
© 2002 Vanderbilt University. All Rights Reserved.

CAPE: A Visual Language for Courseware Authoring
Position Paper

Second Workshop on Domain-Specific Visual Languages
Larry Howard, Institute for Software Integrated Systems, Vanderbilt University

howardlp@isis.vanderbilt.edu

Abstract

Applications of technology to teaching and learning
at school, home, and the office are increasing at a
rapid pace. There are legitimate concerns that the
demand for courseware is already exceeding the
supply—a situation that, at least in part, reflects the
current practice of custom-crafting education and
training applications. This situation has motivated
interest in alternative development strategies that
involve “repurposing” content. Inherent in such
strategies is the ability to address the adaptation and
integration of learning materials and activities as a
distinct aspect of design. We describe research on an
authoring environment called CAPE that addresses
this aim, among others, by representing instructional
designs using a domain-specific visual formalism.
We further describe issues and activities surrounding
the creation and use of such representations.

Introduction
Traditionally, instructional designers represented
their work as sets of teaching materials
combined with descriptions of learning
objectives and guidance on how the materials
might to be used to achieve and assess intended
outcomes. These things were packaged together
for use by a teacher, who might tailor the design
and materials to a particular use and then enact
and assess the learning experience. In short,
instructional designs were a human-to-human
communication fully intended to be interpreted
by a teacher in the context of the targeted
learning situation.

Early applications of computing technology to
learning were typically “designed-to-fit”
artifacts. The advent of powerful multimedia
authoring technologies, associated with the
world-wide web, have enabled the creation of
more compelling learning experiences, but the
result has been custom applications that are
expensive to produce and afford very little
opportunity for re-purposing; that is, the reuse
of the constituent materials in related learning
experiences.

Increasing demand for computer-based learning
applications has engendered interest in a new
development strategy, increasingly referred to as
reusable learning objects. In this approach,
well-circumscribed elements of instruction are
created and then integrated to form larger
instructional units. Evidence of this interest can
be seen in the production of a standard
courseware representation called the Shareable
Content Object Reference Model (SCORM) by
the Advanced Distributed Learning Initiative1, a
collaboration involving government, industry,
and academia whose primary sponsor is the U.S.
Department of Defense, the world’s leading
acquirer of courseware. Representations such as
SCORM begin to make it possible to pursue a
reuse-based approach to creating computer
learning experiences, although clearly many
technical and non-technical challenges remain to
be addressed before such a strategy is
practicable.

Early in a project for the National Science
Foundation’s Engineering Research Center on
Bioengineering Educational Technologies
(VaNTH)2, we recognized the opportunity for an
authoring technology that could be used to
assemble modular educational materials into
bioengineering courseware. We further
recognized that it would be advantageous to
have this authoring capability produce a
standards-based courseware representation,
since even among the member institutions of the
ERC there would likely be differences in choices
of courseware delivery platforms. We called
this new technology the Courseware Authoring
and Packaging Environment (CAPE).

1 http://www.adlnet.org
2 VaNTH is a multi-institutional center involving
Vanderbilt University, Northwestern University, the
University of Texas at Austin, and the Harvard-MIT
Division of Health Sciences and Technology.
(http://www.vanth.org)

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 2

Since SCORM is the standard representation
most relevant to the aim of composable learning
materials, we provisionally adopted it as a target
representation. But SCORM is a general-
purpose XML-based representation, and we
were interested in an authoring language that
was easier to create and closer to the domain of
authoring bioengineering courseware for
VaNTH. The author’s home institution, ISIS,
has pioneered a paradigm known as model-
integrated computing [1] in which domain-
specific modeling representations are used to
automatically generate the input representations
for analytical engines and data-driven run-time
environments. It was, therefore, natural to
consider the possibility of a visual language for
authoring VaNTH courseware from which a
textual representation such as SCORM could be
generated. An investigation of this design
strategy was begun.

Today, CAPE has grown into a representation
incorporating nearly a hundred distinct concepts
and relationships. Its evolution has been largely
opportunistic, using needs and interests from
pioneering users and reflections on their
experiences as motivations for extensions and
refinements. We continue to view CAPE as
more a vehicle for exploring the possibilities and
challenges of using a domain-specific visual
language within the learning objects strategy,
and less an attempt to arrive at a definitive
representation. It is hoped that understanding
gleaned from our experiences will help inform
the evolution of standards-based courseware
representations and their associated delivery
platforms. However, our primary aim is
establishing a robust authoring capability
serving the distinct interests of the VaNTH
ERC.

