

Institute for Software-Integrated Systems

Technical Report

TR#: ISIS-15-101

Title: Component Models for Vehicle Software Platforms:

Two Case Studies

Authors: Daniel Balasubramanian, Gabor Karsai

Copyright (C) ISIS/Vanderbilt University, 2015

2

Component Models for Vehicle
Software Platforms: Two Case Studies

Daniel Balasubramanian

Abstract: This report (1) presents use cases and requirements for a vehicle
information architecture platform (VIAP), (2) reviews and evaluates the Automotive
Open System Architecture (AUTOSAR) and the Distributed Real-time Managed
System (DREMS) architecture specifications, and (3) presents a preliminary
architecture specification VIAP that addresses the needs of the DARPA Adaptive
Vehicle Make program.

This work was supported by the DARPA AVM Program under contract HR0011-13-
C-0041. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the DARPA.

3

Contents
Requirements for a Vehicle IAP .. 5

1. Support a full spectrum of modern software application architecture and design

approaches ... 5

2. Enable efficient use of system resources .. 5

3. Enable flexible use of system resources .. 5

4. Provide a robust, flexible, and manageable software infrastructure .. 5

4. Enable controlled sharing of system resources.. 5

5. Provide operational flexibility and maintainability .. 6

6. Provide a comprehensive framework for fault management ... 6

7. Provide a comprehensive framework for quality of service and resource management . 6

8. Support real-time processing within a computing node .. 6

9. Support real-time processing across the distributed computing platform 6

10. Provide security mechanisms sufficient to satisfy system security requirements 7

Overview of AUTOSAR .. 8

The Run-Time Environment (RTE) .. 8

AUTOSAR Basic Software (BSW) ... 9

AUTOSAR Operating System .. 10

AUTOSAR Microcontroller Abstraction Layer .. 10

AUTOSAR Applications ... 10

Encryption in AUTOSAR ... 11

TCP/IP in AUTOSAR... 12

Memory Protection with AUTOSAR .. 12

Error reporting with AUTOSAR .. 12

Timing Specification with AUTOSAR .. 13

Timing Protection with AUTOSAR OS .. 15

Tool support for AUTOSAR ... 16

Vehicles using AUTOSAR ... 18

DREMS: A Distributed Real-time Embedded Managed Systems Software Platform

Specification ... 19

Applications in DREMS ... 20

DREMS Run-time Software Platform Specification .. 21

DREMS Design-time Development Platform Specification .. 24

4

DREMS Summary .. 25

Suitability for a Vehicle IAP ... 27

Support a full spectrum of modern application architecture and design approaches 27

Enable efficient use of system resources .. 27

Enable flexible use of system resources .. 27

Provide a robust, flexible, and manageable software infrastructure .. 28

Enable controlled sharing of system resources ... 28

Provide operational flexibility and maintainability ... 28

Provide a comprehensive framework for fault management .. 29

Provide a comprehensive framework for quality of service and resource management ... 29

Support real-time processing within a computing node .. 30

Support real-time processing across the distributed computing platform 30

Provide security mechanisms sufficient to satisfy system security requirements 30

Timing model .. 31

Component model .. 32

Fault model .. 33

Tool-support ... 33

Computational requirements .. 34

Dynamic reconfiguration capabilities .. 35

Glossary ... 36

5

Requirements for a Vehicle IAP
A Vehicle Information Architecture Platform (VIAP) is a software platform for
running mission-relevant software applications on the embedded computers of a
vehicle. Mission critical applications may include navigation applications,
management of digital communications, sensor management and processing,
storage management, and many others. The list below summarizes high-level
requirements for such a platform. Note that these requirements have been
influenced by earlier work on the DARPA System F6 Program where a similar
Information Architecture Platform was designed for fractionated satellites.

1. Support a full spectrum of modern software application architecture and
design approaches
The VIAP should permit application developers to use a wide-range of design and
implementation techniques, particularly with respect to existing and anticipated
developments in hardware and software platforms. Techniques such as massive
parallel processing, virtual machines, application controlled memory management,
garbage collection, modern implementation languages (including but not limited to
functional, actor-based and object-oriented languages), component-based software
development, model-based code generation, etc. should be usable on the platform.

2. Enable efficient use of system resources
The VIAP should enable the efficient use of all low-level platform resources,
including: (1) processing (e.g., CPU time), (2) dynamic memory (e.g., RAM), (3)
persistent storage (e.g., file space), (4) communication (e.g., network bandwidth),
and (5) system services (provided by the VIAP).
Efficient use means that the resources are well-utilized (nothing is over- or under-
utilized), and that effective resource management services are available on the
platform to make this feasible.

3. Enable flexible use of system resources
The VIAP should enable the dynamic change and adjustment of resource usage, so
that the system can respond effectively and, to the degree possible, autonomously,
to changes in application needs, system configuration and/or operating
environment.

4. Provide a robust, flexible, and manageable software infrastructure
The software platform has to be robust and dependable, but it also has to permit the
configuration and management of the software applications. Mission software can
and will change over time, so a robust administration interface is required to
facilitate these software configuration changes.

4. Enable controlled sharing of system resources
The VIAP should enable controlled sharing of low-level platform resources among
applications potentially running on multiple security levels. Shared resources
include (1) processing (e.g., CPU time), (2) dynamic memory (e.g., RAM), (3)
persistent storage (e.g., files, flash memory), (4) communication (e.g., network

6

bandwidth), (5) hardware devices (e.g., special physical interface devices for
sensors, etc.), and (6) system services (provided by the VIAP). The purpose of the
controlled sharing is to ensure non-interference among applications and compliance
with security policies.
The VIAP should provide flexible administrative mechanisms to ensure control of
both the static and dynamic allocation of system resources.

5. Provide operational flexibility and maintainability
The VIAP should provide flexibility for the operation and maintenance of itself and
of applications that it hosts. This requirement calls for features to support,
including, but not limited to: system and application debugging, on-line and post-
mortem fault diagnosis, analysis of system and application operating state, analysis
of system and/or application state after a failure, tracing and inspection of system
and application activities, and replacement and update of system and application
software components.

6. Provide a comprehensive framework for fault management
A fault management framework should enable accommodation of arbitrary inputs
from within and from outside of the system, diagnostic procedures, and response
mechanisms, supporting both manual and autonomous fault responses.
The fault management framework should accommodate fault detection and
response for the VIAP itself, for system and vehicle special hardware, and faults and
responses within applications. The fault management framework is required to
provide resilience; mission-critical system functions are expected to be restored
even if hardware and software fail.

7. Provide a comprehensive framework for quality of service and resource
management
A QoS framework provides a system-wide view for resource definition, allocation
and management. It provides for autonomous responses to changing resource needs
or system resource availability. It should provide strong predictability to mission
application designers and operators, enabling rigorous service level guarantees.
Resources that can participate in a QoS framework include: (1) network resources
(e.g. bandwidth), (2) communication quality (e.g., latency, jitter, and reliability), (3)
processing resources (e.g. CPU utilization), (4) dynamic memory, (5) persistent
storage, (6) special vehicle hardware, (7) system services.

8. Support real-time processing within a computing node
The VIAP should provide well-defined and predictable real-time properties for all its
functions, and should provide scheduling mechanisms (e.g., for processing and
communication) that ensure predictable performance in response to explicitly
defined real-time requirements within a computing node. Within a computing node,
real-time operation is constrained primarily by processor scheduling.

9. Support real-time processing across the distributed computing platform
The VIAP should provide well-defined and predictable real-time properties for all its
functions, and should provide scheduling mechanisms (e.g., for processing and

7

communication) that ensure predictable performance in response to explicitly
defined real-time requirements, across the distributed computing platform (that
includes vehicle local area networks). Within the network, real-time operation is
constrained primarily by network bandwidth and latency.

10. Provide security mechanisms sufficient to satisfy system security
requirements
The platform should support applications running side-by-side that are of different
security levels. Isolation between levels and the prevention of unauthorized
information flows is of utmost relevance. The platform should provide assurances
for robustness and resistance to attacks, including ones introduced by untrusted
applications.

