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Abstract—Cyber-physical systems (CPS) are systems with a 
tight integration between the computational (also referred to as 
software or cyber) and physical (hardware) components. While 
the reliability evaluation of physical systems is well-understood 
and well-studied, reliability evaluation of CPS is difficult because 
software systems do not degrade and follow a well-defined failure 
model like physical systems. In this paper, we propose a 
framework for formulating the CPS reliability evaluation as a 
dependence problem derived from the software component 
dependences, functional requirements and physical system 
dependences. We also consider sensor failures, and propose a 
method for estimating software failures in terms of associated 
hardware and software inputs.  This framework is codified in a 
domain-specific modeling language, where every system-level 
function is mapped to a set of required components using 
functional decomposition and function-component association; 
this provides details about operational constraints and 
dependences. We also illustrate how the encoded information can 
be used to make reconfiguration decisions at runtime. The 
proposed methodology is demonstrated using a smart parking 
system, which provides localization and guidance for parking 
within indoor environments. 

Keywords—Reliability; Self-reconfiguration, Cyber-Physical 
Systems; Smart Parking; 

I. INTRODUCTION 
Cyber-Physical Systems are increasingly becoming 

widespread to handle complex tasks in several fields of 
technology, engineering, and medicine such as smart power 
systems, smart buildings, smart public transportation, self-
driving cars, avionics, medical robotics and smart 
manufacturing systems.  Since CPS are used in several diverse 
and key applications, it becomes necessary to evaluate their 
reliability when handling complex tasks because a single 
failure can result in large financial and safety consequences. 

 As many CPS operate in real-time, another key requirement 
is that the analysis be carried out with strong timing constraints 
[1]. The operation of a CPS can be divided into three possible 
scenarios: (1) CPS provides the correct solution, within 
expected time, (2) CPS does not provide correct solution (i.e., 
incorrect solution or no solution at all), and (3) CPS provides 
the correct solution, but not within expected time. The last two 

cases are considered as system-level failure cases of a CPS. 
Current reliability literature considered only the functional 
requirements, i.e., CPS is assumed to have failed when no 
operating configuration is available [2-6]. In this work, we 
incorporate the timing constraints along with value domain 
constraints while evaluating the reliability of a CPS.  

 Software reliability, thus far, has been based on code 
verification and finding programming errors [7]. In this paper, 
we propose a new technique for assessing software reliability 
in terms of the associated hardware and inputs to the software. 
A lot of literature are available on the reliability estimation of 
several components in a CPS (software, hardware, sensors) 
individually but characterization of dependence between 
components and the manner in which the dependence 
influences the reliability is a key challenge in CPS. Our 
approach is based on model-based analysis framework where 
the system is modeled in a domain specific modeling language 
[8] in which each system-level function is associated to a 
component(s) through functional decomposition and function-
component association. The availability of required functions 
can be inferred through monitoring the health of components. 
To check if a CPS satisfies timing requirements, the 
uncertainty associated with the analysis time is represented 
through a probability density function (PDF) and the 
probability that the analysis time is greater than a pre-defined 
threshold is computed. The overall reliability is then evaluated 
as a union of the aforementioned two failure cases. Thus, the 
developed reliability evaluation can be used in the selection of 
a design from a set of design alternatives. 

When the system in a working configuration fails, the 
system needs to be re-configured for its continued operation. 
One possible approach for re-configuration is to enumerate all 
possible configurations and develop several re-configuration 
criteria depending on the failures of components. This is an 
explicit encoding approach that works in CPS with a few 
working configurations but as the system becomes complex, 
the number of working configurations increase exponentially. 
Therefore, it becomes essential to choose a reconfiguration in 
an automated manner. In this paper, we propose to find the 
configuration with the highest reliability near the current 
configuration by formulating it as an optimization problem. 



The contributions of this paper can be summarized as – (1) 
Reliability analysis framework for CPS and initial design 
selection, and (2) Presenting our current work that uses the 
reliability analysis framework for reliability-based runtime re-
configuration of CPS.  

The remainder of this paper is organized as follows –
Section II presents related work, Section III provides the 
proposed methodologies for reliability analysis for design 
selection and system re-configuration. The developed 
methodologies are demonstrated using a Smart Parking system 
in Section IV, followed by Conclusions and Future Work.  

