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Abstract—Advances in data collection and storage infrastruc-
ture offer an unprecedented opportunity to integrate both data
and emergency resources in a city into a dynamic learning
system that can anticipate and rapidly respond to heterogeneous
incidents. In this paper, we describe integration methods for
spatio-temporal incident forecasting using previously collected
vehicular accident data provided to us by the Nashville Fire
Department. The literature provides several techniques that
focus on analyzing features and predicting accidents for specific
situations (specific intersections in a city, or certain segments
of a freeway, for example), but these models break down when
applied to a large, general area consisting of many road and
intersection types and other factors like weather conditions. We
use Similarity Based Agglomerative Clustering (SBAC) analysis
to categorize incidents to account for these variables. Thereafter,
we use survival analysis to learn the likelihood of incidents per
cluster. The mapping of the clusters to the spatial locations is
achieved using a Bayesian network. The prediction methods we
have developed lay the foundation for future work on an optimal
emergency vehicle allocation and dispatch system in Nashville.

I. INTRODUCTION

Emerging Trends: The advancement in sensors and infor-
mation transfer technologies provide opportunities to collect
large amounts of data on complex operations and processes
that govern various aspects of city life. In such situations,
where it is an almost intractable task to build complex models,
data driven approaches can produce more informed solutions
to problems than using heuristics and ad-hoc approaches. Such
data driven approaches have been successfully applied in a
number of areas, ranging from monitoring industrial processes
[1] to identifying students at risk of emotional disorders [2].
Today, advances in data collection (such as wireless sensor
networks [3]) and storage infrastructure (such as distributed
hash rings [4]) have allowed information to be collected and
analyzed for applications not possible before, such as urban
analytics [5] and emergency response services.

In this paper, we describe a toolchain that will enable fire
departments to analyze multiple, distributed incident occur-
rences that they must respond to. Our goal is to analyze
historical incident data and develop predictive models that can
help the department efficiently allocate and route emergency
vehicles to incidents as they occur over a large, distributed
area. Minimizing response times increases victim survival rates
[6] and frees vehicles to respond to other incidents more
quickly. Any such optimal dispatch algorithm is typically
based on a sequential optimization that requires prediction of
the likelihood of future incidents occurring in a given area, so
it can plan ahead.

Incident prediction using the negative binomial distribution
[7], artificial neural networks [8], and hierarchical analysis
[9] have been used to great effect when attempting to pre-
dict incident frequency for specific areas, and have helped
determine features of roadways that affect incident occurrence.
Prediction methods such as the negative binomial regression
[10] and random effect probit models [11] have also been
used to analyze feature effects on accident frequency, and
generating predictive models for specific areas. Unfortunately,
these studies generally make assumptions about the locations
that they are analyzing. For example, they study a specific
length of freeway, or look at only intersections and their
features in a specific city. To create a predictive model for
an entire metro area however, location agnostic features such
as weather and time must be considered for the incidents.

Contributions: This paper describes a toolchain to forecast
the likelihood of incidents, specially motor vehicle incidents,
occurring in a large, geographical area. This paper describes
major components of our prediction and analysis toolchain:

1) An unsupervised clustering approach for grouping inci-
dents with similar characteristics. We hypothesize that
incidents within each group will have similar arrival times,
making forecasting for each group more accurate. This
is validated by our results described in Table III-E: the
average log-likelihood of cluster survival model accuracy
is significantly higher (-16,100.8) than models built from
the entire dataset (-180,243.8).

2) Predictive models for each cluster using survival analysis.
3) A mapping of these cluster predictive models to spacial

locations using a Bayesian network.
4) Compose all of the data preprocessing, analysis, and pre-

diction routines in the form of a toolchain to facilitate
analysis of data received from the Nashville fire department
from February 2014 to February 2016, and then validate
our toolchain on data from February 2016 to December
2016. This toolchain will facilitate future emergency vehi-
cle dispatch optimization analysis.

Paper Outline Section II presents prior work on incident
prediction. Section III-A describes the data used in our case
study for Nashville Motor Vehicle Accident (MVA) response
dispatching. In section III-B we formally describe the prob-
lem specification and then detail each step in the prediction
toolchain, and simultaneously present the results of the case
study. Section IV presents a discussion, and Section V presents
the conclusions of the paper.