8

Overview of AUTOSAR
The Automotive Open System Architecture (AUTOSAR) is an open and standardized
automotive software architecture jointly developed by manufacturers, suppliers and
tool developers working in the automotive industry. Its primary objective is to
create standards for automotive electrical/electronic (E/E) architectures that
provide the basic infrastructure to assist with developing vehicle software, user
interfaces and management functionality. AUTOSAR can be seen as an infrastructure
that supports many standards.
The stated goals of AUTOSAR include the following:

 Standardize basic software functionality of ECUs.

 Reduce complexity of the heterogeneous software landscape within cars.

 Implementation and standardization of basic system functions as an OEM

wide “standard core” solutions.

 Scalability to different vehicle and platform variants.

 Transferability of software.

 Definition of an open architecture.

The motivation for AUTOSAR is the following:
 Management of complexity associated with increase in functionality.

 Flexibility for product modification, upgrading and updating.

 Improved quality and reliability of E/E systems.

The main intention of AUTOSAR is a common standard for the layer of software in
automobiles that is invisible to end-users, with the objective of creating a basis for
industry collaboration on basic functions and competition on innovative functions.
One of the basic sayings of AUTOSAR is to “collaborate on standards, compete on
implementations.”

The Run-Time Environment (RTE)
At system design level, (i.e. when drafting a logical view of the entire system
irrespective of hardware) the AUTOSAR Runtime Environment (RTE) acts as a
communication center for inter- and intra-ECU information exchange. The RTE
provides a communication abstraction to AUTOSAR Software Components attached
to it by providing the same interface and services regardless of whether inter-ECU
communication channels are used (such as CAN, LIN, FlexRay, MOST, etc.) or
communication stays intra-ECU. As the communication requirements of the
software components running on top of the RTE are application dependent, the RTE
must be tailored, partly by ECU-specific generation and partly by configuration.
Thus, the resulting RTE will differ between one ECU and another due to the fact that
it is partly generated and also configured for specific ECUs. How the RTE is realized
in the run-time system differs between implementations (it could, for instance, be
realized as a lightweight middleware).

9

The RTE provisions inter- and intra-ECU communication across all nodes of a
vehicle network and is located between the functional SW-components and basic
SW-modules. It also enables integration of customer specific functional SW modules.
Figure 1 below shows how the RTE fits in with the other software modules and
components in an AUTOSAR system.

Figure 1 - The AUTOSAR RTE and Overall Architecture.

AUTOSAR Basic Software (BSW)
The Basic Software (BSW) is standardized software layer which provides services to
AUTOSAR software components. As Figure 1 above shows, the BSW layer sits below
the RTE and contains standardized and ECU specific components. The BSW layer
includes modules for primitive operations, such as communication, and is used by
higher-level components. The BSW contains components that are standardized
across all systems, as well as components that are specific to an ECU. Examples of
the standardized components of the BSW include:

 System services (NVRAM, flash, memory management)

 Communication management (FlexRay, CAN, LIN), I/O management,

Network management

 OS specifications (see below)

 Microcontroller abstractions (see below)

10

ECU specific components includes:
 ECU abstraction to provide a software interface to electrical values of any

ECU.

 Complex Device Driver (CDD) allows direct access to hardware for resource

critical applications.

AUTOSAR Operating System
AUTOSAR specifies only the requirements for an operating system (OS), and thus
any OS that satisfies its OS specification can be used on the ECU, including
proprietary OSs. Any OS must be abstracted to an AUTOSAR OS by providing the
interfaces and services listed in the AUTOSAR OS Specification. The Standard OSEK
OS (ISO 17356-3) is used as the basis for the AUTOSAR OS. The following are
example requirements for the OS:

 Must be configured and scaled statically.

 Must be amenable to reasoning about real-time performance.

 Must provide priority-based scheduling.

 Must provide protective functions at run-time.

 Must run on low-end controllers and without external resources.

Even though the AUTOSAR OS does not explicitly state which OS must be used, the
majority of the implementations seem to use a derivative/modification of the OSEK
OS.

AUTOSAR Microcontroller Abstraction Layer
Access to the underlying hardware is routed through a layer called the
Microcontroller Abstraction Layer (MCAL) to avoid direct access to registers from
high-level software (see Figure 1). MCAL is a hardware-specific layer that provides a
standard interface to the Basic Software (BSW). This interface is then used by the
BSW layer to query specific information from the underlying microcontroller. This
allows the BSW to provide higher-level components with microcontroller
independent values.
The Microcontroller Abstraction Layer can provide several capabilities, including
Digital I/O, Analog/Digital Conversion, Pulse Width Modulation, Flash, Watchdog
Timers and I2C Bus interfacing.

AUTOSAR Applications
An application in AUTOSAR consists of interconnected Software Components
(SWCs). These can be seen at the top of Figure 1. AUTOSAR makes a clear distinction
between application and infrastructure. Each instance of an AUTOSAR software
component is assigned to one ECU, and in this sense they are atomic. The
communication is described at a very abstract level called the “Virtual Function Bus”
(VFB). Components communicate through ports with no knowledge of the
communication path. The Run-Time Environment (RTE) implements the VFB on the
ECU. The RTE gives an interface that is bus-independent and issues commands to

11

the basic software of the ECU. The basic software can then access the hardware
directly.
To create an executable ECU component, there are series of steps. XML is used as the
interchange format (the XML is based on a schema derived from the AUTOSAR UML
model). The schema file consists of 4 basic parts:

1. Software component template (defines individual software components).

2. Basis software module description template (describes all information about

a Basis Software Component).

3. ECU configuration template (describes architecture and interfaces of ECU).

4. System template (defines overall system). Stores information about bus

systems, signals, mapping and topology. Shares commonality with FIBEX

standard.

Encryption in AUTOSAR
AUTOSAR supports security by providing the Crypto Security Manager (CSM), which
is an integral part of the system. The CSM provides an abstraction layer in the form
of a standardized interface that gives access to basic cryptographic functionalities
for all software modules. Software modules that need access to cryptographic
functionality can configure and initialize the CSM for their specific needs, such as
synchronous or asynchronous processing.
The current specification of the CSM does not place a requirement on where the
CSM executes in relation to the software components that use it. This permits, for
example, the CSM running on one ECU to be used by software components running
on different ECUs. This may have security implications because the data a software
component wants to encrypt must first travel to the SCM over a communication
channel that is not necessarily encrypted.
Currently, encryption is done in software, but there is on-going work to implement
the encryption functions in hardware which would improve the security (because
the private keys are then stored in a way that prevents external access). A hardware
solution would also increase performance. Hardware support for encryption will
enable the encryption of all on-board data communications across CAN, FlexRay and
Ethernet bus systems. Currently, messages across the communication busses carry a
signature but are not encrypted. The encryption will massively restrict the access to
internal data buses and ECUs. This is currently one of the big topics for OEMs and
tier ones.
Data in the system may be encrypted for a variety of reasons. Manufacturers may
wish to encrypt proprietary data to prevent third-party vendors from reverse
engineering their protocols. As automobiles integrate more multimedia
functionality and connectivity to devices such as cell-phones and tablet computers,
data may need to be encrypted to keep it safe from malicious network attacks. This
is especially true as the use of Car-to-X is being integrated into cars.
Reference:
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager
.pdf

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager.pdf

12

TCP/IP in AUTOSAR
TCP/IP is specified in version 4.1.1 of the AUTOSAR specification. The entire
communications stack is specified according to AUTOSAR, which means it can be
configured using the AUTOSAR methodology. Although the specification does not
prescribe a certain physical layer or data rate, currently only Ethernet over wired-
LAN is being considered (the upcoming BMW 7 Series will be the first vehicle to
integrate Ethernet). The benefit of Ethernet is that it is very mature. Even though
such a communication stack requires more hardware resources than, for example,
CAN communications (for both computing power and in particular for RAM), the
benefit is that it provides a high-performance data network technology suitable for
future applications, such as multimedia applications and Car-to-X.
Reference: http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_TcpIp.pdf

Memory Protection with AUTOSAR
Memory protection prevents a process from accessing memory that has not been
allocated to it. This helps prevent a memory bug in one process from affecting other
processes or the operating system. For instance, memory protection can prevent
one process from accessing the memory stack of another process.