II. RELATED WORK 
Some existing techniques for CPS reliability evaluation and 
reconfiguration are surveyed below. 

Reliability evaluation: Wu, Huang, Zheng and Li [2] 
developed a reliability model where Markov models are 
constructed for each component to estimate the reliability of an 
Integrated Modular Avionics (IMA) system. Using the 
component Markov models, the probability that all the 
components reached a failed state is computed. A Markov 
imbedded system (MIS) is used in [3] to model dependence 
between components in a smart power grid. Given the 
functional and non-functional modes, the probability that the 
system is in one of the functional modes is computed. In [4], a 
phased-mission system model, which consists of Markov 
models for individual components and a binary decision 
diagram (BDD) is used to analyze the reliability of a fuel 
management system in an aircraft. Li and Kang [5] developed a 
reliability framework through a weighted reliability metric 
using individual component reliabilities and the performance 
metric of the CPS considering service, cyber security, 
resilience, elasticity and vulnerability. Wu and Kaiser [6] 
developed FARE (Failure Analysis and Reliability Estimation), 
a data-driven approach for reliability evaluation using historical 
data, accelerated life testing data and real-world data. The 
literature so far considered only operational requirements but in 
this work, we seek to consider both operational and timing 
requirements for reliability estimation of a CPS. 

 Reconfiguration analysis: Wu and Kaiser [9] developed 
ARIS (Autonomic Reliability Improvement System), a data-
centric runtime monitoring system that conducts automated 
evaluation at multiple stages, provides real-time feedback and 
self-tunes the system for reliability improvement. A dynamic 
re-configuration through a distributed policy-based framework 
in mobile autonomous systems in [10]. Shankaran et al [11] 
developed RACE (Resource Allocation and Control Engine) 
for managing performance of applications in distributed real-
time embedded systems. RACE monitors the resource usage, 
infrastructure performance and the reconfiguration is based on 
control algorithms. Pradhan et al [12] developed a self-adaptive 
and resilient Deployment and Configuration (D&C) 
infrastructure for highly dynamic component-based CPS 
operating in resource-constrained environments. 
Reconfiguration analyses have thus far been policy-based 
(where failures and corrective actions are detailed before 
system operation) or expert-based or considered downtime and 
resources at runtime. In this work, we investigate reliability-
based reconfiguration at runtime.  

III. RELIABILITY EVALUATION 
In this section, different types of redundancies are 

discussed followed by reliability analysis framework for 
design selection and reconfiguration.   

Active and Passive redundancy: In active redundant 
systems, the redundant components are also in operation, and 
when the original component fails, the redundant components 
can be used without any downtime. In passive redundant 
systems, the redundant components are only used when the 
original component ceases to work. In this case, there exists 
some downtime between the loss of original component and 
the start of the redundant component. Consider a system with 
two TMR (Triple Modular Redundancy) components where 
one acts as the original and the other as a backup component. 
This system is associated with both active and passive 
redundancy. The active redundancy arises in that three 
components are present in each TMR component and passive 
redundancy arises because the backup component is used only 
if the original TMR component fails. Fig. 1 provides a 
graphical illustration of active and passive redundancy.  

 
Fig. 1. Figure showing transitions between active and passive configurations  

Each small rectangle in Fig. 1 (𝑆𝑆1, 𝑆𝑆2) represents a set of active 
configurations. Configuration changes within (𝑆𝑆1 or 𝑆𝑆2) 
represent active redundancy (𝑃𝑃1 to 𝑃𝑃2) as opposed to changes 
across 𝑆𝑆1, 𝑆𝑆2 which represent passive redundancy (𝑃𝑃3 to 𝑃𝑃4). 
The bigger rectangle that encompasses all smaller rectangles 
represent all possible configurations in that system (both 
active and passive). When estimating the overall reliability, 
both active and passive redundancies are treated alike. 
However, for re-configuration, passive re-configurations incur 
additional costs and downtime due to the reconfiguration 
process unlike active re-configurations, which do not cause 
any downtime. Therefore, that additional cost should also be 
included in reconfiguration analysis.  