The remainder of this paper presents and
discusses our experiences developing and using
CAPE in three sections. The first addresses the
“meta-design” of the CAPE authoring language;
that is, the design of the design representation.
The second addresses the environment that
supports authoring tasks using this
representation. The third and final section
addresses the delivery infrastructure that
supports the use of the resulting courseware by
learners.

1. The Visual Language
Using CAPE, courseware authors primarily
address three interrelated sets of concerns:

1) Integrating learning materials into
instructional units at various levels of
aggregation and determining in what
sequences and under what conditions
materials are delivered to learners

2) Establishing learning objectives for
instructional units and associating them
with elements of content (or domain)
knowledge

3) Providing metadata that describes the
instructional units to instructors, to
learners, or to the delivery infrastructure

VaNTH has defined an aggregation model that
provides four levels:

• Granules

These are atomic content elements that
provide basic resources for authoring.
Granules can be used within all higher-
level aggregations.

• Modules

These are the basic instructional unit,
where learning objectives address
teaching sets of interrelated domain
concepts.

• Mosaics

These are compositions of modules with
some unifying theme or challenge.

• Courses

These are compositions of mosaics or
modules intended to provide coverage of
some body of knowledge from a
bioengineering curriculum.

VaNTH granules correspond to the SCORM
Content Aggregation Model (CAM) concept of
“assets”. VaNTH modules, mosaics, and
courses correspond to SCORM’s “shareable
content objects”.

In devising a meta-representation for CAPE, we
used concepts from SCORM as a starting point.
CAPE’s meta-design was captured using a meta-
modeling facility[2] of the Generic Modeling

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 3

Environment (GME)[3] developed by ISIS.
This representation is based on the Unified
Modeling Language (UML)[4] and Object
Constraint Language (OCL)[5]. Within GME’s
meta-modeling facility, meta-designs are
organized into definitional units called paradigm
sheets.

Figure 1 shows the paradigm sheet
corresponding to the core courseware
representation for CAPE. It defines the VaNTH
aggregation model, together with a set of simple
delivery sequencing concepts influenced by
SCORM’s precondition predicates: sets and
logicals. It also provides for references to
granules and content aggregations that support
incorporating these items from folders of
reusable resources.

Other definitions established by
the CoursewareCore paradigm
sheet establish three “aspects” for
courseware designs3 that parallel
the sets of concerns identified
earlier. The first aspect,
Structure, addresses the
integration and sequencing of
learning content. This aspect is
used to define the order in which
materials or activities are
presented to learners. The second
aspect, Objectives, concerns
establishing learning objectives
and associating these with
concepts from taxonomies of
domain knowledge from the
disciplines constituting
bioengineering. The third aspect,
Metadata, is used to associate
metadata tags with a courseware
model and provide values for
these tags. The paradigm sheet
also provides definitions of
constraints governing the creation
of the modeling representation and definitions of
attributes for the constituent modeling concepts
and relationships.

3 Aspects support a separation of concerns in a
modeling representation and are interrelated through
shared concepts and relationships.

As VaNTH authors began to experiment with
the representation defined by CoursewareCore it
quickly became apparent that there were needs
that transcended its reach. First, while SCORM
is targeted to asynchronously delivered
courseware, VaNTH is interested in combining
in-class and out-of-class experiences in an
approach called “blended instruction”. There
needed to be concepts addressing coordination
between these learning contexts. VaNTH
authors were interested in adapting learning
experiences to individual learners, and
SCORM’s concepts for conditional, or adaptive,
delivery were widely acknowledged to be
underdeveloped. Concepts were needed for
authoring interactive content with the ability to
use interactions as a basis for adaptation.

Additional needs arose in pursuing an approach
to forming relationships between learning
objectives and taxonomies, which VaNTH uses
to represent domain knowledge within its
bioengineering sub-domains, that was somewhat
different to the approach taken by SCORM.

