
Towards Reliability-based decision making in Cyber-
Physical Systems

Saideep Nannapaneni, Sankaran Mahadevan
Department of Civil & Environmental Engineering

Vanderbilt University
Nashville, TN 37235, USA

saideep.nannapaneni@vanderbilt.edu
sankaran.mahadevan@vanderbilt.edu

Subhav Pradhan, Abhishek Dubey
Institute for Software Integrated Systems

Department of Electrical Engineering & Computer Science
Vanderbilt University

Nashville, TN 37235, USA
subhav.m.pradhan@vanderbilt.edu

abhishek.dubey@vanderbilt.edu

Abstract—Cyber-physical systems (CPS) are systems with a
tight integration between the computational (also referred to as
software or cyber) and physical (hardware) components. While
the reliability evaluation of physical systems is well-understood
and well-studied, reliability evaluation of CPS is difficult because
software systems do not degrade and follow a well-defined failure
model like physical systems. In this paper, we propose a
framework for formulating the CPS reliability evaluation as a
dependence problem derived from the software component
dependences, functional requirements and physical system
dependences. We also consider sensor failures, and propose a
method for estimating software failures in terms of associated
hardware and software inputs. This framework is codified in a
domain-specific modeling language, where every system-level
function is mapped to a set of required components using
functional decomposition and function-component association;
this provides details about operational constraints and
dependences. We also illustrate how the encoded information can
be used to make reconfiguration decisions at runtime. The
proposed methodology is demonstrated using a smart parking
system, which provides localization and guidance for parking
within indoor environments.

Keywords—Reliability; Self-reconfiguration, Cyber-Physical
Systems; Smart Parking;

I. INTRODUCTION
Cyber-Physical Systems are increasingly becoming

widespread to handle complex tasks in several fields of
technology, engineering, and medicine such as smart power
systems, smart buildings, smart public transportation, self-
driving cars, avionics, medical robotics and smart
manufacturing systems. Since CPS are used in several diverse
and key applications, it becomes necessary to evaluate their
reliability when handling complex tasks because a single
failure can result in large financial and safety consequences.

 As many CPS operate in real-time, another key requirement
is that the analysis be carried out with strong timing constraints
[1]. The operation of a CPS can be divided into three possible
scenarios: (1) CPS provides the correct solution, within
expected time, (2) CPS does not provide correct solution (i.e.,
incorrect solution or no solution at all), and (3) CPS provides
the correct solution, but not within expected time. The last two

cases are considered as system-level failure cases of a CPS.
Current reliability literature considered only the functional
requirements, i.e., CPS is assumed to have failed when no
operating configuration is available [2-6]. In this work, we
incorporate the timing constraints along with value domain
constraints while evaluating the reliability of a CPS.

 Software reliability, thus far, has been based on code
verification and finding programming errors [7]. In this paper,
we propose a new technique for assessing software reliability
in terms of the associated hardware and inputs to the software.
A lot of literature are available on the reliability estimation of
several components in a CPS (software, hardware, sensors)
individually but characterization of dependence between
components and the manner in which the dependence
influences the reliability is a key challenge in CPS. Our
approach is based on model-based analysis framework where
the system is modeled in a domain specific modeling language
[8] in which each system-level function is associated to a
component(s) through functional decomposition and function-
component association. The availability of required functions
can be inferred through monitoring the health of components.
To check if a CPS satisfies timing requirements, the
uncertainty associated with the analysis time is represented
through a probability density function (PDF) and the
probability that the analysis time is greater than a pre-defined
threshold is computed. The overall reliability is then evaluated
as a union of the aforementioned two failure cases. Thus, the
developed reliability evaluation can be used in the selection of
a design from a set of design alternatives.

When the system in a working configuration fails, the
system needs to be re-configured for its continued operation.
One possible approach for re-configuration is to enumerate all
possible configurations and develop several re-configuration
criteria depending on the failures of components. This is an
explicit encoding approach that works in CPS with a few
working configurations but as the system becomes complex,
the number of working configurations increase exponentially.
Therefore, it becomes essential to choose a reconfiguration in
an automated manner. In this paper, we propose to find the
configuration with the highest reliability near the current
configuration by formulating it as an optimization problem.

The contributions of this paper can be summarized as – (1)
Reliability analysis framework for CPS and initial design
selection, and (2) Presenting our current work that uses the
reliability analysis framework for reliability-based runtime re-
configuration of CPS.