II. RELATED RESEARCH

Vehicle accident analysis has been an important area of
research due to their large safety and monetary costs and their
impact on human life. Miaou and Lum found that due to over
dispersion often present in accident data, the more general
Negative Binomial distribution is often superior to the Poisson
regression in this area [7]. Abdel-Aty and Radwan applied the
negative binomial technique to model accident frequency for
a principal arterial in Central Florida [12]. Using data from
1606 accidents over three years, they found eight features to be
significant in determining the frequency of accidents, including
segment length, shoulder width, and annual average daily
traffic (AADT). Ackaah and Salifu used negative binomial
regression to model 76 rural highways in Ghana [10]. They
found that the negative binomial distribution fit their data
reasonably well, and that five features (including traffic flow
and road segment length) were significant in determining
accident frequency.

Chin and Quddus built on the research by suggesting
that the random effect negative binomial (RENB) model is
superior to the negative binomial model [13]. They reasoned
that the negative binomial’s assumption that accident data is
uncorrelated in time is inappropriate for accidents, due to serial
correlation in the accident data. The RENB model accounts
for temporal effects by treating the data in a time-series cross-
section panel. Their model, based on signalized intersections in
Singapore, found that eleven features had a significant impact
on accident frequency, and improved on the model found with
the negative binomial model.

Chang explored artificial neural networks (ANN) as another
alternative to the negative binomial regression model [8]. The
negative binomial model assumes a predefined underlying
relationship between the dependent and independent variables.
If this assumption is violated, it will lead to erroneous accident
estimations. ANN avoids this by making no assumptions
regarding the variable’s relationship. Raut and Karmore have
combined an Artificial Neural Network to analysis a large
amount of input data with a fuzzy logic system that uses this
data to predict accident severity [14]. Unfortunately this tech-
nique requires large amounts of external traffic information
that may not be available to dispatch services.

Researchers have also explored applying various classifica-
tion methods to traffic problems. For example, Moreira-Matias
[15] uses boosted decision trees to classify traffic jam events.
Unfortunately these methods do not apply to our problem,
since we are looking for the probability that an accident will
occur in each location, not to classify accidents to a location.

Survival analysis has also been widely used and is the
one of the core components of our toolchain. This analysis
has been applied by researchers to predict accident duration.
Chung applied the log-logistic accelerated failure time model
to 2 years of Korean freeway accident duration data [16].
Using eight features to characterize accidents, they found that
the model provided reasonable duration prediction based on
the mean absolute percentage error scale. Kang and Fang
(2011) similarly applied the Weibull prediction model to 3
years of Jiaxing city’s freeway incident data to find predictive

factors affecting incident duration, and found the model to be
reasonable.

The research presented thus far makes strong assumptions
about the location and/or type of accident during analysis.
For example, they might only look at accidents occurring at
intersections or along a single stretch of highway. While these
assumptions are helpful for small scale or specific analysis,
they make generalizing the results difficult. In the past, our
group has studied the accident prediction problem, focusing
on spatial grids [17]. However, in this paper we explore a
generalized, yet unsupervised approach to categorizing inci-
dents. Therefore, the method presented in this paper clusters
on individual incidents rather than grid sections. This leads
to tighter, more meaningful clusters for dispatch allocation,
which is shown by our improved likelihood results shown in
the Table III-E. This is helpful since an important aspect of
emergency response is ensuring that appropriate equipment is
dispatched based on the incident type.

III. OUR APPROACH

A. Data Specification

The majority of the data used in this study was provided
by the Metro Nashville Fire Department in the form of a re-
lational database scrubbed to eliminate personally identifiable
information. The database contained approximately two years
of incidents occurring from February 2014 to February 2016.
In total, there were 477,837 unique incidents recorded in the
database, the majority of which occurred in Davidson County,
Nashville, Tennessee.