In answering all of these needs, an additional set
of concepts and relationships were defined

Figure 1: An Element of CAPE Meta-Design

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 4

through another paradigm sheet called
CoursewareAnnex. These VaNTH-specific
extensions were composed together with the
definitions provided by CoursewareCore using
composition capabilities of GME’s meta-
modeling facility[2]. This approach preserved
the SCORM-influenced portion of the CAPE
meta-design so that if authors did not require
any of the VaNTH extensions, the resulting
courseware could be represented for delivery
using a SCORM-compliant delivery platform.
But the use of these extensions would require a
VaNTH-specific delivery platform. This
platform is discussed later in Section 3.

Other definitional units of CAPE’s meta-model
address creating collections of descriptive
resources, the authoring of assessments, and a
general-purpose data
definition facility that
supports the integration of
learning technologies, such
as simulations, diagram
editors, or problem-solving
environments, among other
uses. VaNTH’s domain
taxonomies and SCORM
metadata tags are examples
of collections of descriptive
resources. These are
represented through sets of
tag types, and instances of
these types are used to
create palettes of tagging
resources. Authors drag
instances of these tags onto
a modeling canvas and
associate them with other
model elements. Attributes
are specified, where
required, to complete tag
instantiation. Assessment
authoring concepts for
CAPE were influenced by
the IMS Question and Test Interoperability
standard.4 These permit CAPE authors to create
quizzes that are rendered as HTML forms by the
delivery platform. Learner responses can be

4 http://www.imsproject.org/question

used in adaptive delivery strategies, with the
authoring representation supporting referencing
these responses in delivery predicates associated
with the conditional delivery concepts: Select
and Condition. The first of this is a multi-way
branching concept with delivery predicates
associated with the graph edges. The latter is a
binary test-and-branch concept with the test
condition associated with the node and
branching via True and False edges. The use of
these capabilities in conjunction with
assessments can be seen in Figure 2.

A simple synchronization concept is used to
coordinate asynchronously delivered learning
experiences with in-class activities. The concept
introduced into the authoring representation
provides a kind of barrier synchronization that

enables asynchronous delivery to be suspended
until some synchronous event occurs, such as a
lecture or lab. These barriers can be time-
triggered or explicitly opened by an instructor
using services of the delivery platform.

Other examples of VaNTH-specific authoring
concepts include context-specific help resources

Figure 2: Delivery Sequencing in CAPE's Structure Aspect

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 5

associated with granules, incorporating external
web resources into a courseware delivery
sequence, and execution coordination and data
interchange with embedded learning
technologies. For the sake of space, we will not
discuss these concepts and their use in authoring
here.5

2. The Authoring Environment
The CAPE authoring environment is
automatically generated from the meta-design
representation, or paradigm, created in GME’s
meta-modeling facility. The generated
environment provides a
powerful abstraction facility and
is extended with paradigm-
specific tools that support the
authoring task and that create
the output representation(s).
Such extensions are called
model interpreters and can be
implemented in any language
that supports Microsoft’s COM
component integration
technology. In this section we
will describe uses we have made
of the abstraction facilities and
the set of model interpreters that
have been created to support
courseware authoring in CAPE.

VaNTH is interested in the
disciplined application of
learning science in the creation
of its learning experiences,
particularly the HPL
Framework[6]. In considering the design of the
CAPE authoring environment, we were likewise
interested in how the insights from learning
science might inform the authoring task. We
observed that many times these insights could be
represented as canonical design forms that
captured recurring pedagogical strategies that
could serve as the starting point for instructional
designs. These could be represented using
abstraction facilities providing by the GME.

5 More information is available at the Courseware
Authoring Technology (CAT) Project web site.
(http://www.isis.vanderbilt.edu/projects/VaNTH)

These facilities enable any model to be used as a
“type”, with the ability to create derivative types
(or subtypes) and instances. We could represent
instructional design patterns as abstract models
using these capabilities and authors would refine
these to form instances with particular learning
content.

Figure 3 shows a simple example of the use of
this strategy. The pattern is for a set of tutors
addressing vector arithmetic. The pattern
provides the form of an activity that provides the
learner with three attempts at a solution before

providing the solution to them. A correct
solution at any attempt takes the learner to an
acknowledgement that they have succeeded (the
Correct granule). Otherwise the learner
proceeds to successive attempts (phases) until
finally receiving the solution (the Solution
granule) after the third phase.