The remainder of this paper is organized as follows –
Section II presents related work, Section III provides the
proposed methodologies for reliability analysis for design
selection and system re-configuration. The developed
methodologies are demonstrated using a Smart Parking system
in Section IV, followed by Conclusions and Future Work.

II. RELATED WORK
Some existing techniques for CPS reliability evaluation and
reconfiguration are surveyed below.

Reliability evaluation: Wu, Huang, Zheng and Li [2]
developed a reliability model where Markov models are
constructed for each component to estimate the reliability of an
Integrated Modular Avionics (IMA) system. Using the
component Markov models, the probability that all the
components reached a failed state is computed. A Markov
imbedded system (MIS) is used in [3] to model dependence
between components in a smart power grid. Given the
functional and non-functional modes, the probability that the
system is in one of the functional modes is computed. In [4], a
phased-mission system model, which consists of Markov
models for individual components and a binary decision
diagram (BDD) is used to analyze the reliability of a fuel
management system in an aircraft. Li and Kang [5] developed a
reliability framework through a weighted reliability metric
using individual component reliabilities and the performance
metric of the CPS considering service, cyber security,
resilience, elasticity and vulnerability. Wu and Kaiser [6]
developed FARE (Failure Analysis and Reliability Estimation),
a data-driven approach for reliability evaluation using historical
data, accelerated life testing data and real-world data. The
literature so far considered only operational requirements but in
this work, we seek to consider both operational and timing
requirements for reliability estimation of a CPS.

 Reconfiguration analysis: Wu and Kaiser [9] developed
ARIS (Autonomic Reliability Improvement System), a data-
centric runtime monitoring system that conducts automated
evaluation at multiple stages, provides real-time feedback and
self-tunes the system for reliability improvement. A dynamic
re-configuration through a distributed policy-based framework
in mobile autonomous systems in [10]. Shankaran et al [11]
developed RACE (Resource Allocation and Control Engine)
for managing performance of applications in distributed real-
time embedded systems. RACE monitors the resource usage,
infrastructure performance and the reconfiguration is based on
control algorithms. Pradhan et al [12] developed a self-adaptive
and resilient Deployment and Configuration (D&C)
infrastructure for highly dynamic component-based CPS
operating in resource-constrained environments.
Reconfiguration analyses have thus far been policy-based
(where failures and corrective actions are detailed before
system operation) or expert-based or considered downtime and
resources at runtime. In this work, we investigate reliability-
based reconfiguration at runtime.

III. RELIABILITY EVALUATION
In this section, different types of redundancies are

discussed followed by reliability analysis framework for
design selection and reconfiguration.

Active and Passive redundancy: In active redundant
systems, the redundant components are also in operation, and
when the original component fails, the redundant components
can be used without any downtime. In passive redundant
systems, the redundant components are only used when the
original component ceases to work. In this case, there exists
some downtime between the loss of original component and
the start of the redundant component. Consider a system with
two TMR (Triple Modular Redundancy) components where
one acts as the original and the other as a backup component.
This system is associated with both active and passive
redundancy. The active redundancy arises in that three
components are present in each TMR component and passive
redundancy arises because the backup component is used only
if the original TMR component fails. Fig. 1 provides a
graphical illustration of active and passive redundancy.

Fig. 1. Figure showing transitions between active and passive configurations

Each small rectangle in Fig. 1 (𝑆𝑆1, 𝑆𝑆2) represents a set of active
configurations. Configuration changes within (𝑆𝑆1 or 𝑆𝑆2)
represent active redundancy (𝑃𝑃1 to 𝑃𝑃2) as opposed to changes
across 𝑆𝑆1, 𝑆𝑆2 which represent passive redundancy (𝑃𝑃3 to 𝑃𝑃4).
The bigger rectangle that encompasses all smaller rectangles
represent all possible configurations in that system (both
active and passive). When estimating the overall reliability,
both active and passive redundancies are treated alike.
However, for re-configuration, passive re-configurations incur
additional costs and downtime due to the reconfiguration
process unlike active re-configurations, which do not cause
any downtime. Therefore, that additional cost should also be
included in reconfiguration analysis.