Section 7.7.1 of the AUTOSAR OS specification states that memory protection will
only be possible on processors that provide hardware support for memory
protection. The memory protection scheme is based on the data, code and stack
sections of the executable program. However, because the AUTOSAR OS
Specification is based on OSEK and OSEK systems are expected to run on chips
without memory protection, it is not unexpected for AUTOSAR to assume that
memory protection will not be available.

Error reporting with AUTOSAR
Error reporting in AUTOSAR is enabled through the Diagnostic Event Manager
(Dem) service, which is a component that processes and stores Diagnostic Events
(errors) and associated data. A Diagnostic Event defines the atomic unit that can be
handled by the Dem module. The Dem handles and stores events detected by
diagnostic monitors in both Software Components (SWCs) and Basic Software
(BSW).
A diagnostic monitor is a routine entity that determines whether a component is
functioning properly. The diagnostic monitor provides monitoring that identifies a
specific fault type (for example, short to ground, open load) for a monitoring path. A
monitoring path represents the physical system or a circuit that is being monitored.
Each monitoring path is associated with exactly one diagnostic event. A diagnostic
monitor is implemented as a piece of code in a SWC (or in the BSW) that
communicates with the Dem using AUTOSAR standard communication ports.
Each Diagnostic Event has an associated priority that ranks the event based upon its
level of importance and determines whether its fault entry may be removed from
the event memory of the Dem in case the event memory is full. The Dem also stores

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_TcpIp.pdf

13

an occurrence counter per event memory entry (with a maximum limit of 255, after
which the counter stays at 255). Each Diagnostic Event falls under one of two types
of significance levels that is configurable per event:

 Fault: classifies a failure that relates to the component or ECU itself and

requires, for example, a repair action.

 Occurrence: Classifies an issue which is not a fault, but which indicates

insufficient system behavior. This may relate to an condition out of the ECU’s

control.

While the Diagnostic Event Manager is the entity that stores diagnostic events, the
Diagnostic Communication Manager (Dcm) Software module is what provides a
common API for diagnostic services. The DCM module is what is used by external
diagnostic tools during development, manufacturing or maintenance and servicing.
A Diagnostic Trouble Code (DTC) defines a unique identifier that is shown to the
diagnostic tester. This unique identifier is mapped to a Diagnostic Event of the Dem
module. The Dem then provides the status of the DTC to the Dcm.
The Dem module supports DTC standardized formats, including ISO 14229-1, ISO
15031-6, SAE J1939-73 and ISO 11992-4. DTC groups (as opposed to single DTC
values) are also supported. The AUTOSAR provides DTC groups for powertrain,
chassis, body and network communication codes.
References:
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicat
ionManager.pdf
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManag
er.pdf (especially Sections 7.1 and 7.1.6).

Timing Specification with AUTOSAR
Beginning with version 4.0, AUTOSAR provides Timing Extensions that provide the
basic means to describe and specify timing information: Timing descriptions,
expressed by events and event chains, and timing constraints that are imposed on
these events and event chains. Both means, timing descriptions and timing
constraints, are organized in timing views for specific purposes. The timing
extensions serve two main purposes. The first is to provide timing requirements
that guide the construction of systems which eventually shall satisfy those timing
requirements. The second purpose is to provide sufficient timing information to
analyze and validate the temporal behavior of a system.
Events refer to locations in systems at which the occurrences of events are
observed. The AUTOSAR Specification of Timing Extensions defines a set of
predefined event types for such observable locations. Those event types are used in
different timing views and each of these timing views correspond to one of the
AUTOSAR views: VFB Timing and Virtual Function Bus VFB View; SW-C Timing and
Software Component View; System Timing and System View; BSW Module Timing
and Basic Software Module View; as well as ECU Timing and ECU View.
In particular, one uses these events to specify the reading and writing of data from
and to specific ports of software components, calling of services and receiving their

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManager.pdf

14

responses (VFB, SW-C, System and ECU Timing); sending and receiving data via
networks and through communication stacks (System and ECU Timing); activating,
starting and terminating executable entities (SW-C Timing and Basic SW Module
Timing); and last but not least calling basic software services and receiving their
responses (ECU Timing and Basic SW Module Timing).
An Event Chain describes the temporal correlation between two observable events
(referred to as the stimulus and response) that have a functional dependency and
contains a timing constraint. Event chains can be built-up in hierarchies. The notion
of an event chain enables one to specify the relationship between two events, for
example when an event A occurs then the event B occurs, or in other words, the
event B occurs if and only if the event A occurred before. In the context of an event
chain, the event A plays the role of the stimulus and the event B plays the role of the
response. Event chains can be composed of existing event chains and decomposed
into further event chains; in both cases, the event chains play the role of event chain
segments.
The notion of an Event is used to describe that specific events occur in a system and
at which locations in this system the occurrences are observed. In addition, an Event
Triggering Constraint imposes a constraint on the occurrences of an event, which
means that the event triggering constraint specifies the way an event occurs in the
temporal space. The AUTOSAR Specification of Timing Extensions provides means
to specify periodic and sporadic event occurrences, as well as event occurrences
that follow a specific pattern (burst, concrete and arbitrary patterns).
Latency and synchronization timing constraints impose constraints on event chains.
With timing constraints on Events, the constraint is used to specify a reaction and
age, for example if a stimulus event occurs then the corresponding response event
shall occur not later than a given amount of time. For timing constraints on Event
Chains, the constraints are used to specify that stimuli or response events must
occur within a given time interval (tolerance).
In addition to the timing constraints that are imposed on Events and Event Chains,
the AUTOSAR Timing Extensions provide timing constraints which are imposed on
Executable Entities, namely the Execution Order Constraint and Execution Time
Constraint.
There are five distinct timing views, each associated with a particular AUTOSAR
view:

 Virtual Function Bus: describes timing information related to the interaction

of software components at the VFB level. Typically captures end-to-end

timing constraints, including physical sensors and actuators. Does not refer

to the internal behavior of a SWC. Can express timing constraints such as,

“From the point in time when a value is received on an input port, at most

2ms can elapse before a value is produced on an output port.”

 Software Component (SWC): describes timing information related to the

internal behavior of a Software Component. This timing description can refer

to the activation, start and termination of the execution of Runnable Entities

15

within a SWC (the description of the internal behavior of a SWC is broken

down into Runnable Entities, which are executed at runtime).

 System: describes timing information at a system level using information

about topology, software deployment and signal mapping. This view allows

timing to refer to the concrete communication of software components,

which is either local communication over the RTE if the components are on

the same ECU or remote communication over the RTE if the components are

on different ECUs.

 Basic Software Module: describes timing information about a single Basic

Software Module. This view is similar to the timing view for Software

Components described above, and the timing description also refers to the

activation, start and termination of Runnable Entities within the Basic

Software Module.

 ECU: describes timing information that can reference all ECU-relevant

information, including the deployed software component instances and ECU

related interactions (such as bus communication or Basic Software

interactions). This timing view has the same expressivity as the System

Timing view, but only focuses on one specific ECU.

To summarize: the timing description for the entities in a system is specified by
describing Events or Event Chains (which specify some observable behavior) and
then describing timing constraints on those Events or Event Chains. This timing
description is a requirement on the eventual implementation of the system and
should not necessarily be considered as describing characteristics of the actual
implementation (unless the actual implementation of the system has somehow been
proven or shown to meet the requirements). The specification does acknowledge
that the worst-case execution time (WCET) of a SWC, which is specific to a CPU, is
needed to perform timing assessments. This is enabled by having the SWC template
specify the timing-requirements of each runnable entity of a SWC, including the
period (how often it has to be run) and the reaction time (time between stimulus
and response). However, the specification does not specify a methodology for
checking either timing constraints of individual software components or global
timing properties of an integrated system.

Timing Protection with AUTOSAR OS
In regards to the timing protection of the AUTOSAR OS, a timing fault is defined as
what occurs when a task or interrupt in a real-time system misses its deadline at
runtime. The AUTOSAR OS does not offer deadline monitoring for timing protection
due to the fact that it is insufficient to identify the task/ISR causing the timing fault
in the system. Instead, whether a task or ISR meets its deadline in a fixed priority
preemptive system like AUTOSAR OS is determined by:

1. Execution time of the tasks/ISRs in the system

16

2. The blocking time that tasks/ISRs suffer from lower priority tasks/ISRs

locking shared resources or disabling interrupts.