A. Reliability analysis and design selection of a CPS 
 The first step in choosing a design alternative is to model 
the system using a modeling language to capture the 
component-component interactions. Let the failure events 
(mentioned in Section I) corresponding to the two failure cases 
be represented as W, T respectively. Therefore, the overall 
failure probability for the system is defined as  

𝑃𝑃𝑓𝑓𝑠𝑠 = Pr(𝑊𝑊 ∪ 𝑇𝑇) = Pr(𝑊𝑊) + Pr(𝑇𝑇) − Pr (𝑊𝑊 ∩ 𝑇𝑇) (1) 

It should be noted that 𝑊𝑊 ∩ 𝑇𝑇 =  ∅ and therefore, Pr(𝑊𝑊 ∩
𝑇𝑇) =  0 because as mentioned above, 𝑊𝑊 and 𝑇𝑇 refer to the 
non-availability and availability of valid configurations and 
therefore are mutually exclusive. The probability for each 
failure case and overall failure probability is computed below. 



Failure case 1: CPS does not provide correct solutions  

 CPS has multiple subsystems such as a software system, 
physical system, sensor network, and a communication system; 
their reliability evaluation are discussed below. 

 1) Reliability of the sensor network: Let 𝜁𝜁(𝑆𝑆) and 𝜁𝜁(𝑆𝑆𝑆𝑆) 
represent the total number of sensors and minimum required 
number of sensors for operation. The number of possible 
combinations for selecting 𝜁𝜁(𝑆𝑆𝑆𝑆) sensors from 𝜁𝜁(𝑆𝑆) is given as 
�𝜁𝜁(𝑆𝑆) 
𝜁𝜁(𝑆𝑆𝑆𝑆)�. All possible combinations are enumerated and 

reliability for each combination is estimated using the 
reliability information of the individual sensors, which can then 
be used for reliability of overall sensor network.   

 2) Reliability of a distributed software system:  When a 
software application is designed, the ranges of inputs are 
chosen and the application is designed, tested and validated in 
these ranges. In this work, we assume that rigorous testing of 
the software application has been carried out (e.g., software 
used in critical systems such as avionics and nuclear power 
plants) and that when the inputs to the CPS are within these 
ranges, the software always works without failure. When the 
inputs go beyond the designed ranges, then the software is 
assumed to fail. Note that the software probability is 
independent of time, as opposed to hardware probability, which 
increases with time. Note that by assuming that software 
always within given input ranges, an upper bound of the 
reliability estimate is obtained.  

 Let 𝑰𝑰 = {𝐼𝐼1, 𝐼𝐼2 … 𝐼𝐼𝑁𝑁} represent the  𝑁𝑁 inputs to the software 
system. Let 𝑰𝑰𝑳𝑳 and 𝑰𝑰𝑼𝑼 represent the lower and upper bounds of 
the nominal values of those 𝑁𝑁 variables for which the software 
is designed. In cases when 𝑰𝑰 < 𝑰𝑰𝑳𝑳  or 𝑰𝑰 > 𝑰𝑰𝑼𝑼, the software 
application is assumed to fail. The failure probability of the 
distributed software system (𝐷𝐷𝑆𝑆) is analyzed under two 
conditions – (1) when 𝑰𝑰 < 𝑰𝑰𝑳𝑳 or 𝑰𝑰 > 𝑰𝑰𝑼𝑼, and (2) 𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼. 
The overall failure probability, using theorem of total 
probability [13], can be computed as   

𝑃𝑃𝑓𝑓(𝐷𝐷𝑆𝑆) = 𝑃𝑃𝑓𝑓(𝐷𝐷𝑆𝑆|𝑰𝑰 < 𝑰𝑰𝑳𝑳  ∪  𝑰𝑰 > 𝑰𝑰𝑼𝑼)Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳  ∪  𝑰𝑰
> 𝑰𝑰𝑼𝑼) + 𝑃𝑃𝑓𝑓(𝐷𝐷𝑆𝑆|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼)Pr (𝑰𝑰𝑳𝑳
≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼) 

 = Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳  ∪  𝑰𝑰 > 𝑰𝑰𝑼𝑼) + 𝑃𝑃𝑓𝑓(𝐷𝐷𝑆𝑆|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤
𝑰𝑰𝑼𝑼)(1- Pr (𝑰𝑰 < 𝑰𝑰𝑳𝑳 or 𝑰𝑰 > 𝑰𝑰𝑼𝑼)) 

(2) 

In (2), Pr (. ) refers to the probability function. The probability 
that the inputs are beyond the bounds can be obtained through 
aggregation of information from historical records, simulation 
data. The failure probability (𝑃𝑃𝑓𝑓) when the inputs are within the 
bounds can be written as 

𝑃𝑃𝑓𝑓(𝐷𝐷𝑆𝑆|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼) = 𝑃𝑃𝑓𝑓(𝑁𝑁𝑁𝑁 ∩ 𝑆𝑆𝑁𝑁|𝑰𝑰𝑳𝑳 ≤ 𝑰𝑰 ≤ 𝑰𝑰𝑼𝑼) (3) 

where 𝑆𝑆𝑁𝑁 is the minimum set of computational nodes required 
to carry out the distributed software application and 𝑁𝑁𝑁𝑁 is the 
communication between these nodes.  Let 𝜁𝜁(𝐷𝐷𝑆𝑆) represent the 
total number of computational nodes and 𝜁𝜁(𝑆𝑆𝑁𝑁) represent the 
minimum number of computational nodes required. Thus, all 
�𝜁𝜁(𝐷𝐷𝑆𝑆) 
𝜁𝜁(𝑆𝑆𝑁𝑁)� combinations are enumerated and failure probability is 

evaluated for each combination.  

 For illustration, the reliability computations for commonly 
used synchronous request-reply software architectures are 
described below.  In Fig. 2, 𝐶𝐶𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁 refer to software 
applications.  Fig. 2(a) can be understood as “𝐶𝐶2 implies 𝐶𝐶1” 
and “𝐶𝐶1 implies 𝐶𝐶2”. Assume that the software applications are 
hosted only on one hardware without any redundancy. Let the 
hardware associated with 𝐶𝐶1,𝐶𝐶2 and communication between 
𝐶𝐶1,𝐶𝐶2 be represented as 𝐻𝐻1,𝐻𝐻2 and 𝐻𝐻12. Using Boolean 
notation, the reliability expression is given as (𝐻𝐻1 ∧ 𝐻𝐻12) ∧
(𝐻𝐻2 ∧ 𝐻𝐻12) which can be simplified to (𝐻𝐻1 ∧ 𝐻𝐻2 ∧ 𝐻𝐻12). 
Therefore, the reliability is equal to 𝑅𝑅𝐻𝐻1 × 𝑅𝑅𝐻𝐻12 × 𝑅𝑅𝐻𝐻2.  

  
(a) (b) 

Fig. 2. Examples of synchronous software architectures 

Fig. 2(b) shows a complex chain of synchronous request-
pattern whose reliability expression is given as (𝐻𝐻1 ∧ 𝐻𝐻12) ∧
(𝐻𝐻2 ∧ 𝐻𝐻12) ∧ (𝐻𝐻2 ∧ 𝐻𝐻23) ∧ (𝐻𝐻3 ∧ 𝐻𝐻23) ∧ (𝐻𝐻4 ∧ 𝐻𝐻34) ∧ (𝐻𝐻3 ∧
𝐻𝐻34); this can be simplified to (𝐻𝐻1 ∧ 𝐻𝐻2 ∧ 𝐻𝐻3 ∧ 𝐻𝐻4 ∧ 𝐻𝐻12 ∧
𝐻𝐻23 ∧ 𝐻𝐻34). Thus, the reliability can be computed as 𝑅𝑅𝐻𝐻1 ×
𝑅𝑅𝐻𝐻2 × 𝑅𝑅𝐻𝐻3 × 𝑅𝑅𝐻𝐻4 × 𝑅𝑅𝐻𝐻12 × 𝑅𝑅𝐻𝐻23 × 𝑅𝑅𝐻𝐻34.  

 Consider the software architecture in Fig. 2(a) but assume 
each of software applications 𝐶𝐶1 and 𝐶𝐶2 is hosted on two 
systems connected as shown in Fig. 3.  