A. Reliability analysis and design selection of a CPS
 The first step in choosing a design alternative is to model
the system using a modeling language to capture the
component-component interactions. Let the failure events
(mentioned in Section I) corresponding to the two failure cases
be represented as W, T respectively. Therefore, the overall
failure probability for the system is defined as

𝑃𝑃𝑓𝑓𝑠𝑠 = Pr(𝑊𝑊 ∪ 𝑇𝑇) = Pr(𝑊𝑊) + Pr(𝑇𝑇) − Pr (𝑊𝑊 ∩ 𝑇𝑇) (1)

It should be noted that 𝑊𝑊 ∩ 𝑇𝑇 = ∅ and therefore, Pr(𝑊𝑊 ∩
𝑇𝑇) = 0 because as mentioned above, 𝑊𝑊 and 𝑇𝑇 refer to the
non-availability and availability of valid configurations and
therefore are mutually exclusive. The probability for each
failure case and overall failure probability is computed below.

Failure case 1: CPS does not provide correct solutions

 CPS has multiple subsystems such as a software system,
physical system, sensor network, and a communication system;
their reliability evaluation are discussed below.

 1) Reliability of the sensor network: Let 𝜁𝜁(𝑆𝑆) and 𝜁𝜁(𝑆𝑆𝑆𝑆)
represent the total number of sensors and minimum required
number of sensors for operation. The number of possible
combinations for selecting 𝜁𝜁(𝑆𝑆𝑆𝑆) sensors from 𝜁𝜁(𝑆𝑆) is given as
�𝜁𝜁(𝑆𝑆)
𝜁𝜁(𝑆𝑆𝑆𝑆)�. All possible combinations are enumerated and

reliability for each combination is estimated using the
reliability information of the individual sensors, which can then
be used for reliability of overall sensor network.

 2) Reliability of a distributed software system: When a
software application is designed, the ranges of inputs are
chosen and the application is designed, tested and validated in
these ranges. In this work, we assume that rigorous testing of
the software application has been carried out (e.g., software
used in critical systems such as avionics and nuclear power
plants) and that when the inputs to the CPS are within these
ranges, the software always works without failure. When the
inputs go beyond the designed ranges, then the software is
assumed to fail. Note that the software probability is
independent of time, as opposed to hardware probability, which
increases with time. Note that by assuming that software
always within given input ranges, an upper bound of the
reliability estimate is obtained.

 Let 𝑰𝑰 = {𝐼𝐼1, 𝐼𝐼2 … 𝐼𝐼𝑁𝑁} represent the 𝑁𝑁 inputs to the software
system. Let 𝑰𝑰𝑳𝑳 and 𝑰𝑰𝑼𝑼 represent the lower and upper bounds of
the nominal values of those 𝑁𝑁 variables for which the software
is designed. In cases when 𝑰𝑰 < 𝑰𝑰𝑳𝑳 or 𝑰𝑰 > 𝑰𝑰𝑼𝑼, the software
application is assumed to fail. The failure probability of the
distributed software system (𝐷𝐷𝐷𝐷) is analyzed under two
conditions – (1) when 𝑰𝑰 < 𝑰𝑰𝑳𝑳 or 𝑰𝑰 > 𝑰𝑰𝑼𝑼, and (2) 𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼.
The overall failure probability, using theorem of total
probability [13], can be computed as

𝑃𝑃𝑓𝑓(𝐷𝐷𝐷𝐷) = 𝑃𝑃𝑓𝑓(𝐷𝐷𝐷𝐷|𝑰𝑰 < 𝑰𝑰𝑳𝑳 ∪ 𝑰𝑰 > 𝑰𝑰𝑼𝑼)Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳 ∪ 𝑰𝑰
> 𝑰𝑰𝑼𝑼) + 𝑃𝑃𝑓𝑓(𝐷𝐷𝐷𝐷|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼)Pr (𝑰𝑰𝑳𝑳
≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼)

 = Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳 ∪ 𝑰𝑰 > 𝑰𝑰𝑼𝑼) + 𝑃𝑃𝑓𝑓(𝐷𝐷𝐷𝐷|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤
𝑰𝑰𝑼𝑼)(1- Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳 or 𝑰𝑰 > 𝑰𝑰𝑼𝑼))

(2)

In (2), Pr (.) refers to the probability function. The probability
that the inputs are beyond the bounds can be obtained through
aggregation of information from historical records, simulation
data. The failure probability (𝑃𝑃𝑓𝑓) when the inputs are within the
bounds can be written as

𝑃𝑃𝑓𝑓(𝐷𝐷𝐷𝐷|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼) = 𝑃𝑃𝑓𝑓(𝑁𝑁𝑁𝑁 ∩ 𝑆𝑆𝑁𝑁|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼) (3)

where 𝑆𝑆𝑁𝑁 is the minimum set of computational nodes required
to carry out the distributed software application and 𝑁𝑁𝑁𝑁 is the
communication between these nodes. Let 𝜁𝜁(𝐷𝐷𝐷𝐷) represent the
total number of computational nodes and 𝜁𝜁(𝑆𝑆𝑁𝑁) represent the
minimum number of computational nodes required. Thus, all
�𝜁𝜁(𝐷𝐷𝐷𝐷)
𝜁𝜁(𝑆𝑆𝑁𝑁)� combinations are enumerated and failure probability is

evaluated for each combination.