Motor vehicle accidents were extracted from the database
according to the following criteria: the location of the incident
was fully specified by GPS coordinates, the incident occur-
rence time was known, the first unit arrival time that occurred
after the incident occurrence time was also known, and the
incident was classified by emergency medical dispatch card
numbers starting with 29 to ensure it was a motor vehicle
accident. Using these criteria 19,910 motor vehicle accidents
were extracted for the clustering algorithm.

In addition to the information obtained from the database,
weather condition information and information regarding the
type of road on which the accident occurred was obtained from
DarkSky and OpenStreetMaps, respectively. Using these three
sources of information, the features described in the clustering
analysis subsection III-C were extracted for clustering.

B. Overview of the Approach

The toolchain described in this paper consists of 4 major
components as shown in figure 1: data preprocessing, cluster-
ing incidents (modeled in figure 2), learning survival models
for each incident cluster, and mapping these predictive models
to locations (Both shown in figure 3). Each step is explained
in detail in the following sections.

For prediction, we assume that the city is divided into a
grid of regularly sized half mile hexagonal sections, which are
referred to as hex cells in the remainder of the paper. For each
hex cell, we have data regarding incidents that took place in
that grid in the given period. We also assume that the incidents



Fig. 1. Toolchain Block Diagram. P(I, HL) refers to the joint probability of
an incident occurring in a particular hex cell

Fig. 2. Cluster Generation Model

in each cell are independent of incidents in other cells. This
information enables us to train the Bayesian network that we
describe later in the paper.

C. Clustering Analysis

The first step of the toolchain is clustering the incidents into
similar groups. There are three primary steps to this process:
(1) choosing incident features to cluster on, (2) calculating
the similarity values between each pair of incidents and (3)
running a hierarchical clustering algorithm, SBAC [18] to
generate a dendrogram, and then establishing a minimum dis-
tance criterion as separation among clustering, and therefore,
establishing the number of clusters that make up the dataset.
forming a dendrogram from these values, and cutting that
dendrogram to form the optimal number of clusters.

Incident Feature Selection: Table I describes the features
we chose to categorize the incidents. We discretized the
continuous values of time and the distance to the nearest
intersection to reflect trends in the data.

Similarity Calculation: Once features of interest are cho-
sen for the incidents, they are used to calculate a similarity
measure between incident pairs. Traditional clustering method-
ologies generally focus on either numeric valued data [19] (k-
means clustering [20], for example) or nominal valued data
(known as conceptual clustering [21]), but are not designed
for mixed numeric and nominal data. While the features in our
case study are all nominal, other applications of this toolchain
may require some numeric features to be considered. For this
reason, we use a similarity measure that works well with mixed
typed data.

Specifically, we use a similarity measure created by Li
and Biswas that has been shown to work well for mixed
data types [18]. Their method, which is a generalized version
of a measure proposed by Goodall for biological taxonomy
[22], uses unusual characteristics shared by data objects to

Fig. 3. Prediction Toolchain Model

TABLE I
INCIDENT FEATURES CONSIDERED

Fea-
ture

Description Source

Road
type

Type of road incident took
place on, such as freeway or
primary

Obtained from
OpenStreetMaps based on
the GPS coordinates and
street address

Weather Weather conditions at the time
of the incident

Obtained from DarkSky
based off GPS
coordinates and time of
incident

Sever-
ity

Severity measure based off Fire
Department codes, with ’A’ as
least severe to ’D’ being most
severe

Obtained from the
incident’s associated
emergency medical
dispatch card number

Nature
of Ac-
cident

Description of incident Obtained from emergency
medical dispatch card
number

Time
of Day

time in which incident
occurred: early morning, late
morning, afternoon, or night

Obtained from Nashville
fire department data

Day The day of the week the
incident occurred on

Obtained from Nashville
fire department data

Month The month in which the
incident occurred

Obtained from Nashville
fire department data

Inter-
section
Prox-
imity

How close the incident occurred
to an intersection: On, near, or
far from the intersection

Obtained from
OpenStreetMaps based on
the GPS coordinates of
the incident

determine their similarity. Specifically, “a pair of objects (i,j)
is considered more similar than a second pair of objects (l,m)
if i and j exhibit a greater match in feature values that are less
common in the population. In other words, similarity among
objects is decided by the uncommonality of their feature value
matches” [18]. This helps create tight clusters likely to share
unique feature values.