3. The interarrival rate of tasks/ISRs in the system.

The system must control these three factors at runtime for timing protection.
AUTOSAR prevents (1) by using execution time protection. Execution time protection
here consists of first statically configuring an upper bound, called an execution
budget, on the execution time of tasks and category 2 ISRs (a category 2 ISR is
supported by the OS and can make OS calls; a category 1 ISR is not supported by the
OS and is only allowed to make a very small selection of OS calls to enable and
disable all interrupts). At run-time, the OS monitors the time that a task or category
2 ISR executes and preempts the task if its execution time exceeds its statically
configured execution budget.
AUTOSAR OS prevents (2) by using locking time protection to guarantee a statically
configured upper bound (called the Lock Budget) on the time that resources are
held by tasks/category 2 ISRs, OS interrupts are suspended, and all interrupts are
suspended.
AUTOSAR OS prevents (3) by using inter-arrival time protection to guarantee a
statically configured lower bound (called the Time Frame) on the time between (1)
a task being permitted to transition into the ready state, and (2) a category 2 ISR
arriving.
Section 1.1 of the Time Service specification describes the Time Service module, an
AUTOSAR Basic Software module, that is part of the System Services Layer and
provides services for time-based functionality. It can be used for time measurement,
time based state machines (state changes based on time can be implemented),
timeout supervision and busy waiting (can use predefined “Predef” Timers instead
of loops or no-op instructions to implement timeout supervision or busy waiting). It
can be used to measure the execution time and cycle time of code, including the run
time and cycle time of tasks, ISRs, functions and pieces of software. However, section
4.2 (Limitations) states that functionality of the time service module is based on
hardware timers provided by the GPT (General Purpose Timer) driver. The
specification defines no standardized AUTOSAR interfaces, meaning that the
services of the Time Service module are not accessible by AUTOSAR SWCs located
above the RTE; a standardized interface may be added in the future.
References:
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_TPS_TimingExtensions.pdf
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_RS_TimingExtensions.pdf
http://www.bmw-carit.com/projects/AUTOSAR-timing-specification.php
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_TimeService.pdf

Tool support for AUTOSAR
The majority of tools supporting the development of AUTOSAR-based systems have
a commercial license. Four specific tools are described below; there are several
other commercial tools that are available to the public, as well as proprietary tools
developed by manufacturers for their own internal use.

http://www.autosar.org/download/R4.1/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_RS_TimingExtensions.pdf
http://www.bmw-carit.com/projects/autosar-timing-specification.php
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_TimeService.pdf

17

Mentor Graphics offers a tool suite called Volcano VSx for top-down vehicle system
and ECU design. It covers automotive software and electronic systems design,
virtual verification, testing and configuration. It supports standard AUTOSAR
import/exports. Timing analysis of communications is supported with the Volcano
VSA COM Designer tool. They offer a Basic Software (BSW) stack, as well as a
Bootloader, RTE, customized diagnostics and customized software components.
They claim their BSW stack offers predictable real-time network behavior, efficiency
(low memory use, fast execution time, and small code size), easy portability and
high quality.
ARCCORE offers a GPL license for Arctic Core and the base version of Arctic Studio
tools. They report that a global Tier1 supplier headquartered in Japan is using the
ARCCORE AUTOSAR 4.x solutions (Arctic Core and Arctic Studio) to develop new
ECUs. The Arctic Core Standard Package includes features required in an ECU,
including communication, diagnostics, safety services and an RTOS. The tools
support PowerPC and ARM architectures, and more can be added for additional
cost. The communication protocols support include TCP/IP, LIN services and CAN
services; FlexRay is not advertised as being available out of the box.
MathWorks is an AUTOSAR premium member and actively participates in
development of the standard with a focus on how to use model-based development
within an AUTOSAR development process. Simulink and Embedded Coder allow
engineers to import and export AUTOSAR software component descriptions and
generate AUTOSAR production code in an integrated environment. Simulink
provides support through model configuration settings rather than AUTOSAR
specific blocks, allowing a single model to be used as a reference for simulation,
prototyping and production code generation in both AUTOSAR and non- AUTOSAR
environments. Advanced capabilities for AUTOSAR applications are provided
through the AUTOSAR Target Production Package (ATPP), which may be requested
at the following site: http://www.mathworks.com/matlabcentral/answers/97870-
are-AUTOSAR-advanced-production-capabilities-available-for-simulink-and-
embedded-coder.
The current workflow for using Simulink for AUTOSAR development includes the
following steps.

1. Use an AUTOSAR Authoring Tool to design the software architecture of the

vehicle functionality.

2. Export the software component description files using the AUTOSAR .arxml

format.

3. Import these software component description files into Simulink, which will

automatically generate a skeleton model of the interfaces and internal

behavior defined in the software component description.

4. To generate AUTOSAR compliant code, finalize and validate the AUTOSAR

Configuration using the Simulink AUTOSAR Mapping Editor.

5. AUTOSAR compliant code and corresponding .arxml files can then be

generated directly from Simulink. The generated components are then ready

for integration into the ECU.

http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder
http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder
http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder

18

BMW has a tool called Artime that is a textual editor to create text-based timing
models that comply with the AUTOSAR Timing Extensions. Artime is a domain-
specific language built on top of the AUTOSAR Tool Platform (Artop), a base platform
for developing AUTOSAR tools, as well as ARText, a framework for building textual
modeling languages for AUTOSAR. The level of support this tool provides for
automatically checking whether timing requirements can/are satisfied is unclear.

Vehicles using AUTOSAR
While the adoption of AUTOSAR was primarily found in high-end automobile
manufacturers in its early years, several automobile makers now use it in at least
some components of their cars. BMW originally introduced AUTOSAR ECUs in their
7 Series and now uses it in all of their product lines. The next 7 Series BMW will fully
use version 4 of the AUTOSAR specification and will be the first car to introduce
Ethernet as a data backbone in vehicles.
The latest Mercedes S-Class used AUTOSAR in about 70 ECUs, which is considered
fairly large scale. Other lines besides the S-Class will use AUTOSAR in the future.
Robert Bosch is now using AUTOSAR in all markets and integrating it into all
relevant vehicle domains.
Toyota had their first ECU with AUTOSAR-based software as of 2013 and expects to
gradually transition to a heavier use of AUTOSAR over time.
PSA Peugeot Citroen states that all engine management systems and body
controllers now run on AUTOSAR ECUs.
Reference:
http://www.AUTOSAR.org/download/media_release/Ten_Years_of_AUTOSAR_EN.p
df

http://www.autosar.org/download/media_release/Ten_Years_of_AUTOSAR_EN.pdf
http://www.autosar.org/download/media_release/Ten_Years_of_AUTOSAR_EN.pdf

19

DREMS: A Distributed Real-time Embedded Managed Systems
Software Platform Specification
DREMS is a software infrastructure specification for designing, implementing,

configuring, deploying and managing distributed real-time embedded systems1 that

describes two major subsystems: (1) a design-time toolsuite for modeling, analysis,

synthesis, implementation, debugging, testing, and maintenance of application software

built from reusable components, and (2) a run-time software platform for deploying,

managing and operating application software on a network of computing nodes. The

DREMS specification is primarily targeted towards platforms that provide a managed

network of computers and distributed software applications running on that network; in

other words, a cluster of networked nodes.

The design-time toolsuite specification is naturally supported by a model-based

paradigm of software development for distributed, real-time, embedded systems where

modeling tools and generators automate the tedious parts of software development

and also provide a design-time framework for the analysis of software systems. The run-

time software platform specification is to reduce the complexity and increase the

reliability of software applications by describing reusable technological building blocks

in the form of an operating system, middleware, and application management services.

Figure 2 - DREMS Architecture

1 DREMS was supported by the DARPA System F6 Program under contract NNA11AC08C through
NASA ARC.

Software toolchain
for modeling,

synthesis, analysis,
and verification

Software platform
with support for

components,
resource sharing,
security, and fault

tolerance

Actor

Actor

OS

RT Middleware

Comp Deployment
Manager

Comp Comp

CompComp

Device Device Comm.
Device

Cluster Lead

20

Operating System

A system implementing the DREMS specification has the ability to provide a complete,

end-to-end solution for software development: from modeling tools to code to

deployed applications. DREMS focuses on the architectural issues of the software, and

promotes the modeling of application software, where the models are directly used in

the construction of the software.