 

Fig. 3. Example of synchronous software architecture with redundancy 

Four operational paths are available by connecting one of 
{𝐻𝐻11,𝐻𝐻12} to one of {𝐻𝐻21,𝐻𝐻22}. The reliability of the path 
associated with 𝐻𝐻11 and 𝐻𝐻21 is given as 𝑅𝑅𝐻𝐻11 × 𝑅𝑅𝐻𝐻21 × 𝑅𝑅𝐻𝐻1211, 
where 𝑅𝑅𝐻𝐻1211 refers to the reliability of communication system 
between 𝐻𝐻11 and 𝐻𝐻21. Similarly, the reliability of all the four 
paths can be computed and represented as 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3 and 𝑅𝑅4. 
Note that only one of four paths is required for its operation; 
therefore, the four paths are connected in parallel. The 
reliability that at least one path is available is equal to 1 −
 ∏ (1 − 𝑅𝑅𝑛𝑛)4

1 . Note that in some cases, the software 
applications on different nodes may be dependent on each 
other, i.e., the failure of a node may result in a faulty output or 
no output which could result in failure of other nodes; resulting 
in a cascade of nodal failures.  

 3) Reliability of the physical system: The outputs of the 
software system are a set of control actions to be taken on the 
physical system. Using functional decomposition and function-
component association, a control action can be mapped to a set 
of component(s), which can be used to construct the reliability 
block diagram to assess its reliability. The reliability 
information on the individual hardware components is used for 
reliability estimation of the overall hardware system [14].  



 4) Reliability of communication systems (sensor-to-
software, node-to-node and software-to-hardware): The 
wireless communication system requires hardware components 
such as network adapters.  The common ways of actuation are 
through pneumatics, hydraulics. Therefore, the reliability of the 
communication system depends on the reliability of the 
hardware components. With available reliability information, 
the reliability of the communication system can be assessed.  

 After estimating the reliability of sensor network (𝑅𝑅𝑠𝑠), the 
software system (𝑅𝑅𝐷𝐷𝑆𝑆), the physical system (𝑅𝑅𝐻𝐻) and 
communication system (𝑅𝑅𝐶𝐶𝑆𝑆), the probability of no available 
configuration is given as  

 Pr (𝑊𝑊) = 1 −  𝑅𝑅𝑆𝑆 × 𝑅𝑅𝐷𝐷𝑆𝑆 × 𝑅𝑅𝐻𝐻 × 𝑅𝑅𝐶𝐶𝑆𝑆 (4) 

Failure case 2: CPS provides correct solution, but not within 
expected time  

Two approaches (a black box and a white box approach) to 
estimate the variation in the analysis time are discussed below.  

 1) Black box approach: In this approach, the CPS is 
considered as a black box, i.e. the architecture of CPS is 
unknown. The CPS is run multiple times and a PDF for the 
analysis time is constructed.  Given the PDF, the failure 
probability that the analysis time is greater than a pre-defined 
threshold value (𝑇𝑇𝑡𝑡ℎ) can be calculated. One possible threshold 
value could be the inverse of the frequency at which sensor 
data is collected by the CPS (𝑇𝑇𝑡𝑡ℎ = 1/𝐹𝐹). 

 2) White box approach: In the white box approach, the 
architecture of the CPS is known. Since a CPS consists of 
multiple subsystems, the overall analysis time is a summation 
of the analysis time of all the subsystems (sensor-to-software 
communication, node processing time etc.). Given the PDFs of 
times at each stage, the PDF of the overall analysis time (𝐴𝐴𝑇𝑇) 
can be estimated using Monte Carlo sampling. Given a pre-
defined threshold value, the failure probability can be estimated 
(5). One benefit of white box approach is that it becomes 
possible to identify the subsystem that has a high contribution 
to the failure probability and modify the design to reduce it.  

 Pr (𝑇𝑇) = Pr (𝐴𝐴𝑇𝑇 > 𝑇𝑇𝑡𝑡ℎ) (5) 

One should note that the failure analysis associated with timing 
requirements is performed separately for every configuration.  
Thus, the failure probability of every configuration is the sum 
of failure probabilities of both failures cases. The overall 
failure probability of CPS is calculated using the failure 
probabilities of all configuration points. By applying the 
proposed reliability analysis methodology to several design 
alternatives, the one with the highest reliability can be chosen. 