To demonstrate how to calculate the similarity of a pair of
objects using this method, it is helpful to use a toy example.
Consider the objects described in Table II: there are 6 ball
objects, each of which have a color (a nominal feature) and a
weight (a numerical feature).

To calculate the similarity of a pair of objects, the first
step is to determine the individual feature similarities - the
color and weight, in this case. The technique used to calculate
this depends on if the feature is nominal or numeric. These
individual feature similarities are then combined into a total
similarity for the pair of objects. The techniques for each of
these steps are described below.

Nominal Feature Similarity: Let us first consider nominal



TABLE II
TOY EXAMPLE FOR SIMILARITY CALCULATION

Ball ID Color
(Nominal)

Weight
(Numeric)

Ball 1 Red 15.0 kg
Ball 2 Red 10.0 kg
Ball 3 Red 10.0 kg
Ball 4 Yellow 10.0 kg
Ball 5 Yellow 7.5 kg
Ball 6 Blue 5.0 kg

feature similarity. There are two cases for nominal features:
the two objects have either the same feature value, or different
feature values. If the two objects’ feature values are not
equivalent their similarity score is 0 (i.e. they are not similar
at all), but if the values are the same then the similarity score
is somewhere between 0 and 1. Applied to our toy example,
Balls 1 and 4 have 0 similarity for the Color feature since red
and yellow are different colors, and there is no way to relate
the two. Balls 1 and 2, on the other hand, have some non-zero
similarity for Color since they are both red.

The exact feature similarity score when the two feature val-
ues are equivalent is a function of that value’s uncommonality
in the population: the more common a feature value, the less
similar any pairs with that value are considered to be. For
example, yellow balls are considered more similar than red
balls in our toy dataset, since there are more red balls.

This information is used to create the object pair’s More
Similar Feature Value Set (MSFVS((vi)k), which is the set of
all values for nominal feature k that are equally or more similar
than the object pair’s feature value. For example, the MSFVS
for balls 1 and 2 would be {Red, Yellow} since yellow is
rarer than red (blue is omitted, as there are no pairs with that
color). The MSFVS for balls 4 and 5, however, would only
be {yellow}, since yellow is the rarest color represented by a
pair of ball objects.

Equation 1 shows how the MSFVS is used to calculate the
similarity score between the two objects:

(Sii)k = 1− (Dii)k = 1−
∑

l∈MSFV S((Vi)k)

(pl)
2
k (1)

where (pl)
2
k) is the probability of picking a pair

((Vi)k, (Vi)k) ∈ MSFV S((Vi)k) for feature k at random,
and (Dii)k is the dissimilarity of the objects.

Let’s apply this to balls 1 and 2 in our example. As
discussed earlier, the balls both have the Color red, and
their MSFVS is {Red, Yellow}. Given this set, the similar-
ity for the Color value of red is S(ball1,ball2))Red = 1 −
(D(ball1,ball2))Red = 1−(p2red+p2yellow) = 0.733. This means
that the color red contributes 0.733 to the similarity score
between balls 1 and 2.

Numeric Feature Similarity: The method for calculating
the similarity for numeric features is slightly different from
nominal features. When feature values are not equivalent, their
similarity is determined in the traditional manner: one pair of
objects is more similar than another if their feature values are
closer together. The weights of balls 5 and 6 are considered
more similar than 4 and 6, for example, since the difference
in their weights is smaller. It is only when two pairs of values

have equivalent differences that the uniqueness of the values
is considered.

This information is used to create a pair of value’s More
Similar Feature Segment Set (MSFSS((Vi)k, (Vj)k)), which
includes all pairs of values that are more similar due to the
criteria described above.