The sections below describe the high-level requirements of the DREMS specification for

Information Architecture Platforms.

Applications in DREMS
Software applications running on the DREMS platform shall be distributed: an

application can consist of one or more actors that run in parallel, typically on different

nodes of a network. Actors specialize the concept of processes: they have identity with

state, they can be migrated from node to node, and they are managed. Actors are

created, deployed, configured, and managed by a special service of the run-time

platform: the deployment manager – a privileged, distributed, and fault tolerant actor,

present on each node of the system, that performs all management functions on

application actors. An actor can also be assigned a limited set of resources of the node it

runs on: memory and file space, a share of CPU time and a share of the network

bandwidth.

Applications shall be built from software components – hosted by actors – that interact

via only well-defined interaction patterns using security-labeled messages, and are

allowed to use a specific set of low-level services provided by the operating system. The

low-level services include messaging and thread synchronization primitives, but

components use these indirectly through the middleware libraries.

The middleware libraries shall

implement the high-level

communication abstractions:

synchronous and asynchronous

interactions, on top of the low-

level services provided by the

underlying distributed hardware

platform. Interaction patterns shall

include (1) point-to-point

interactions (in the form of

synchronous and asynchronous

remote method invocations), and

(2) group communications (in the

form of asynchronous publish-

subscribe interactions). Component operations can be event-driven or time-triggered,

enabling time-driven applications. Message exchanges via the low-level messaging

Figure 3 - DREMS applications, actors, components and
services

21

services are time-stamped, thus message receivers are aware of when the message was

sent. Hence temporal ordering of events can be established (assuming the clocks of the

computing nodes are synchronized).

Specialized, verified platform actors shall provide system-wide high-level services:

application deployment, fault management, controlled access to I/O devices, etc. Each

application actor exposes the interface(s) of one or more of its components that the

components of applications can interact with using the same interaction patterns.

Applications can also interact with each other the same way: exposed interfaces and

precisely defined interaction patterns.

The DREMS Operating System shall implement all the critical low-level services to

support resource sharing (incl. spatial and temporal partitioning), actor management,

secure (labeled and managed) information flows, and fault tolerance. A key feature of

the OS layer is support for temporal partitions (similarly to the ARINC-653 standard):

actors can be assigned to a fixed duration, periodically repeating interval of the CPU’s

time so that they have a guaranteed access to the processor in that interval. In other

words, the actors can have an assured

bandwidth to utilize the CPU and actors in

separate temporal partitions cannot

inadvertently interfere with each other via

the CPU. The DREMS Operating System

specification provides the possibility for

several types of implementations, such as

a set of extensions to the Linux kernel or

possibly using a microkernel approach.

DREMS Run-time Software Platform
Specification
The run-time software platform shall

consist of several layers, as shown in the

Figure. Practically all layers are based on

existing and proven open-source

technology. The bottom of the Figure

shows how the operating system layer

could be implemented by extending the

Linux kernel with a number of specific

services while at the same time keeping

the existing Linux system calls. The

advantage of this approach is that

developers can use existing Linux system calls, side-by-side with the DREMS OS system

calls.

Figure 4 - DREMS run-time software layers

22

The C and C++ run-time support libraries implement the conventional support services

needed by the typical C and C++ programs. The C run-time library has entry points to

access the DREMS OS system calls. These calls utilize data structures that shall be

defined using the standard Interface Definition Language (IDL), which will allow them to

be created, and manipulated using generated constructor and manipulation operators.

The implementation of the DREMS operating system calls shall check the integrity of all

data structures passed on the interface. This enables validation of the data structures on

the interface, preventing potential abuse of the system calls.

Layered on top of the C and C++ run-time libraries are the Adaptive Communication

Environment (ACE) libraries, which shall provide a low-overhead isolation layer for the

higher level middleware elements that support CORBA and DDS. The CORBA

implementation can be based on The ACE ORB (TAO, currently: version 6.1.4) that

implements a subset of the CORBA standard for facilitating point-to-point interactions

between distributed objects. Such interactions are in the form of Remote Method

Invocations (RMIs) or Asynchronous Method Invocations (AMIs). RMIs shall follow the

call-return semantics, where the caller waits until the server responds, while the AMIs

shall follow the call-return-callback semantics, where the caller continues immediately

and the response from the server is handled by a registered callback operation of the

client. The CORBA subset that shall be implemented by the middleware has been

selected to support a minimal set of core functions that are suitable for resource-

constrained embedded systems.

The DDS implementation can be based on

the OpenDDS (currently: version 3.4) that

implements a subset of the DDS standard

for facilitating anonymous publish/subscribe

interactions among distributed objects. In

these interactions, publishers send typed

messages of specific topics via the

middleware which then distributes them to

subscribers interested in those topics.

Subscribers can be anywhere on the

network, they can join and leave the system

at any time – the distribution middleware

decouples publishers from the subscribers.

There shall be several quality-of-service

attributes associated with publishers and subscribers that control features like

buffering, reliability, delivery rate, etc. DDS is designed to be highly scalable, and its

implementations meet the requirements of mission-critical applications.

CORBA and DDS shall provide for data exchange and basic interactions between

distributed objects, but in DREMS objects are packaged into higher-level units called

Figure 5 - A DREMS component

23

components. A component, shown in the Figure, shall publish and subscribe to various

topics (possibly many), implement (thus provide) interface(s), and expect (thus require)

implementations of interfaces. Note that a component may contain several, tightly

coupled objects. Components may expose (part of) their observable state via read-only

state variables, accessible through specific methods. Components shall be configured

via parameters and have memory resources needs. Component operations shall be

scheduled based on events or the elapse of time. An event can be the arrival of a

message to which the component has subscribed or an incoming request on a provided

interface. Time-triggering is done by associating a timer with the component that

invokes a selected operation on the component when a configurable amount of time

elapses, possibly periodically repeating the operation. Component operations can

perform computations, publish messages and call out to other components via the

required interfaces. To avoid having to write complex locking code for components,

component operations shall always be single threaded: inside of one component at

most one thread shall be active at any time.

Actors shall be

formed from

interacting

components,

and applications

shall be formed

from actors that

interact with

each other via

their interacting

components.

Actors (together

with their components) can be deployed on different nodes of a network, but their

composition and interactions shall always be clearly defined: they must happen either

via remote method invocations or via publish/subscribe interactions. The Figure above

shows an application where a Sensor component periodically (P) publishes a message

to which a GPS component subscribes and which, in turn, sporadically (S) publishes

another message that a NAVDisplay component consumes. This last component

invokes the GPS component via a provided interface when it needs to refresh its own

state. The messages published can be quite small, while the method invocation (that

happens less frequently, and on demand) may transfer larger amounts of data. The

number of possible combinations of interactions among components is quite large, but

each interaction pattern is precisely defined, which allows application developers to

understand all operational scenarios. Note that applications can be multi-threaded, but

individual components shall be single threaded.

Figure 6 - Interacting DREMS components deployed on two different nodes

24

Interactions shall be realized by connectors that support specific interaction patterns. In

addition to the two main patterns described above, components may interact using

network sockets (for conventional message oriented networking using POSIX standard

socket APIs), timers, and I/O devices. For each case, the synchronization between

component code execution and the events of the external world is precisely defined and

allows the implementation of

various interactions to

enable a high degree of

asynchrony and

responsiveness.

The run-time software

platform shall include a key

platform actor: the

Deployment Manager (DM)

that shall instantiate,

configure, and dismantle

applications. Every node on a

network shall have a copy of

the DM that acts as a

controller for all applications on that node. The DMs shall communicate with each

other, with one being the lead ‘Cluster’ DM. This cluster leader DM shall orchestrate the

deployment of applications across the cluster with the help of the node DMs. For

deployment, the binaries of application components and a deployment plan (an XML

file) shall be placed on each node, then the cluster lead DM shall read and execute the

plan: it shall start with the actors, install components, configure the network

connections among the components, etc., and finally activate the components. This last

step shall release the execution threads of the components. When the applications need

to be removed, the DM shall stop the components, remove the network configuration,

and stop the actors. A key feature of the deployment process is that the network

connections among the parts (i.e., actors and components of the distributed

application) shall be managed: the application business logic does not have to deal with

this problem; everything is configured based on the deployment plan.