 For illustration, the reliability computations for commonly
used synchronous request-reply software architectures are
described below. In Fig. 2, 𝐶𝐶𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁 refer to software
applications. Fig. 2(a) can be understood as “𝐶𝐶2 implies 𝐶𝐶1”
and “𝐶𝐶1 implies 𝐶𝐶2”. Assume that the software applications are
hosted only on one hardware without any redundancy. Let the
hardware associated with 𝐶𝐶1, 𝐶𝐶2 and communication between
𝐶𝐶1, 𝐶𝐶2 be represented as 𝐻𝐻1,𝐻𝐻2 and 𝐻𝐻12. Using Boolean
notation, the reliability expression is given as (𝐻𝐻1 ∧ 𝐻𝐻12) ∧
(𝐻𝐻2 ∧ 𝐻𝐻12) which can be simplified to (𝐻𝐻1 ∧ 𝐻𝐻2 ∧ 𝐻𝐻12).
Therefore, the reliability is equal to 𝑅𝑅𝐻𝐻1 × 𝑅𝑅𝐻𝐻12 × 𝑅𝑅𝐻𝐻2.

(a) (b)

Fig. 2. Examples of synchronous software architectures

Fig. 2(b) shows a complex chain of synchronous request-
pattern whose reliability expression is given as (𝐻𝐻1 ∧ 𝐻𝐻12) ∧
(𝐻𝐻2 ∧ 𝐻𝐻12) ∧ (𝐻𝐻2 ∧ 𝐻𝐻23) ∧ (𝐻𝐻3 ∧ 𝐻𝐻23) ∧ (𝐻𝐻4 ∧ 𝐻𝐻34) ∧ (𝐻𝐻3 ∧
𝐻𝐻34); this can be simplified to (𝐻𝐻1 ∧ 𝐻𝐻2 ∧ 𝐻𝐻3 ∧ 𝐻𝐻4 ∧ 𝐻𝐻12 ∧
𝐻𝐻23 ∧ 𝐻𝐻34). Thus, the reliability can be computed as 𝑅𝑅𝐻𝐻1 ×
𝑅𝑅𝐻𝐻2 × 𝑅𝑅𝐻𝐻3 × 𝑅𝑅𝐻𝐻4 × 𝑅𝑅𝐻𝐻12 × 𝑅𝑅𝐻𝐻23 × 𝑅𝑅𝐻𝐻34.

 Consider the software architecture in Fig. 2(a) but assume
each of software applications 𝐶𝐶1 and 𝐶𝐶2 is hosted on two
systems connected as shown in Fig. 3.

Fig. 3. Example of synchronous software architecture with redundancy

Four operational paths are available by connecting one of
{𝐻𝐻11, 𝐻𝐻12} to one of {𝐻𝐻21, 𝐻𝐻22}. The reliability of the path
associated with 𝐻𝐻11 and 𝐻𝐻21 is given as 𝑅𝑅𝐻𝐻11 × 𝑅𝑅𝐻𝐻21 × 𝑅𝑅𝐻𝐻1211,
where 𝑅𝑅𝐻𝐻1211 refers to the reliability of communication system
between 𝐻𝐻11 and 𝐻𝐻21. Similarly, the reliability of all the four
paths can be computed and represented as 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 and 𝑅𝑅4.
Note that only one of four paths is required for its operation;
therefore, the four paths are connected in parallel. The
reliability that at least one path is available is equal to 1 −
 ∏ (1 − 𝑅𝑅𝑛𝑛)4

1 . Note that in some cases, the software
applications on different nodes may be dependent on each
other, i.e., the failure of a node may result in a faulty output or
no output which could result in failure of other nodes; resulting
in a cascade of nodal failures.

 3) Reliability of the physical system: The outputs of the
software system are a set of control actions to be taken on the
physical system. Using functional decomposition and function-
component association, a control action can be mapped to a set
of component(s), which can be used to construct the reliability
block diagram to assess its reliability. The reliability
information on the individual hardware components is used for
reliability estimation of the overall hardware system [14].