A further use of abstraction is employed in
modeling the diagnostic procedure for each
phase of an instance of the pattern. The
diagnostic procedure consists of matching the
learner’s responses to set of recognized
problems. The procedure is consistent among
the phases, but the remediation is progressively
more detailed in later phases. We used GME’s

Figure 3: An Instructional Design Pattern for a Math Tutor

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 6

abstraction facility to make the diagnostic
procedure in the first phase a type and the
subsequent phases its sub-types. The only
variation among the phases is that the references
to granules providing the remediation point to
remedial content appropriate to the phase. This
approach provides a single point of modification
to the diagnostic procedure.

Still other innovations in this tutoring pattern
involve the use of a ConditionSet, CAPE’s data
modeling facility. The Initial ConditionSet is
used to parameterize the math problem being
posed, with the ability to randomize initial
conditions. This presents each learner with a
slightly different variation of the problem.
While this approach is fairly common (see, for
example, the CAPA system [7]) we have
pioneered the use of random conditions in
dynamically generating the remediation,
instantiating formulae with the randomized
initial conditions in presenting the particular
solution to the learner and the use of the initial
conditions in dynamically driving a problem
visualization.

Finally, instructional design patterns provide the
opportunity to assemble together descriptive
resources that support the pattern. For example,
sets of metadata can be specialized and included
in the pattern and inherited by subtypes and
instances. This requires only those metadata
tags that are specific to the use of the pattern be
specified, rather than requiring a complete
metadata description of each instance.

Several extensions (model interpreters) have
been created to support the authoring task in
CAPE.

• The ContentImporter can be used to
automatically build content metadata for
granules. This is especially useful when
employing de-aggregated content
produced by a content authoring tool
such as Powerpoint.

• The ContentPreviewer allows the
learning content represented by a
granule in CAPE to be launched in a
browser with the click of a button. This
is useful when there is some uncertainty
about what content the granule

represents. It is also useful when
browsing folders of granules created by
others.

• The DeliveryPreviewer enables authors
in enact the courseware being authored
within the authoring environment to
assure that the authoring task has been
performed correctly.

• The ContentPackager creates the target
representation of the courseware artifact
and optionally uploads it to the delivery
platform.

Other extensions support coordinating the
modeling representation of VaNTH domain
taxonomies with a relational database which
supports taxonomy authoring tools. CAPE can
also be used to author and modify taxonomies.
Currently under development are capabilities
that will allow CAPE to interoperate with a
centralized web-based repository of VaNTH
learning materials.

3. The Delivery Platform
To support the delivery of courseware authored
with CAPE using the full set of VaNTH
extensions, we created the Experimental
Learning Management System (eLMS). This
delivery platform is “experimental” in two
senses. First, the platform is extensively
instrumented, enabling its use as a vehicle for
experimentation with asynchronously delivered
VaNTH learning experiences by students.
These capabilities support the research mission
of the ERC. Second, since VaNTH is
pioneering new concepts and capabilities in its
authoring technology, solutions must be found
for enacting these capabilities and eLMS
provides a vehicle for experimenting with such
solutions.

Particularly with the latter needs in mind, we
chose to base the eLMS platform on an
adaptable web application framework called
Zope.6 Zope[8] is an open source framework
implemented in the Python language. In
addition to extensibility in this dynamic
language, Zope provides novel dynamic content

6 http://www.zope.org

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 7

capabilities through its Dynamic Template
Markup Language (DTML) and the newer Zope
Page Templates (ZPT). Zope is backed by an
object-oriented database called ZODB that
enables an object-oriented approach to
constructing large web applications.

The heart of the eLMS platform is a model-
based delivery engine. This engine uses the
courseware models created in CAPE as
instructions for enacting learning experiences.
Further, a run-time representation of these
models is persisted in ZODB for each student
delivery and is “decorated” with artifacts
produced by learners to create the record of the
use of the materials. The eLMS delivery engine
is extensible and can be specialized with
delivery semantics associated with instructional
design patterns used for authoring in
CAPE. This is accomplished using
delivery templates that are the
enactment counterparts of the design
patterns.

Web services for the eLMS platform
are implemented in Python and can
be accessed using HTTP requests or
XML-RPC. A novel Zope
capability called acquisition allows
web services to be contextualized by
object identified by the called URL.
This capability is used extensively
by the eLMS delivery engine in
invoking delivery-related web
services using the context of a
particular student delivery. Web
services also support the integration
of embedded learning technologies
in web-based VaNTH courseware.
Services are provided for execution
coordination and data interchange,
including persistence of outcomes in
the student’s delivery record.