DREMS Design-time Development Platform Specification
Configuring the middleware and writing code that takes advantage of the component

framework provided by a DREMS system can be a highly non-trivial and tedious task. To

mitigate this problem and to enable programmer productivity, a model-driven

development environment shall be available to simplify the tasks of the application

developers and system integrators.

Figure 7 - The DREMS Deployment Manager and Applications

25

In this environment, developers shall

define with graphical and textual

models various properties of the

application, including: interface and

message types, components types (in

terms interfaces and

publish/subscribe message types),

component implementations,

component assemblies, and

applications (in terms interacting

components and actors containing

them). Additionally, the hardware

platform for the cluster can be

modeled: processors, network and

device interfaces, network addresses,

etc. Finally, the deployment of the application(s) on the hardware platform can be

modeled (in terms mapping actors onto hardware nodes, and information flows onto

network links). The framework shall permit both dynamic deployments that change over

time as well as static deployments to be modeled. Models shall be processed by code

generators that in turn produce several artifacts: source code, configuration files, scripts

that facilitate the automated compilation and linking of the components, and other

documents. The application developer shall provide the component implementation in

the form of C++ code (currently; in the future: any other, supported executable

language) and add it to the generated code. The compilation and debugging of the

applications shall happen with the help of a conventional Interactive Development

Environment (such as Eclipse) that supports editing, compiling and debugging the code.

The result of this process shall be a set of component executables and a deployment

plan – ready to be deployed on a cluster of nodes.

The model-driven approach has several benefits. (1) The model serves as the single

source of all structural and configuration information for the system. (2) The tedious

work of crafting middleware ‘glue’ code and configuration files for deployment is

automated: everything is derived programmatically from the models. (3) The models

provide an explicit representation of the architecture of all the applications running on

the system – this enables architectural and performance analysis on the system before it

is executed. (4) Models can be used for rapidly creating ‘mockup’ components and

applications for rapid prototyping and evaluation.

DREMS Summary
The DREMS specification describes a sophisticated, end-to-end solution for building and

running distributed real-time embedded applications. It specifies both a run-time

framework that includes a state-of-the-art operating system with special features for

Figure 8 - Model-driven development with DREMS

26

resource, application and network management together with a component framework

with a precisely defined model of computation, and also a model-driven development

toolchain that assists developers and integrators in managing the development process.

27

Suitability for a Vehicle IAP
This section evaluates the suitability of DREMS and AUTOSAR for a vehicle IAP using
the IAP requirements listed at the beginning of the document.

Support a full spectrum of modern application architecture and design
approaches
The DREMS specification describes both a design-time methodology that uses
model-based development as well as a run-time platform to support modern
architectures and design approaches. The design-time tools provide analysis (the
models can verified for conformance to certain properties) and synthesis
capabilities (many implementation-level artifacts are generated from the models).
The run-time platform supports the needs of modern applications: real-time
requirements, quality of service provisions (for network communication, CPU,
memory), a security model and memory management.
The AUTOSAR specification places no mandates on a design-time methodology,
which forces users to either develop their own tooling or choose a commercial
vendor that they believe can meet their needs for application development. The
AUTOSAR OS is designed to run on chips without memory protection, which
imposes a severe security risk on applications that are increasingly developed by
third parties. This puts a heavy burden on the system integrator to ensure that
applications do not inadvertently corrupt one another and that no malicious
applications that intentionally affect other applications are integrated into the
system.

Enable efficient use of system resources
Both DREMS and AUTOSAR describe mechanisms for the efficient use of system
resources. A DREMS run-time platform provides system-level resource managers
that allocate and manage the use of system resources by applications. The DREMS
design-time tools provide the ability to ensure that an integrated system is capable
of providing the requested amount of resources to each application.
With the AUTOSAR approach, the Run Time Environment (RTE) is partly configured
and partly generated based on the resource needs of the software components
(applications) running on top of it. This approach allows the RTE to be optimized for
a specific set of applications and ensures that the run-time system is neither under-
nor over-provisioned. The allocation of resources to software components in
AUTOSAR is very static, with many resources (such as mutexes and memory) being
allocated once and never changing. This is in contrast to DREMS, which allows the
dynamic creation and allocation of many system resources, including memory and
mutexes.

Enable flexible use of system resources
While both DREMS and AUTOSAR enable efficient usage of system resources, DREMS
permits a more flexible use of system resources. With AUTOSAR, the configuration of

28

a system is very static and is not expected or permitted to change over time: the
communication and computational requirements of components are specified at
design-time, and the RTE is generated and configured based on these requirements.
An AUTOSAR system is provisioned for the optimality of a given set of software
components (applications) with the expectation that the applications do not change.
DREMS is designed to allow dynamic software reconfigurations, both in the system
software (the platform components) and user level applications. The DREMS
operating system scheduler is designed to allow “extra” time to be utilized by
applications. DREMS includes run-time support for QoS requirements on network
communications which are expected to vary over time, and there is design-time tool
support to analyze whether the communication requirements can be met based on
the expected network availability.

Provide a robust, flexible, and manageable software infrastructure
As stated above, AUTOSAR relies on static configurations of system software. For
instance, the AUTOSAR OS specification requires the OS to support the static
configuration of the number of tasks and mutexes that will be created. Once
deployed, AUTOSAR applications are not configured or updated dynamically.
DREMS, on the other hand, allows both the system software and user applications to
be configured and updated dynamically at run-time. The DREMS operating system is
expected to provide an administrative interface that can be used as a “command-
line” interface to the system. This interface allows applications to be added,
removed, stopped and started at run-time by a system administrator.

Enable controlled sharing of system resources
While both DREMS and AUTOSAR permit system resources, such as the processor
and memory, to be shared between applications, only DREMS includes access
control mechanisms (in the form of a multi-level security policy) to ensure that
access to resources is controlled based upon a well-defined security policy. This
allows a DREMS system to more easily include untrusted, third-party applications
that run beside trusted applications.
Additionally, AUTOSAR is limited on the amount of access restrictions it can place
on memory access due to the fact that it is expected to run on systems without
memory protection. Because of this, the AUTOSAR system integrator is responsible
for ensuring that applications do not access memory that has not been allocated to
them and that memory errors in one application do not cause another application to
crash.

Provide operational flexibility and maintainability
Both DREMS and AUTOSAR support debugging of applications, although to different
degrees. AUTOSAR includes a Diagnostic Event Module which can store diagnostic
system errors based on standardized Diagnostic Trouble Codes (DTCs). These
trouble codes can then be used for post-mortem fault-diagnosis. AUTOSAR does not
perform or provide facilities for online inspection of system and application
activities other than through the use of the Diagnostic Event Module. AUTOSAR
provides no provisions for replacing/updating either user or system level software
at runtime.

29

DREMS includes support for limited online debugging, as well as both online and
post-mortem fault analysis through a system-level fault manager. DREMS allows and
expects that both user level and system level software will be
configured/replaced/updated at runtime and provides facilities and interfaces for
performing this activity.

Provide a comprehensive framework for fault management
This is an area of large differences between the two specifications. AUTOSAR does
not provide any specification for a fault management framework. AUTOSAR relies
on the underlying OS to provide timing protection to applications at run-time to
ensure that application deadlines are satisfied. AUTOSAR uses the concept of
diagnostic monitors to monitor specific physical systems or circuits. If an error is
detected, the diagnostic monitor logs a Diagnostic Event with the Diagnostic Event
Manager. Complex fault detection and isolation strategies could be built-in to either
diagnostic monitors or to custom user applications, but these are beyond the scope
of the AUTOSAR specification.
DREMS supports an extensive layered fault detection and isolation strategy that
detects anomalies in different layers and diagnoses the root cause which should
then be treated by user-provided fault mitigation logic. The DREMS fault model
considers both physical and software faults that can occur during design-time,
deployment-time and run-time, and prescribes measures and methodologies that
can help prevent faults at all stages of development.

