving 

instruments a base model with specific concerns (often represented as model 

constraints) that typically crosscut the model. The second type of weaving 

occurs from the aspect code that is synthesized and later processed by the 

AspectJ compiler. Thus, weaving at both the modeling level and the imple-

mentation level is achieved. 

The amount of generated code produced from the aspect generator 

would actually be quite small. The assumption is that the core of the avail-

able components would already exist. Another assumption would be the ex-

istence of several different aspects of concern. These assumptions are in line 

with the work that other researchers are doing toward the goal of making a 

library of components and aspects available for a subset of the CORBA 

Event Service, such as the FACET work (Hunleth et al., 2001) at Washing-

ton University written using AspectJ. As an alternative, the AspectC++ 

weaver (Mahrenholz et al., 2002) could be used on the original C++ Bold 

Stroke components. For other languages, adaptations to a program transfor-
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mation system, such as the Design Maintenance System (DMS, 2003), could 

be integrated within the model interpreter. 

Figure 12: An MDA View of Aspect Code Generation 

An example of a core library of components can be found in the Java 

code in Figure 13. This figure represents an abstract Component (a) and a 

LocDisplay component (b). The abstract component defines the required 

methods for the domain – the same methods that can be found in models like 
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<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE project SYSTEM "mga.dtd"> 

 

<project guid="{00000000-0000-0000-0000-000000000000}" cdate="Thu Nov 30 14:15:40 2000" mdate="Thu Nov 30 14:15:40 2000" metaguid="{00000000-0000-0000-0000-

000000000000}" metaname="PCES"> 

<name>bit1</name> 

<comment></comment> 
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<folder id="id-006a-00000002" kind="Structural"> 

<name>Structural</name>

Output to 
Generator 

Processor 
#2 
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Figure 6. The LocDisplay subclass, for clarity, simply provides stubs for 

each method implementation. 

public abstract class Component 
{ 
 
  public abstract void call_back(); 
  public abstract int get_data(); 
  public abstract void init(); 
 
  public abstract void data_retrieve(); 
  public abstract void compute(); 
  public abstract void notify_availability(); 
 
  protected int _data; 
 
} 

a) Component.java (from component library) 
 

public class LocDisplay extends Component 
{ 
 
  public void call_back() {  
    System.out.println("This was LocDisplay.call_back"); }; 
 
  public int get_data() { return _data; }; 
 
  public void init() { }; 
 
  public void data_retrieve() {  
    System.out.println("This is LocDisplay.data_retrieve!"); 
    UpdateMap map = new UpdateMap(); 
    map.get_data(); 
  }; 
 
  public void compute() {  
    System.out.println("This is LocDisplay.compute!"); }; 
 
  public void notify_availability() {  
   System.out.println("This is LocDisplay.notify_availability!"); 
 
}; 

 

b) LocDisplay.java (from component library) 

Figure 13: Base Class Java Components 
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Example aspects are coded in Figure 14. The Lazy aspect contains ab-

stract pointcuts. Other aspects (e.g., various other forms of Eager/Lazy, etc.) 

will refine the definition of the pointcuts through extension. The Lazy as-

pect exists in a library of reusable aspectual components. This abstract as-

pect captures the notion of lazy evaluation, as described earlier in Section 

2.1.1. The callback “after” advice simply forwards all notifications to client 

components without making any effort to retrieve data and compute the in-

tention of the component. 

The LocDisplayLazy aspect, shown in Figure 14, manifests the 

type of code that is expected to be generated by the GME model interpreter. 

This code is straightforward to generate. In fact, to synthesize the LocDis-

playLazy aspect, all that is needed is the name of the class and the type of 

eager/lazy evaluation to weave. These properties are readily available to the 

model interpreter responsible for generating the aspect code. The code gen-

erator produces the concrete pointcuts that are needed to accomplish the 

weaving of the lazy evaluation concern with the LocDisplay component. 
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abstract aspect Lazy { 
 
    abstract pointcut call_back(Component c); 
    abstract pointcut get_data(Component c); 
 
    after(Component c): call_back(c) 
    { 
      System.out.println("after:call_back (Lazy)!"); 
      c.notify_availability(); 
    } 
 
    before(Component c): get_data(c) 
    { 
      System.out.println("before:get_data (Lazy)!"); 
      c.data_retrieve(); 
      c.compute(); 
    } 
 
} 

 

a) Lazy Aspect (from aspect library) 
 

 
aspect LocDisplayLazy extends Lazy { 
 
    pointcut call_back(Component c) : this(c) && 
                       execution(void LocDisplay.call_back(..));  
 
    pointcut get_data(Component c) : this(c) && 
                        execution(int LocDisplay.get_data(..)); 
 
} 

 
b) Concretization of Lazy Aspect with LocDisplay (generated) 

 
Figure 14: Sample Strategies and Modeling Pointcuts 

To summarize the idea, it is assumed that the code shown in Figure 14a 

exists in a library of reusable aspects. The model synthesis step produces 
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code, such as that shown in Figure 14b, which represents the weaving of a 

particular concern as a result of model properties. 