Similar to nominal features, this is used to calculate the fea-
ture value similarity as follows: the probability of picking two
objects from the population having values (Vl)k and (Vm)k
for feature k where ((Vl)k, (Vm)k) ∈ MSFSS((Vi)k, (Vj)k)
is

αlm =

{
2(pl)k(pm)k = 2(fl)k(fm)k

n(n−1) , (pl)k 6= (pm)k

(pl)k(pm)k = (fl)k((fl)k−1)
n(n−1) , (pl)k = (pm)k

(2)

where fl and fm are the frequency of values (Vl)k and
(Vm)k and n is the total number of objects in the population.
The similarity is then computed as in equation 3:

(Sij)k = 1− (Dij)k = 1−
∑

l,m∈MSFSS((Vi)k,(Vj)k)

σlm (3)

where σlm is the appropriate probability distribution from
equation 2 and (Dij)k is the dissimilarities of the two objects.
For example, take balls 1 and 2 again. The MSFSS for their
value segment (10.0, 15.0) is {(5.0, 7.5), (7.5, 10.0), (10.0,
10.0), (10.0, 15.0)}. Notice that even though balls 6 and 4’s
values (5.0, 10.0) are as close together as (10.0, 15.0), they are
not included in the set. This is because there are more balls
with weights in the range [5.0, 10.0] then [10.0, 15.0], making
the weights of balls 5 and 6 more unique (and therefore more
similar).

This makes the ball’s similarity (S(b1,b2))w = 1 −
(D(b1,b2))w = 1 − (2p5.0p7.5 + 2p7.5p10.0 + p10.0p10.0 +
2p10.0p15.0) = 0.333. This means that the weight feature
contributes 0.333 to balls 1 and 2’s similarity.

Total Object Similarity Aggregation: To aggregate these
individual feature similarities for a pair of objects into the total
similarities, we apply Fisher’s χ2 transformation [23] to nu-
meric features, assuming that individual results are expressed
as the square of a standard normal deviate. Continuing our
simple example with balls 1 and 2, their aggregate numeric
similarity would be (χc)

2
(Ball1,Ball2) = −2(ln(0.667) =

0.8109.
For nominal features, Lancaster’s mean value χ2 trans-

formation [24] is applied, as the traditional Fisher’s trans-
formation has been shown to cause deviations in the mean
and standard deviation when applied to features with a small
number of possible observations [24]. The nominal aggregate
for balls 1 and 2 is therefore (χd)

2
(Ball1,Ball2) = 2(1 −

(0.267∗ln(0.267))−0
0.267−0 ) = 4.641

These two χ2 distributions can be added to determine
the aggregate χ2

agg distribution. The significance value of
this distribution gives the aggregate dissimilarity of the two
objects, which can be looked up in standard tables. This
makes the final dissimilarity for our example balls 1 and 2
approximately 0.1, giving them a similarity of 0.9 in this
population.



Fig. 4. Cluster 7 - Average Feature Dissimilarity

The result of performing this analysis on each pair of
objects is a Dissimilarity Matrix defining the similarity relation
between each pair. We then use these dissimilarities to perform
agglomerative hierarchical clustering. Hierarchical clustering
algorithms construct a dendrogram, which is a hierarchy of
possible clusters. In agglomerative clustering, these groups are
built from the bottom up: each data point starts in its own leaf
group. During each iteration of the algorithm, the most similar
pair of groups are merged into one group at the next level. This
constructs a tree from the bottom up, and continues until there
is only one root group containing all incidents [25]. We now
determine the optimal level to cut this dendrogram.

Establishing the number of Clusters: To determine the
optimal level to cut the dendrogram we score each possible
clustering with a weighted silhouette value. Silhouette analysis
compares each incident’s similarity with its assigned cluster to
its similarity to the next most similar cluster [26]. Formally,
for each object i, let a(i) be the average dissimilarity of i with
all data within the same cluster, and b(i) the lowest average
dissimilarity of i to any cluster of which i isn’t a member. The
silhouette value of i is:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4)

which produces silhouette values in the range −1 ≤ s(i) ≤ 1,
where a high value indicates that the incident is well matched
with its assigned cluster, while a low value indicates it is
more similar to objects in its neighboring cluster. Finding the
average silhouette score across all objects shows how well the
objects are clustered in general:

1

n

∑
i∈dataObjects

s(i), (5)

where n is the total number of objects being clustered. To
lower the complexity of our groupings, we augment traditional
silhouette analysis with a complexity weight, favoring cuts
with fewer clusters:

w ·m+ (
1

n

∑
i∈dataObjects

s(i)), (6)

Fig. 5. Cluster 7 - Weather Feature Values

where the weight w is multiplied by the number of clusters
in the current cut m.