Provide a comprehensive framework for quality of service and resource
management
AUTOSAR lacks a Quality-of-Service (QoS) model. Ensuring that applications meet
their expected level of performance requires a-priori knowledge at design-time
about their requirements and configuring/provisioning the system so that this level
is always statically satisfied. AUTOSAR provides no way to describe levels of service
that fluctuate over time (for instance, in response to the physical environment) and
thus expects that all resource levels and requirements are constant throughout an
application’s lifetime. The burden is on the system integrator to know these
requirements at design-time and provision the system accordingly.
DREMS includes both design-time and run-time QoS facilities. The design-time
modeling tools can capture an application’s network QoS requirements, and design-
time analytical tools (based on Network Calculus) can then verify whether these
requirements can be satisfied based on the expected network profile of the mission.
DREMS assumes that both the network bandwidth and network communication
requirements of applications can both vary over time, and includes design-time
facilities to specify the requirements and run-time support to ensure the
requirements are satisfied. DREMS is also capable of enforcing run-time guarantees
on an application’s usage of other system resources, including the CPU, dynamic
memory and persistent storage.

30

Support real-time processing within a computing node
Both AUTOSAR and DREMS support real-time processing with single computing
nodes. Each AUTOSAR ECU is expected to run an operating system that is amenable
to reasoning about real-time performance. A derivative of the OSEK operating
system is used as the basis for most AUTOSAR compliant operating systems to
provide real-time scheduling. DREMS also provides support for real-time scheduling
and uses a strict partition scheduler to ensure that, at run-time, tasks are run for the
period and duration that they requested at design-time.
Where AUTOSAR and DREMS greatly different in this regard is the methodology
each provides for ensuring that a system is capable of meeting its real-time
requirements. AUTOSAR prescribes no specific tool or formalism for checking
analytically that a set of real-time tasks are capable of meeting their timing
requirements. The timing extensions to AUTOSAR are quite recent (introduced in
version 4 of the AUTOSAR specification) and provide only statements about the
timing requirements that an application should satisfy; they neither provide nor
recommend any analytical methods for analyzing these requirements for
satisfiability.
DREMS, on the other hand, allows timing requirements of individual processes to be
specified at design-time in models. From this timing description, DREMS describes
an analytical method that can not only check the satisfiability of the timing
requirements of an integrated system, but that can generate a schedule for the
operating system that satisfies the timing requirements.

Support real-time processing across the distributed computing platform
Both AUTOSAR and DREMS support real-time processing across the distributed
computing platform. However, the assumptions that each place on the platform
plays a key role in how this works. AUTOSAR assumes that the network bandwidth
and latency of the underlying platform remain constant, and thus providing real-
time processing across the platform partly consists of ensuring that the
communication delays between communicating software components are
satisfactory. Ensuring real-time processing across the whole system also involves
finding a suitable mapping of software components to ECUs so that communication
times are minimized but CPU requirements are still satisfied; this is a non-trivial
constraint problem, and AUTOSAR describes no methodology to assist the user in
this complex task.
DREMS does not assume that the network bandwidth and latency of the system
remain constant over time. The design-time modeling tools of DREMS allow the
expected network availability to be modeled and design-time analytical tools can
then be used to check whether the requirements are satisfied. The infrastructure
then enforces QoS policies at run-time to ensure that the real-time processing
requirements are satisfied across the system.

Provide security mechanisms sufficient to satisfy system security requirements
DREMS and AUTOSAR have very different capabilities in regards to security.
AUTOSAR has the capability to provide secure communications through the Crypto
Security Manager (CSM), a software component that provides a standardized

31

interface that gives access to basic cryptographic functionalities. However, messages
traveling across the bus are not currently encrypted, and there is nothing in the
AUTOSAR specification to prohibit the CSM from being placed on a different ECU
than a software component that uses it, which presents potential security
vulnerability in simply getting the data to the CSM. The AUTOSAR standard does not
describe any provisions to prevent one application from snooping on another, or
even to prevent one application from maliciously manipulating the data of another
application. In fact, because the underlying OS of an AUTOSAR compliant system is
expected to run on a chip that lacks memory protection, the burden of ensuring that
applications do not maliciously interfere with one another falls entirely on the
system integrator. As more software is purchased from third-parties and then
integrated by a central authority, which is one of the stated goals of AUTOSAR, this
will become more difficult to ensure.
In addition to running on hardware that provides memory protection, DREMS also
includes several other security features. Every process in DREMS runs in its own,
private address space, including the operating system. Processes requiring
persistent storage are also allocated separate file systems. The temporal scheduling
of processes in DREMS prevents covert timing channels across different temporal
partitions. To ensure secure communication, DREMS has a functionality called
“Secure Transport” that provides cryptographic protection of messages sent
between nodes, which ensures the confidentiality (only the destination can read the
message), integrity (the message is not modified in transit) and authenticity (the
message was sent by the source node from which it claims to originate) of each
message.
Further, DREMS uses a multilevel security (MLS) policy to ensure that applications
cannot arbitrarily communicate and exchange information. DREMS does this by
attaching labels (such as “classified” or “top-secret”) to messages and
communication endpoints. When an application wants to send a message, it attaches
a label to the message and specifies a destination communication endpoint. The run-
time infrastructure (i.e., the operating system) then ensures that the message obeys
the security policy with respect to the message label (i.e., it ensures that the
destination endpoint has permission to read messages with that label). Internally,
DREMS uses a Bell-LaPadula model to implement its MLS policy.
To summarize the security differences between the two platforms: DREMS has
extensive security policies and mechanisms (MLS, IPSec, separate address spaces
between applications, temporal isolation), while AUTOSAR provides very limited
provisions (a cryptography module for encrypting messages sent between
components).

Timing model
One major difference between DREMS and AUTOSAR is the real-time support each
requires from the underlying operating system. The AUTOSAR OS specification
states that it must be run on a real-time operating system that can be configured
statically and that is amenable to reasoning of real-time performance. As described
in the section on timing protection with AUTOSAR, the specification expects the
underlying operating system to control three factors (the execution time of

32

tasks/ISRs, blocking time that tasks suffer from lower priority tasks locking shared
resources, the interarrival rate of tasks/ISRs) at runtime to ensure timing
protection. However, AUTOSAR describes no methodology for analyzing a whether a
system design will meet its real-time requirements. The timing extensions to
AUTOSAR are relatively recent additions, and thus manufacturers previously had to
use proprietary timing specifications and internal tools to perform automated
reasoning about the timing of their specifications. Even with the standardized
timing extensions, manufacturers are on their own to devise methods and tooling
for checking whether an integrated system is schedulable, which is a highly non-
trivial task.
DREMS, on the other hand, uses a strict partition scheduler to ensure that at run-
time, tasks are run for with the period and duration that they requested at design-
time. This “temporal partitioning” concept is borrowed from the ARINC-653
standard. However, DREMS extends the ARINC-653 partitioning concept by allowing
partitions to include multiple address spaces and permitting changes to the
partition schedule without restarting the system. This temporal partitioning concept
lends itself to a straightforward algorithm for (1) verifying at design-time whether
an integrated system (consisting of processes from multiple applications) is
schedulable and (2) generating such a schedule. The DREMS tool-suite includes
built-in support for modeling the temporal partitioning requirements of individual
processes, analyzing whether these temporal partitioning requirements can be
satisfied and then synthesizing a valid partition schedule for the entire system.