The courseware delivery interface of
eLMS platform is another area where we a
pioneering new capabilities. Rather than
consuming browser “real estate” with navigation
and other kinds of information and features for
the learner, pull-in accessories are used to
support extending the interface. These can be
seen in Figure 4 as tabs along the browser

border. The Navigation accessory (bottom left)
is shown extended. Using the approach of pull-
in accessories we can provide a large amount of
interface functionality without overly intruding
on the instruction. Accessories can be
associated with a delivery template to provide
interface extensions specific to an instructional
design pattern—a specific review accessory, for
example.

While eLMS is primarily a vehicle for exploring
delivery issues arising in the development of the
CAPE authoring technology and experimenting
with the use of VaNTH courseware by learners,
it must nonetheless provide more conventional
capabilities found in a production LMS. These
include the abilities for teachers to form classes,
assign courseware, and review student delivery

records. For authors, capabilities are provided to
upload and update courseware. Discussion
forums are supported and learners can create
private notes for courseware and classes. These
capabilities are currently at various stages of
development for eLMS.

Figure 4: The eLMS Courseware Delivery Interface

CAPE: A Visual Language for Courseware Authoring

© 2002 Vanderbilt University. All Rights Reserved. 8

Summary
We have described a domain-specific visual
language called CAPE used for authoring web-
based learning experiences. Our seminal
motivation was to support a compositional
approach to courseware authoring using
adaptable learning materials. Our early
experiences suggest that a visual language
provides an effective approach to assembling
and sequencing materials, and for providing
necessary descriptive information. Our
experiences further suggest that currently
available standards-based courseware
representations need additional capabilities to
support the kinds of courseware under
development by the VaNTH ERC.

We have described the use of design abstraction
facilities of the modeling environment
technology upon which CAPE is built that can
be used to capture reusable designs informed by
learning science research as starting points for
authors. Early evidence suggests that design
patterns are a very potent concept for
instructional design, just as they have proved
valuable for software design. The extensibility
features of GME have been effectively used in
providing domain-specific tools that support the
authoring task in CAPE.

Finally, courseware delivery is the flip side of
the courseware authoring “coin”, and we have
by necessity engaged in exploring capabilities
and features of delivery platforms that support
the enactment of the courseware designs
authored in CAPE. Here, the concept of
delivery templates associated with instructional
design patterns has proven quite powerful in
building an extensible delivery engine. Interface
design innovations in the eLMS platform are
pointing the way towards feature-rich interfaces
that don’t intrude on the instruction provided
through the interface.

It is hoped that our experiences will contribute
to the evolution of standard-based courseware
representations that support the reusable learning
objects strategy and future delivery platforms
that will support these representations. To that
end, VaNTH is become a member of the
Academic CoLaboratory of the ADL and is
actively tracking other standards efforts.

References
[1] Sztipanovits J., Karsai G.: Model-Integrated
Computing, IEEE Computer, pp. 110-112, April,
1997.

[2] Ledeczi A., Bakay A., Maroti M., Volgyesi
P., Nordstrom G., Sprinkle J., Karsai G.:
Composing Domain-Specific Design
Environments, Computer, pp. 44-51, November,
2001.

[3] Ledeczi A., Maroti M., Bakay A., Karsai G.,
Garrett J., Thomason IV C., Nordstrom G.,
Sprinkle J., Volgyesi P.: The Generic Modeling
Environment, Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[4] UML Semantics, ver. 1.1, Rational Software
Corporation, et al., Sept. 1997.

[5] Object Constraint Language Specification,
ver. 1.1, Rational Software Corporation, et al.,
Sept. 1997.

[6] Bransford, J. D., Brown, A. L., & Cocking,
R. R. (1999). How people learn: Brain, mind,
experience, and school. Washington, DC:
National Academy Press.

[7] D.J. Morrissey, E. Kashy, and I. Tsai: Using
Computer-Assisted Personalized Assignments in
Freshman Chemistry, J. Chem. Ed. 72, 141
(1995).

[8] Latteier A., Pelletier M.: The Zope Book.
New Riders, July 2001.

Acknowledgements
This work was supported primarily by the
Engineering Research Centers
Program of the National Science Foundation
under Award Number EEC-9876363.