 4) Reliability of communication systems (sensor-to-
software, node-to-node and software-to-hardware): The
wireless communication system requires hardware components
such as network adapters. The common ways of actuation are
through pneumatics, hydraulics. Therefore, the reliability of the
communication system depends on the reliability of the
hardware components. With available reliability information,
the reliability of the communication system can be assessed.

 After estimating the reliability of sensor network (𝑅𝑅𝑠𝑠), the
software system (𝑅𝑅𝐷𝐷𝐷𝐷), the physical system (𝑅𝑅𝐻𝐻) and
communication system (𝑅𝑅𝐶𝐶𝐶𝐶), the probability of no available
configuration is given as

 Pr (𝑊𝑊) = 1 − 𝑅𝑅𝑆𝑆 × 𝑅𝑅𝐷𝐷𝐷𝐷 × 𝑅𝑅𝐻𝐻 × 𝑅𝑅𝐶𝐶𝐶𝐶 (4)

Failure case 2: CPS provides correct solution, but not within
expected time

Two approaches (a black box and a white box approach) to
estimate the variation in the analysis time are discussed below.

 1) Black box approach: In this approach, the CPS is
considered as a black box, i.e. the architecture of CPS is
unknown. The CPS is run multiple times and a PDF for the
analysis time is constructed. Given the PDF, the failure
probability that the analysis time is greater than a pre-defined
threshold value (𝑇𝑇𝑡𝑡ℎ) can be calculated. One possible threshold
value could be the inverse of the frequency at which sensor
data is collected by the CPS (𝑇𝑇𝑡𝑡ℎ = 1/𝐹𝐹).

 2) White box approach: In the white box approach, the
architecture of the CPS is known. Since a CPS consists of
multiple subsystems, the overall analysis time is a summation
of the analysis time of all the subsystems (sensor-to-software
communication, node processing time etc.). Given the PDFs of
times at each stage, the PDF of the overall analysis time (𝐴𝐴𝑇𝑇)
can be estimated using Monte Carlo sampling. Given a pre-
defined threshold value, the failure probability can be estimated
(5). One benefit of white box approach is that it becomes
possible to identify the subsystem that has a high contribution
to the failure probability and modify the design to reduce it.

 Pr (𝑇𝑇) = Pr (𝐴𝐴𝑇𝑇 > 𝑇𝑇𝑡𝑡ℎ) (5)

One should note that the failure analysis associated with timing
requirements is performed separately for every configuration.
Thus, the failure probability of every configuration is the sum
of failure probabilities of both failures cases. The overall
failure probability of CPS is calculated using the failure
probabilities of all configuration points. By applying the
proposed reliability analysis methodology to several design
alternatives, the one with the highest reliability can be chosen.

B. Real-time re-configuration
 When the CPS in a current configuration fails, the system
needs to be reconfigured for its continued operation.
Depending on the failed component(s), some configurations
that share the common failed component(s) become
unavailable. Several re-configuration strategies can be used
such as minimization of downtime or loss of utility but in this
work, we investigate the maximization of reliability. Each
configuration has an associated operation cost, which
corresponds to the cost for operating several components in

that configuration. Hence, the re-configuration is made such
that the reliability of the new configuration is maximal while
the operation cost is less than a predefined threshold.

 Our approach to system reconfiguration relies on the
concept of configuration space and configuration points [15]. A
configuration space represents system description with respect
to different components and their associated functionality,
resource availability, resource requirements, and deployment
constraints. A configuration space can contain multiple
configuration points, where a configuration point represents a
valid deployment of the system such that all functionalities are
satisfied and there are no resource or deployment constraint
violations. In this approach, reconfiguring a system means
transitioning from one configuration point to another. To
compute a new configuration point, we formulate the problem
as a Satisfiability Modulo Theories (SMT) problem [16]. We
are currently working on formulating the optimization problem
to maximize the reliability and obtain the reconfiguration point
by adding appropriate constraints. The re-configuration process
is shown in Fig. 4.

Fig. 4. Run-time system re-configuration analysis framework

 Though we are working on a single-objective optimization
problem in terms of reliability, if necessary, a multi-objective
optimization problem can also be defined to maximize the
reliability and minimize the operation cost. In such cases,
techniques such as Pareto-front [17] can be used to obtain the
reconfiguration point. It should be noted that it is
computationally very expensive and not affordable in real time
to find the configuration with the highest reliability over all
possible configurations (global maximum); therefore, as part of
our ongoing research effort, we focus on local maximum near
the current configuration as the reconfiguration point. In order
to enforce the concept of locality to the SMT problem, we
make assumptions about the components that have not failed.