B. Real-time re-configuration 
 When the CPS in a current configuration fails, the system 
needs to be reconfigured for its continued operation. 
Depending on the failed component(s), some configurations 
that share the common failed component(s) become 
unavailable. Several re-configuration strategies can be used 
such as minimization of downtime or loss of utility but in this 
work, we investigate the maximization of reliability. Each 
configuration has an associated operation cost, which 
corresponds to the cost for operating several components in 

that configuration. Hence, the re-configuration is made such 
that the reliability of the new configuration is maximal while 
the operation cost is less than a predefined threshold. 

 Our approach to system reconfiguration relies on the 
concept of configuration space and configuration points [15]. A 
configuration space represents system description with respect 
to different components and their associated functionality, 
resource availability, resource requirements, and deployment 
constraints. A configuration space can contain multiple 
configuration points, where a configuration point represents a 
valid deployment of the system such that all functionalities are 
satisfied and there are no resource or deployment constraint 
violations. In this approach, reconfiguring a system means 
transitioning from one configuration point to another. To 
compute a new configuration point, we formulate the problem 
as a Satisfiability Modulo Theories (SMT) problem [16]. We 
are currently working on formulating the optimization problem 
to maximize the reliability and obtain the reconfiguration point 
by adding appropriate constraints. The re-configuration process 
is shown in Fig. 4.  

  

Fig. 4. Run-time system re-configuration analysis framework  

 Though we are working on a single-objective optimization 
problem in terms of reliability, if necessary, a multi-objective 
optimization problem can also be defined to maximize the 
reliability and minimize the operation cost.  In such cases, 
techniques such as Pareto-front [17] can be used to obtain the 
reconfiguration point. It should be noted that it is 
computationally very expensive and not affordable in real time 
to find the configuration with the highest reliability over all 
possible configurations (global maximum); therefore, as part of 
our ongoing research effort, we focus on local maximum near 
the current configuration as the reconfiguration point. In order 
to enforce the concept of locality to the SMT problem, we 
make assumptions about the components that have not failed. 

IV. ILLUSTRATION EXAMPLE: SMART PARKING SYSTEM 
 Fig. 5 shows a Smart Parking system, which is an 
automated system that provides localization and guidance in 
indoor parking structures. We first describe the smart parking 
system and later present its reliability computation.   

A. System Description 
 The components associated with this system include – (1) a 
DecaWave sensor system, (2) a distributed system for indoor 
localization, and (3) automobile that requires parking 



assistance. When an automobile arrives, a parking space is 
allocated to the automobile, and the software system guides the 
automobile towards the allocated parking space. The width and 
length of a parking space are assumed as 2.5 m and 5 m 
respectively. The overall dimensions of the parking structure 
are assumed as 17.5 m x 15 m x 2.5 m. 

 

Fig. 5.  Illustration of a smart parking system 

 DecaWave (sensor) system: In this work, we use DecaWave 
technology due to their high effectiveness for indoor 
localization with an accuracy of about 10-15 cm [18]. The 
DecaWave technology is based on Time of Arrival (TOA) or 
Time Difference of Arrival (TDOA), and uses the Ultra-Wide-
Band (UWB) technology, where signals are transmitted under 
multiple bandwidths for shorter duration as opposed to Radio-
frequency identification (RFID) systems, which operate in 
narrow bandwidths, and comparatively longer duration [18]. In 
TOA systems, the time difference between the signal 
transmission and receipt is obtained, and given the time 
difference, the distance is computed as the signals travel at the 
speed of light. When an automobile arrives, a DecaWave signal 
receiver is mounted on it to receive the transmitted signals. The 
transmitters are mounted on the ceiling at the locations 
provided in Fig. 5. The frequency of data collection is assumed 
at 50 Hz, i.e., the time period between successive 
measurements is 20 ms. Theoretically, data from three 
transmitters is required for indoor localization but to improve 
the accuracy, data from at four transmitters is used. 