Applying this complexity-weighted silhouette scoring to
groupings produced by the dendrogram helps us find the
optimal number of clusters. By applying this to our data, we
found the optimal number of clusters to be 13.

Individual Cluster Analysis: Each of the clusters can be
analyzed to determine the characteristics found to be unique to
that cluster by the Similarity Based Agglomerative Clustering
(SBAC) algorithm described earlier. For some clusters, this
characterization is simple to visualize using feature dissimi-
larity - the more dissimilar a feature, the more unique it is.

Take our 7th cluster, for example. When examining the
average feature dissimilarities for the cluster in figure 4, we
see that the weather values are most unique. The weather
represented in figure 5 shows this cluster is dominated by
incidents that occurred in snowy conditions. This coincides
with our goal, as it makes sense that incidents occur at a
different rate in snowy weather.

D. Survival Analysis per Cluster

The next step of the toolchain is to create predictive
models for each group. A group of statistical methods that
are particularly well suited to this is survival analysis, which
analyze if and when an event of interest is likely to take place
[27]. More precisely, “the analysis of data that correspond to
the time from a well-defined time origin until the occurrence
of some particular event or end-point” [28]. In this case, the
time origin is the current time, and the event whose occurrence
we are interested in is an incident. In particular, we use an
accelerated failure time model, which regresses the logarithm
of the survival time over the covariates [29].

Formally, the survival function is defined as S(t) = 1 −
Ft(t) where Ft(t) is the cumulative distribution function of
the arrival time variable T . To model our survival function,
we use an exponential distribution for our regression due to its
memoryless property: the predicted time to the next event does
not depend on the elapsed time since the last event [30]. We
hypothesize that an incident’s arrival time does not generally
depend on any past incidents, making this property desirable
and used in other motor incident studies [31].



TABLE III
COMPARISON OF CLUSTER VS. NON-CLUSTERED PREDICTION

Cluster Log-Likelihood
1 -89,780.2
2 -52,030.0
3 -5,041.5
4 -15,694.4
5 -11,912.6
6 -22,706.9
7 -1,788.1
8 -719.7
9 -957.5

10 -763.5
11 -164.4
12 -316.9
13 -7,434.8

We applied this regression analysis to each cluster’s incident
data to learn their predictive models. For comparison, we
also applied predictive models to the entire dataset: the same
survival analysis as well as the popular negative binomial
analysis discussed earlier in the paper. We compare the
model’s accuracy using the log-likelihood scale: the likelihood
of a model is the probability of some observed values (the
past data, in this case) occurring given said model and its
parameters. The natural logarithm of this likelihood is known
as log likelihood, and easier to handle mathematically. By
comparing two model’s log likelihoods, we can determine
which model better fits the historical data (as it will have a
high log-likelihood value).

The Log likelihoods of each cluster’s survival models are
shown in table III-D, while the comparisons are shown in table
III-E. The average log likelihood for the 13 clusters was -
16,100.8, compared to the values of -180,243.8 and -178,488.9
of the survival model and negative binomial model applied
to the entire dataset, respectively. As we are attempting to
maximize log likelihood, our clusters’ models showed to be
an order of magnitude more accurate than models applied to
the entire dataset. This reinforces our hypothesis that similar
incidents have similar arrival rates.

E. Bayesian Network Analysis for Associating Clusters with
Hex Cells

The last step to the prediction toolchain is using the newly
created survival models for each cluster to determine the
likelihood of an incident occurring in a particular hex cell. To
be able to predict the most likely hex cell, we first learn the dis-
tribution of incidents pertaining to each cluster across the cells
conditioned on the features shown in Fig. 3 (Time interval,
Day, Weather and Month). As these features are categorical in
nature, we learn the conditional probability distribution of hex
cells, represented as P (HL|T,D,W,M,C) for every com-
bination of the incident features. Here, HL, T,D,W,M,C
refer to Hex Location, Time Interval, Day, Weather, Month
and Cluster respectively. In the Nashville Fire Incident dataset,
the number of levels (distinct possible values) for these
incident features are 4, 7, 10 and 12 respectively, totaling
to 3360 distinct combinations. After learning the conditional
relationships in the Bayesian network (Fig. 3), we use it to find
the probabilities of incidents in each location. The systematic
procedure for incident procedure is given below.