X.4 CONCLUDING REMARKS 

Our work on C-SAW has demonstrated the benefits of Aspect-Oriented Soft-

ware Development (AOSD) and aspect weaving at different levels of ab-

straction. Applying aspect-oriented techniques at the level of domain model-

ing is known as Aspect-Oriented Domain Modeling (AODM). AODM yields 

several benefits that support improvements for exploring different design 

alternatives in domain-specific models. When these design alternatives are 

captured as constraints that crosscut the modeling boundaries, separating 

those constraints as aspects, and then weaving them into a base model, sig-

nificantly improves the capabilities for changing properties of the base 

model. At the implementation level, generative techniques can be used to 

synthesize models into executable applications. Programming language 

weavers, such as AspectJ, are essential for customizing pre-fabricated com-

ponents from the various concerns that are described in the model. 
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For the AODM approach to evolve to the next level of maturity, it is 

necessary to have an extensive library of reusable aspects. We believe that 

much research is still needed, within the AOSD community in general, re-

garding the idea of large-scale aspect reuse and composition. 

X.4.1 Future Work 

The current specification of modeling aspects is done using a textual lan-

guage, such as the one shown in Figure 9. Future research will be conducted 

on the modeling representation science required to specify model aspects 

using graphical formalisms. These visual representation techniques and tools 

will permit the specification of aspects in a manner that is consistent with the 

abstraction used in the specification of the base model, i.e., both aspects and 

models will be represented graphically within the same environment, rather 

than the current situation where aspects are specified textually. A common 

representation will also facilitate the development of a weaver that is inte-

grated within the GME (currently, the weaving process is performed outside 

of the GME modeling tool, as shown in Figure 5). We are also investigating 
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the feasibility of using the meta-weaver with other meta-modeling tools 

(Gray et al., 2003). 

X.4.2 Related Work 

There is an increasing interest among researchers toward applying advanced 

separation of concerns techniques to non-code artifacts (Batory et al., 2003). 

In particular, AOSD techniques have been investigated at all levels of the 

development lifecycle, including requirements engineering (Rashid et al., 

2003). Several researchers have investigated the application of AOSD con-

cepts within the context of the UML (Clarke and Walker, 2001), (Elrad et 

al., 2002). These efforts have yielded guidelines for describing crosscutting 

concerns at higher levels of abstraction. In this regard, they have common 

goals with the work described in this chapter. These efforts differ from our 

work, however, because we have been concentrating on the idea of building 

actual weavers for domain models. 

Within the context of distributed real-time embedded systems (DRE), 

the C-SAW techniques described in this chapter are being integrated within 
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the CoSMIC tool suite developed at Vanderbilt University (Gokhale et al., 

2002). CoSMIC extends the GME to provide a modeling environment to as-

sist in the configuration and assembly of DRE componenent middleware – in 

particular, systems that have QoS requirements and are assembled from 

components constructed using concepts from Real-Time CCM (Wang et al., 

2001). Other research efforts related to CoSMIC and aspect weaving are the 

Virginia Embedded Systems Toolkit (VEST) from the University of Virginia 

(Stankovic et al, 2003), and the AIRES tool from the University of Michigan 

(Gu and Shin, 2003). 

VEST is a toolkit that is built as a GME meta-model (Lédeczi et al., 

2001). It supports modeling and analysis of real-time systems and introduces 

the notion of prescriptive aspects to specify programming language inde-

pendent advice to a design. A distinction between VEST and our C-SAW is 

in the generalizabilty of the weaving process. C-SAW is constructed to work 

with any GME meta-model (including VEST itself), while the strength of 

VEST lies within real-time system specification. Additionally, the VEST 

prescriptive aspect language is not as rich as our ECL. According to (Stank-
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ovic et al, 2003), the structure of prescriptive aspect is limited to the form, 

“for <some conditional statement on a model prop-

erty> change <other property>,” which is comparatively less 

powerful than the ECL capabilities demonstrated in Figure 9. The AIRES 

tool also has a focus on modeling of Bold Stroke scenarios. The focus of 

AIRES is on analysis of real-time properties, but does not adopt an aspect-

oriented approach to modeling. 
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