IV. ILLUSTRATION EXAMPLE: SMART PARKING SYSTEM
 Fig. 5 shows a Smart Parking system, which is an
automated system that provides localization and guidance in
indoor parking structures. We first describe the smart parking
system and later present its reliability computation.

A. System Description
 The components associated with this system include – (1) a
DecaWave sensor system, (2) a distributed system for indoor
localization, and (3) automobile that requires parking

assistance. When an automobile arrives, a parking space is
allocated to the automobile, and the software system guides the
automobile towards the allocated parking space. The width and
length of a parking space are assumed as 2.5 m and 5 m
respectively. The overall dimensions of the parking structure
are assumed as 17.5 m x 15 m x 2.5 m.

Fig. 5. Illustration of a smart parking system

 DecaWave (sensor) system: In this work, we use DecaWave
technology due to their high effectiveness for indoor
localization with an accuracy of about 10-15 cm [18]. The
DecaWave technology is based on Time of Arrival (TOA) or
Time Difference of Arrival (TDOA), and uses the Ultra-Wide-
Band (UWB) technology, where signals are transmitted under
multiple bandwidths for shorter duration as opposed to Radio-
frequency identification (RFID) systems, which operate in
narrow bandwidths, and comparatively longer duration [18]. In
TOA systems, the time difference between the signal
transmission and receipt is obtained, and given the time
difference, the distance is computed as the signals travel at the
speed of light. When an automobile arrives, a DecaWave signal
receiver is mounted on it to receive the transmitted signals. The
transmitters are mounted on the ceiling at the locations
provided in Fig. 5. The frequency of data collection is assumed
at 50 Hz, i.e., the time period between successive
measurements is 20 ms. Theoretically, data from three
transmitters is required for indoor localization but to improve
the accuracy, data from at four transmitters is used.

 Distributed software system: The software system consists
of three elements – (1) two monitor nodes (𝑀𝑀1, 𝑀𝑀2), (2) two
computational nodes (𝐶𝐶1, 𝐶𝐶2), and (3) a master node (𝑀𝑀𝑀𝑀) to
integrate the outputs from individual computational nodes. The
two monitor nodes record the health of the computational
nodes and DecaWave transmitters, and distribute the sensor
data to the computational nodes for analysis. The output of the
master node is the estimated location of the automobile. At
least one monitor node, one computational node and the master
node is required for the system to be operational.

B. Reliability analysis
Each battery-operated DecaWave sensor is assumed to fail

when the battery fails or any hardware on the sensor (such as
memory) fails. The uncertainty in the time for receiving the
data is represented using a Gaussian distribution. The two
monitor nodes are assumed different; the primary node (𝑀𝑀1) is
less expensive and less reliable compared to the backup node
(𝑀𝑀2). All the data used for several parameters in this example
are assumed for the sake of illustration. The network
bandwidth is assumed as 10 Mbps and the amount of

communication data between several components is assumed
as 1 KB (equal to 8Kb). The communication time is assumed to
vary linearly with the amount of data. A Gaussian distribution
is used to represent its variation with a standard deviation of
10%. The processing times of the monitor, computational and
master nodes are assumed 3, 6, and 6 times the sensor-to-
monitor communication time respectively. The MTTF data
(simulated) for all the components and the time at each stage of
analysis (such as sensor-to-software communication, node
processing, node-to-node communication and node-to-physical
system communication) are provided in Tables I and II
respectively. Note that the values in Table II represent the
analysis times in one analysis cycle (20 ms).

TABLE I. FAILURE RATE DATA FOR ALL COMPONENTS (SIMULATED)

Component Failure rate Operation Cost
DecaWave transmitter (𝐹𝐹𝑇𝑇) 6 months 10
DecaWave receiver (𝐹𝐹𝑅𝑅) 6 months 10
Network communicator (𝐹𝐹𝑁𝑁𝑁𝑁) 18 months 10
Primary Monitor node (𝐹𝐹𝑀𝑀1) 18 months 100

Backup Monitor node (𝐹𝐹𝑀𝑀2) 24 months 150

First Computational node (𝐶𝐶1, 𝐹𝐹𝐶𝐶1) 24 months 100
Second Computational node (𝐶𝐶2, 𝐹𝐹𝐶𝐶2) 18 months 150
Master node (𝐹𝐹𝑀𝑀𝑀𝑀) 24 months 150