TABLE IV
COMPARISON OF CLUSTER VS. NON-CLUSTERED PREDICTION

Method Log-Likelihood
Average of Cluster Survival Models -16,100.8

Entire Dataset - Survival Model -180,243.8
Entire Dataset - Neg. Binomial -178,488.9

1) Cluster Identification: The probability of choosing a partic-
ular cluster P (C|T,D,W,M) is based on current time and
environment parameters: for example, cluster 7 described
in section III-C would become much more likely in snowy
weather than clear conditions.

2) Survival probability: We then determine the probability of
an incident occurring of this type via the cluster’s survival
model P (I|C, t). If the probability is below a threshold,
we ignore the cluster.

3) Region Identification: We then calculate the
likelihood that the incident occurs in a hex cell
P (I,HC|T,D,W,M,C, t) (Eq. 7) using the learned
conditional distributions of cells and the cluster-specific
survival models.

P (I,HL|T,D,W,M,C, t) = P (HL|T,D,W,M,C, t, I)

× P (I|T,D,W,M,C, t)
(7)

Eq. 7 can be further simplified to Eq. 8 since we know which
incident features affect the hex cells and incident probability.

P (I,HL|T,D,W,M,C, t) = P (HL|T,D,W,M,C)

× P (I|C, t)
(8)

Since we are predicting incidents at a future time, the
weather at a future time may not be known precisely. In such
cases, we predict the incident probabilities by summing over
all possible weather conditions as given in Eq. 9.

P (I,HL|T,D,M,C, t) =
∑
W

P (I,HL|T,D,W,M,C, t)

× P (W |T,D,M,C, t)
(9)

In Eq. 9, P (W |T,D,M,C, t) represents the prior prob-
ability of the weather conditioned on Time, Day, Month,
Cluster and prediction time. Since weather is independent
of cluster type and prediction time, P (W |T,D,M,C, t) can
further be simplified to P (W |T,D,M). The prior probability
of weather can be obtained from historical weather data sets
or any available weather prediction models. We used the same
DarkSky database that provided incident weather data.

IV. DISCUSSION

The final prediction toolchain consists of two major compo-
nents: the survival models for each cluster and the Bayesian
network mapping cluster probabilities to the hex cells. We
can validate each of these separately to show the correctness
of the toolchain. We have already demonstrated the accuracy
of the survival models: the likelihood analysis displayed in
tables III-D and III-E shows that the survival models for each



Fig. 6. Error in Predicted Hex Incident Probabilities vs. Validation Data

cluster match the incident data better than the popular nega-
tive binomial method [12]. This establishes that the survival
models accurately represent the arrival times of accidents for
each cluster.

To determine the accuracy of the Bayesian network analysis
at predicting the distribution of incidents we compared its
results to a validation set. This validation set consists of
approximately 10 months of recent Nashville incident data,
ranging from February 6th to December 23rd 2016. We ran the
Bayesian analysis over this range of dates, and then compared
its predicted accident distribution across hex locations against
the actual distribution of the validation data. The results are
presented in the figure 6. The bars represent the difference
between the predicted probability and the actual probability
for incidents in each hex cell. With a few exceptions, most
cell’s predicted incident probability is within 2% of the actual
probability. There are a few cells that have slightly worse
prediction performance, with the difference generally being
less than 10%. These inaccuracies could be due to properties
changing in the hex cells (increasing population density, for
example), or may be due to having only two years of training
data: future data should increase this accuracy. The normalized
root mean squared error of the predicted distribution was
1.656425, which shows that overall the predicted results match
the validation data well.

A. Using the Toolchain

Now that we have demonstrated the accuracy of the
toolchain components, we will discuss the toolchain’s use.
Since the toolchain is split into two major components, its
use is also split into these two functions.