 Distributed software system: The software system consists 
of three elements – (1) two monitor nodes (𝑀𝑀1, 𝑀𝑀2), (2) two 
computational nodes (𝐶𝐶1,  𝐶𝐶2), and (3) a master node (𝑀𝑀𝑁𝑁) to 
integrate the outputs from individual computational nodes. The 
two monitor nodes record the health of the computational 
nodes and DecaWave transmitters, and distribute the sensor 
data to the computational nodes for analysis. The output of the 
master node is the estimated location of the automobile.  At 
least one monitor node, one computational node and the master 
node is required for the system to be operational.  

B. Reliability analysis  
Each battery-operated DecaWave sensor is assumed to fail 

when the battery fails or any hardware on the sensor (such as 
memory) fails. The uncertainty in the time for receiving the 
data is represented using a Gaussian distribution.  The two 
monitor nodes are assumed different; the primary node (𝑀𝑀1) is 
less expensive and less reliable compared to the backup node 
(𝑀𝑀2). All the data used for several parameters in this example 
are assumed for the sake of illustration.  The network 
bandwidth is assumed as 10 Mbps and the amount of 

communication data between several components is assumed 
as 1 KB (equal to 8Kb). The communication time is assumed to 
vary linearly with the amount of data. A Gaussian distribution 
is used to represent its variation with a standard deviation of 
10%. The processing times of the monitor, computational and 
master nodes are assumed 3, 6, and 6 times the sensor-to-
monitor communication time respectively. The MTTF data 
(simulated) for all the components and the time at each stage of 
analysis (such as sensor-to-software communication, node 
processing, node-to-node communication and node-to-physical 
system communication) are provided in Tables I and II 
respectively.  Note that the values in Table II represent the 
analysis times in one analysis cycle (20 ms).  

TABLE I. FAILURE RATE DATA FOR ALL COMPONENTS (SIMULATED) 

Component Failure rate Operation Cost 
DecaWave transmitter ( 𝐹𝐹𝑇𝑇) 6 months 10 
DecaWave receiver (𝐹𝐹𝑅𝑅) 6 months 10 
Network communicator (𝐹𝐹𝑁𝑁𝐶𝐶) 18 months 10 
Primary Monitor node (𝐹𝐹𝑀𝑀1) 18 months 100 

Backup Monitor node (𝐹𝐹𝑀𝑀2) 24 months 150 

First Computational node (𝐶𝐶1,𝐹𝐹𝐶𝐶1) 24 months 100 
Second Computational node (𝐶𝐶2,𝐹𝐹𝐶𝐶2) 18 months 150 
Master node (𝐹𝐹𝑀𝑀𝑁𝑁) 24 months 150 

TABLE II. TIME AT EACH STAGE OF ANALYSIS 

Components Time 
Receiver – Monitor nodes (𝑇𝑇𝑅𝑅𝑀𝑀) 𝑁𝑁(0.78, 0.078) ms 
Monitor nodes (𝑇𝑇𝑀𝑀) 𝑁𝑁(2.343, 0.2343) ms 
Monitor – Computational nodes (𝑇𝑇𝑀𝑀𝐶𝐶) 𝑁𝑁(0.78, 0.078) ms 
Computational nodes (𝑇𝑇𝐶𝐶) 𝑁𝑁(4.687, 0.4687) ms 
Computational – Master nodes (𝑇𝑇𝐶𝐶𝑀𝑀𝑁𝑁) 𝑁𝑁(0.78, 0.078) ms 
Master node (𝑇𝑇𝑀𝑀𝑁𝑁) 𝑁𝑁(4.687, 0.4687) ms 
Master node – Physical system (𝑇𝑇𝑀𝑀𝑁𝑁𝑀𝑀) 𝑁𝑁(0.78, 0.078) ms 