TABLE II. TIME AT EACH STAGE OF ANALYSIS

Components Time
Receiver – Monitor nodes (𝑇𝑇𝑅𝑅𝑅𝑅) 𝑁𝑁(0.78, 0.078) ms
Monitor nodes (𝑇𝑇𝑀𝑀) 𝑁𝑁(2.343, 0.2343) ms
Monitor – Computational nodes (𝑇𝑇𝑀𝑀𝑀𝑀) 𝑁𝑁(0.78, 0.078) ms
Computational nodes (𝑇𝑇𝐶𝐶) 𝑁𝑁(4.687, 0.4687) ms
Computational – Master nodes (𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶) 𝑁𝑁(0.78, 0.078) ms
Master node (𝑇𝑇𝑀𝑀𝑀𝑀) 𝑁𝑁(4.687, 0.4687) ms
Master node – Physical system (𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀) 𝑁𝑁(0.78, 0.078) ms

The overall analysis time for localization is given as the
summation of 𝑇𝑇𝑅𝑅𝑅𝑅, 𝑇𝑇𝑀𝑀, 𝑇𝑇𝑀𝑀𝑀𝑀, 𝑇𝑇𝐶𝐶 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶, 𝑇𝑇𝑀𝑀𝑀𝑀, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 (Table II)
which also results in a Gaussian distribution; the parameters
(mean and standard deviation) can be computed as 14.843 and
0.72. Since data is available every 20 ms, the threshold value
for analysis time is assumed as 20 ms. Assume that the
reliability of the CPS is evaluated over a period of 1 day, which
equals 432 x 104 cycles. Since the DecaWave receivers can be
changed whenever a new automobile arrives, the receivers are
always assumed to work and not included in reliability
analysis. Also, the duration of any particular automobile that
requires parking is small compared to total time (1 day);
therefore, the automobile is also not included in reliability
estimation. Let the operational cost threshold be 600 units. The
operation costs for various components are provided in Table I.
The overall failure probability, considering both operational
and timing requirements, is approximately equal to 0.017.
Thus, the overall reliability of the system considering all
possible configurations is 0.983.

C. Reliability-based real-time re-configuration
Let 𝐷𝐷1, 𝐷𝐷3, 𝐷𝐷4, 𝐷𝐷6 be the DecaWave transmitters, 𝑀𝑀1, 𝐶𝐶1, 𝐶𝐶2

be working in the initial configuration. The reliability of the

initial configuration can be computed as 0.965, considering
both failure cases. For illustration, let sensor 𝐷𝐷4 and 𝑀𝑀1 fail. As
mentioned in Section V, the re-configuration is modeled as an
SMT problem with failure of 𝑀𝑀1 and 𝐷𝐷4 as additional
constraints. In the remaining possible configurations, the
configuration with the highest reliability and within the
operational cost constraints is chosen as the re-configuration
point. The re-configuration with the highest reliability would
be to replace 𝑀𝑀1 with 𝑀𝑀2 and choose either 𝐷𝐷2, or 𝐷𝐷5 to replace
𝐷𝐷4. However, operating 𝑀𝑀2 and both the computational nodes
violates the cost constraints. Therefore, one of the two
computational nodes should be used even though the
processing time increases, which increases the failure
probability. Between 𝐶𝐶1 and 𝐶𝐶2, 𝐶𝐶2 is chosen due to its higher
MTTF value and therefore higher reliability.

The initial processing time of the computational nodes is
assumed to be 6 times the communication time, when both
nodes are working. In case when only one node is working,
then the processing time is higher and assumed at 7 times the
communication time. The failure probabilities associated with
the operational and time requirements in the new configuration
are 0.0315 and 0.0326; therefore, the overall failure probability
and reliability are 0.0641 and 0.9359 respectively. The goal
accomplished by this problem, even though straightforward, is
the illustration of the reliability evaluation in CPS and
reliability-based re-configuration subject to cost constraints.

V. CONCLUSION AND FUTURE WORK
This paper developed a framework for reliability analysis,

which can be used for design selection and re-configuration in
CPS. Real-time CPS are associated with both operational and
timing constraints. The failures related to the physical system
and sensors are modeled using their failure rates whereas the
software is always assumed to work when its inputs are within
designed ranges and fail if they are beyond the designed
ranges. The uncertainty in the analysis time at each stage of
analysis is represented using a PDF. Given individual
distributions, the PDF of overall analysis time is obtained
through Monte Carlo sampling, which can then be used to
estimate the probability that the analysis time is greater than a
threshold. The overall failure probability of a CPS is therefore
the union of the failure probabilities associated with both
operational and timing constraints. Re-configuration is
modeled as an optimization problem in the configuration
space to choose the configuration with the maximum
reliability subject to cost constraints. A smart parking system
that provides indoor localization and guidance is used to
illustrate the proposed methods.