The first step for a user is inputting their current environ-
mental factors (the current weather and time) and how much
time they want to look into the future. The survival models are
then consulted according to the analysis time. This determines
the likelihood that an incident of each cluster will occur at any
location within the given time. Then the Bayesian Network
analysis is run using the input parameters to determine where
an incident is likely to happen. By using these two components
together, we can predict the likelihood of a next incident at a

TABLE V
PREDICTION RAN WITH FOLLOWING PROPERTIES:

WEATHER=’CLEAR-DAY’, DAY=’THURSDAY’, MONTH=’MARCH’,
DATE=’23RD’, STARTTIME=’15:00’, ANALYSISTIME=’2 HOURS’

Survival Models
Rank Cluster Incident Likelihood

1 1 0.6554
2 13 0.6294
3 7 0.49461
4 2 0.4448
5 6 0.2114

Hex Mapping
Rank HexCell Hex Probability

1 3523 0.05884
2 4140 0.05884
3 5491 0.04682
4 4703 0.04682
5 4699 0.04682

TABLE VI
PREDICTION RAN WITH FOLLOWING PROPERTIES: WEATHER=’RAIN’,

DAY=’THURSDAY’, MONTH=’MARCH’, DATE=’23RD’,
STARTTIME=’15:00’, ANALYSISTIME=’2 HOURS’

Survival Models
Rank Cluster Incident Likelihood

1 1 0.6554
2 13 0.6294
3 7 0.49461
4 2 0.4448
5 6 0.2114

Hex Mapping
Rank HexCell Incident Probability

1 3513 0.13108
2 4332 0.13108
3 5290 0.13108
4 4803 0.13108
5 3587 0.13108

given time and location. Note that both of these components
are necessary to use the toolchain. The survival likelihood for
each incident of each cluster describes how likely each type
of incident is, while the Bayesian analysis shows the probable
distribution of any incident that might occur across the hex
cells.

Example analysis from the trained toolchain: In table V
we show the predicted accident distribution starting at 15:00 on
March 23rd, on a Thursday, in clear weather, with an analysis
time of 2 hours. The survival models indicate that there are
a few clusters that have over a 50% likelihood of having an
accident during this time segment. The Bayesian analysis then
shows that cells 3523 and 4140 are tied for the most likely
cells for an incident to take place in given the parameters, with
cells 5491, 4703, and 4699 following close behind.

For comparison we provide the same analysis but during
rainy weather in table VI. Because the analysis time is the
same, the survival models for each cluster give the same
accident probabilities. When determining which clusters are
more likely, however, the Bayesian analysis considers the rainy
weather. This changes the most likely cells to 3513, 4332,
5290, 4803, and 3587. These cells have a higher probability
than in the clear weather case due to the increased likelihood
of incidents during rain.

One last example demonstrated in table VII shows snowy



TABLE VII
PREDICTION RAN WITH FOLLOWING PROPERTIES: WEATHER=’SNOW’,

DAY=’THURSDAY’, MONTH=’JANUARY’, DATE=’10TH’,
STARTTIME=’17:00’, ANALYSISTIME=’6 HOURS’

Survival Models
Rank Cluster Incident Likelihood

1 1 0.9591
2 13 0.9491
3 7 0.8710
4 2 0.8288
5 6 0.5100

Hex Mapping
Rank HexCell Incident Probability

1 4334 0.201918
2 3862 0.174190
3 4350 0.036615
4 3943 0.036615
5 3792 0.036615

weather in mid-January, given 6 hours of analysis time. Notice
that due to the increased analysis time the survival models
predict that incident’s belonging to several clusters are very
likely to happen. Looking at the cell distribution shows that
there are two likely cells, but other cells are less likely than
rainy or clear conditions. This might be caused by people using
their cars less in snowy conditions (except in a few areas),
although this is just speculation.

V. CONCLUSION

We have demonstrated that by combining clustering, sur-
vival analysis, and Bayesian network inference techniques a
toolchain can be created that accurately forecasts incidents in
both space and time. Unlike many popular techniques that
focus on particular situations, the toolchain is shown to well
over the spatially diverse Nashville metropolitan area. By
leveraging this predictive model, in the future we will create
more accurate dispatching algorithms to respond appropriately
to motor vehicle accidents as they occur.
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