The overall analysis time for localization is given as the 
summation of 𝑇𝑇𝑅𝑅𝑀𝑀, 𝑇𝑇𝑀𝑀, 𝑇𝑇𝑀𝑀𝐶𝐶, 𝑇𝑇𝐶𝐶 𝑇𝑇𝐶𝐶𝑀𝑀𝑁𝑁, 𝑇𝑇𝑀𝑀𝑁𝑁, 𝑇𝑇𝑀𝑀𝑁𝑁𝑀𝑀 (Table II) 
which also results in a Gaussian distribution; the parameters 
(mean and standard deviation) can be computed as 14.843 and 
0.72. Since data is available every 20 ms, the threshold value 
for analysis time is assumed as 20 ms. Assume that the 
reliability of the CPS is evaluated over a period of 1 day, which 
equals 432 x 104 cycles. Since the DecaWave receivers can be 
changed whenever a new automobile arrives, the receivers are 
always assumed to work and not included in reliability 
analysis. Also, the duration of any particular automobile that 
requires parking is small compared to total time (1 day); 
therefore, the automobile is also not included in reliability 
estimation. Let the operational cost threshold be 600 units. The 
operation costs for various components are provided in Table I. 
The overall failure probability, considering both operational 
and timing requirements, is approximately equal to 0.017. 
Thus, the overall reliability of the system considering all 
possible configurations is 0.983. 

C. Reliability-based real-time re-configuration 
Let 𝐷𝐷1,𝐷𝐷3,𝐷𝐷4,𝐷𝐷6 be the DecaWave transmitters, 𝑀𝑀1, 𝐶𝐶1, 𝐶𝐶2 

be working in the initial configuration. The reliability of the 



initial configuration can be computed as 0.965, considering 
both failure cases. For illustration, let sensor 𝐷𝐷4 and 𝑀𝑀1 fail. As 
mentioned in Section V, the re-configuration is modeled as an 
SMT problem with failure of 𝑀𝑀1 and 𝐷𝐷4 as additional 
constraints. In the remaining possible configurations, the 
configuration with the highest reliability and within the 
operational cost constraints is chosen as the re-configuration 
point. The re-configuration with the highest reliability would 
be to replace 𝑀𝑀1 with 𝑀𝑀2 and choose either 𝐷𝐷2, or 𝐷𝐷5 to replace 
𝐷𝐷4. However, operating 𝑀𝑀2 and both the computational nodes 
violates the cost constraints. Therefore, one of the two 
computational nodes should be used even though the 
processing time increases, which increases the failure 
probability. Between 𝐶𝐶1 and 𝐶𝐶2, 𝐶𝐶2 is chosen due to its higher 
MTTF value and therefore higher reliability.  

The initial processing time of the computational nodes is 
assumed to be 6 times the communication time, when both 
nodes are working. In case when only one node is working, 
then the processing time is higher and assumed at 7 times the 
communication time. The failure probabilities associated with 
the operational and time requirements in the new configuration 
are 0.0315 and 0.0326; therefore, the overall failure probability 
and reliability are 0.0641 and 0.9359 respectively. The goal 
accomplished by this problem, even though straightforward, is 
the illustration of the reliability evaluation in CPS and 
reliability-based re-configuration subject to cost constraints.  

V. CONCLUSION AND FUTURE WORK 
This paper developed a framework for reliability analysis, 

which can be used for design selection and re-configuration in 
CPS. Real-time CPS are associated with both operational and 
timing constraints. The failures related to the physical system 
and sensors are modeled using their failure rates whereas the 
software is always assumed to work when its inputs are within 
designed ranges and fail if they are beyond the designed 
ranges. The uncertainty in the analysis time at each stage of 
analysis is represented using a PDF. Given individual 
distributions, the PDF of overall analysis time is obtained 
through Monte Carlo sampling, which can then be used to 
estimate the probability that the analysis time is greater than a 
threshold. The overall failure probability of a CPS is therefore 
the union of the failure probabilities associated with both 
operational and timing constraints. Re-configuration is 
modeled as an optimization problem in the configuration 
space to choose the configuration with the maximum 
reliability subject to cost constraints. A smart parking system 
that provides indoor localization and guidance is used to 
illustrate the proposed methods.  

This paper was primarily focused on reliability analysis 
for design selection and runtime reconfiguration. Other factors 
that influence the decision making process include utility and 
downtime. Increase in redundancy results in a low downtime 
but increased operational costs. To this end, future work 
should develop a decision-making framework considering 
tradeoffs between the utility, reliability and downtime.  
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