This paper was primarily focused on reliability analysis
for design selection and runtime reconfiguration. Other factors
that influence the decision making process include utility and
downtime. Increase in redundancy results in a low downtime
but increased operational costs. To this end, future work
should develop a decision-making framework considering
tradeoffs between the utility, reliability and downtime.

ACKNOWLEDGMENT
The work reported in this paper was supported under a grant
from Siemens Corporate Technology. Any opinions, findings,
and conclusions expressed here are those of the authors and do
not necessarily reflect the views of the funding agency.

REFERENCES
[1] E. A. Lee, “Cyber physical systems: Design challenges,” 11th IEEE

International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008, pp. 363-369.

[2] Z. Wu, N. Huang, X. Zheng, and X. Li, “Cyber-physical avionics
systems and its reliability evaluation,” IEEE 4th Annual International
Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), 2014.

[3] K. Marashi, and S. S. Sarvestani, “Towards comprehensive modeling of
reliability for smart grids: Requirements and challenges,” 15th IEEE
International Symposium on High-Assurance Systems Engineering
(HASE), 2014, pp. 105-112.

[4] X. Sun, N. Huang, B. Wang, and J. Zhou, “Reliability of cyber physical
systems assessment of the aircraft fuel management system,” 4th IEEE
Annual International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), 2014, pp. 424-428.

[5] Z. Li, and R. Kang, "Strategy for reliability testing and evaluation of
cyber physical systems." IEEE International Conference on Industrial
Engineering and Engineering Management, 2015, pp. 1001-1006.

[6] L. Wu, and G. Kaiser, “FARE: A framework for benchmarking
reliability of cyber-physical systems,” IEEE Conference on Systems,
Applications and Technology Conference (LISAT), 2013, pp. 1-6.

[7] A. K. Verma, S. Ajit, and D. R. Karanki, “Software Reliability,”
Reliability and Safety Engineering, 2016, pp. 183-217, Springer London.

[8] S. M. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer, “CHARIOT: A
Domain Specific Language for Extensible Cyber-Physical Systems,”
2015.

[9] L. Wu, and G. Kaiser, “An autonomic reliability improvement system
for cyber-physical systems,” 14th IEEE International Symposium on
High-Assurance Systems Engineering (HASE), 2012, pp. 56-61.

[10] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. Lupu, “Self-
management framework for mobile autonomous systems,” Journal of
Network and Systems Management, 2012, 20(2), pp.244-275.

[11] N. Shankaran et al, “A framework for (re) deploying components in
distributed real-time and embedded systems,” Proceedings of ACM
symposium on Applied computing, 2006, pp. 737-738.

[12] S. Pradhan et al, “Towards a Self-adaptive Deployment and
Configuration Infrastructure for Cyber-Physical Systems,” ISIS, 2014,
14, p.102.

[13] S. Mahadevan, and A. Haldar, “Probability, reliability and statistical
method in engineering design,” John Wiley & Sons, 2000.

[14] S. Nannapaneni et al, “Mission-based reliability prediction in
component-based systems,” International Journal of Prognostics and
Health Management, Vol 7 (1).

[15] N. Mahadevan, A. Dubey, D. Balasubramanian, and G. Karsai,
“Deliberative, search-based mitigation strategies for model-based
software health management,” Innovations in Systems and Software
Engineering, 2013, 9(4):293–318.

[16] L. De Moura, and N. Bjørner, “Z3: An efficient SMT solver,” Tools and
Algorithms for the Construction and Analysis of Systems, Springer
Berlin Heidelberg, 2008, pp. 337-340.

[17] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, 2006, 91(9), pp.992-1007.

[18] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6),
pp.1067-1080.

	I. Introduction
	II. Related work
	III. Reliability evaluation
	A. Reliability analysis and design selection of a CPS
	B. Real-time re-configuration

	IV. Illustration Example: Smart Parking System
	A. System Description
	B. Reliability analysis
	C. Reliability-based real-time re-configuration

	V. Conclusion and Future Work
	Acknowledgment
	References