Component model
Both DREMS and AUTOSAR use the software component as a fundamental
abstraction. With AUTOSAR, both the basic software (BSW) and higher-level
“functional” software (which makes use of the BSW) are built from components. The
communication of components in both models is very similar, as described below.
An AUTOSAR component has well-defined ports through which it can interact with
other components. AUTOSAR Interfaces define the services or data provided or
required on/by a port. The interface can be a client-server interface (defines
operations that can be invoked) or sender-receiver interface (allows data-oriented
communication mechanisms). There are two types of ports: PPort and RPort. PPort
provides an AUTOSAR interface, and an RPort requires one. A PPort either provides
interface or sends data, and an RPort either invokes operations on an interface or
reads data elements from a sender interface. Client-server communication can be
either synchronous or asynchronous. Sender-receiver communication is
asynchronous, and the sender neither expects nor gets a response from receivers.
The communication infrastructure is responsible for distributing messages: the
receiver does not know identity of sender.
Similarly, components in DREMS also expose well-defined ports for interacting with
other components. Asynchronous and anonymous publish/subscribe is possible, as
well as both synchronous and asynchronous client/server interactions.
AUTOSAR provides a way to describe the internal behavior of a SWC by breaking it
down into Runnable Entities, which are executed at runtime. These Runnable
Entities are described at design-time in an XML-configuration file. A timing

33

description can then refer to the activation, start and termination of the execution of
Runnable Entities within a SWC, although this timing description is a specification of
how the SWC and its Runnable Entities should behave, not necessarily how they
behave, nor is a specific tool or methodology described for checking whether the
timing description holds for a given SWC. DREMS does not provide a way to describe
the internal behavior of a component other than its communication ports, timers
and types the component uses.
DREMS does include a well-defined component scheduling model that states how
and when component operations are scheduled. The AUTOSAR specification, on the
other hand, does not state anything regarding the scheduling of component
operations. Thus, the AUTOSAR component model is mainly an abstraction for
communication, while the DREMS component model abstracts both communication
and the scheduling of operations.

Fault model
The fault models used by AUTOSAR and DREMS are very different. AUTOSAR does
not specify a fault model, nor does it describe a specific mechanism or methodology
for dealing with faults that may occur in the system. Such fault handling is high-level
functionality must be built on-top of the basic functionalities that are specified by
AUTOSAR. The cited reference below describes one attempt at extending the
AUTOSAR specification with fault tolerance provisions. That paper presents the
standard fault-tolerance concept of replication to provide duplicate copies of
software components that are used when the primary copy of a software component
fails.
DREMS supports an extensive layered fault detection and isolation strategy that
detects anomalies in different layers and diagnoses the root cause which should
then be treated by user-provided fault mitigation logic. The DREMS fault model
considers both physical and software faults that can occur during design-time,
deployment-time and run-time, and prescribes measures and methodologies that
can help prevent faults at all stages of development.
Because the fault management portion of DREMS is so extensive, the reader is
referred to the paper, “A software platform for fractionated spacecraft,” cited below.
References:
“An AUTOSAR-Compliant Automotive Platform for Meeting Reliability and Timing
Constraints”, J Kim, G Bhatia, R Rajkumar, M Jochim, SAE Technical Paper 01/2011;
DOI:10.4271/2011-01-0448.
"A software platform for fractionated spacecraft", Dubey, A.; Emfinger, W.; Gokhale,
A.; Karsai, G.; Otte, W.R.; Parsons, J.; Szabo, C.; Coglio, A.; Smith, E.; Bose, P., Vol 1,
Number 20, IEEE Aerospace Conference, 2012.

Tool-support
Another big difference between the two specifications is the amount of included tool
support for each. AUTOSAR is largely a group of specifications on different pieces of
a system (the operating system, software components, communication, etc.) that
does not mandate the use of any particular set of tools, nor is there a particular
methodology recommended for the many stages of the workflow. Users must either

34

purchase or implement their own solutions for working with AUTOSAR. The result
is that using AUTOSAR necessitates a huge commitment of both time and money.
For this reason, many automobile companies, such as Toyota, are gradually
integrating AUTOSAR into their workflow and do not expect to be fully AUTOSAR
compliant for several years.
DREMS, on the other hand, provides reference implementations and tools for all
stages of development. A comprehensive modeling tool provides the basis for
design-time activities: defining component interfaces, configuring communication,
specifying process scheduling requirements, defining hardware modules, and
mapping software onto the hardware. Design-time analysis tools include a Colored
Petri Net based-tool for modeling and analyzing the component-based software
applications running on the platform. This allows the system to be verified for
properties like deadline violations of component operations. Based on the results of
this verification, the application model can be refined and restructured as required
before code development begins. Another included design-time tool, based on
Network Calculus, provides an analytical method of ensuring that applications
receive their requested Quality of Service (QoS) requirements for network
resources. A corresponding run-time tool ensures that the requirements are also
satisfied at run-time when the network performance and availability varies over
time.
The run-time software includes an operating system and middleware that provide
the services and capabilities described in the specification. The reference
implementation currently runs on the x86 architecture.
References:
J.-Y. Le Boudec and P. Thiran, “Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet.” Berlin, Heidelberg: Springer-Verlag, 2001.

Computational requirements
The computational requirements of DREMS and AUTOSAR are substantial. Even
though AUTOSAR does not specify which specific operating system must be used, it
does specify requirements on the underlying operating system, and these
requirements are based on the OSEK operating system specification. OSEK is
primarily designed for low-end microcontrollers, and OSEK systems are expected to
run on chips without memory protection. The AUTOSAR OS specification also states
that it must run on low-end microcontrollers and without external resources.
DREMS has higher computational requirements than AUTOSAR. It expects both
virtual memory, a memory management unit and memory protection to be present.
The reference implementation versions of the DREMS OS and middleware run on
the x86 architecture.
However, as automotive applications demand more and more computing power, the
differences in the computational requirements needed by the two specifications will
very likely start to converge. For instance, the introduction of TCP/IP over Ethernet
into the upcoming BMW 7 Series will necessitate more memory and computing
power than required in previous generations of the automobile.

35

Dynamic reconfiguration capabilities
The ability to dynamically reconfigure the system, such as adding a new application
or moving an existing application to a different ECU, is a big advantage that DREMS
has over AUTOSAR. In AUTOSAR, the system configuration is, by design, very static:
the AUTOSAR OS specification states that the underlying operating system must be
able to be configured statically, such as the number of processes and the number of
resources (like mutexes). The AUTOSAR Run-Time Environment (RTE), which sits
on top of the BSW but below the application-level Software Components (SWCs), is
not only configured at compile-time for specific ECUs, but is also partly generated
based on the requirements of the SWCs that will be running on it. A reconfiguration
of the system, such as adding an application or moving an application from one ECU
to another, cannot be done dynamically at run-time.
DREMS, on the other hand, is designed with such reconfiguration capabilities in
mind. In fact, it is expected that applications may need to migrate, at run-time,
between physical hardware nodes in response to both anticipated changes caused
by the environment, such as network connectivity, as well as unexpected failures in
both software and hardware. The deployment and configuration of an application
onto a DREMS system is handled by a trusted piece of software called the
Deployment Manager that is responsible for starting and stopping applications
running on the system.
References:
“AUTOSAR – challenges and solutions from a software vendor’s perspective”, Th. M.
Gall and R. Pallierer, in Elektrotechnik und Informationstechnik, Volume 128,
Number 6, 2011.

36

Glossary
CAN: vehicle bus standard that allows microcontrollers and devices to communicate
without a host computer. CAN uses a message-based protocol (rather than directly
invoking a function, send a message to a process and rely on the process to select
and invoke the actual code to run). Started in 1983, first CAN controller chips in
1987.
Car-to-X: technology enabling the exchange of information between vehicles and
between vehicles and the traffic infrastructure. This is currently being integrated
into vehicles by Mercedes-Benz.
E/E: electrical/electronic system. The elements of a vehicle’s E/E architecture
include data networks, diagnostics, fault tolerance, energy management, power and
signal networks, and physical and functional partitioning.
Event Chain: describes the temporal correlation between two observable events
(referred to as the stimulus and response) that have a functional dependency.
Fibex: Field Bus Exchange format. An XML-based standardized format used to
describe complex, message-oriented communications systems. It is aimed at easing
data/information exchange. Can be used to export on-board network databases, and
for importing into different types of tools during development of vehicle networks.
Fibex presently supports FlexRay, CAN, MOST and LIN.
FlexRay: automotive network communications protocol to govern on-board
automotive computing. FlexRay is designed to be faster than CAN and TTP, but also
more expensive. It supports data rates up to 10 Mbps and can have 2 independent
data channels for fault-tolerance (degraded performance). Used by BMW, Audi,
Mercedes.
Jitter: For a periodically occurring timing event, the jitter is defined as the
maximum variation of its period with respect to a predefined standard period.
Latency: The latency of a timing event chain describes the time duration between
the occurrence of the stimulus and the occurrence of the corresponding response.
LIN: local interconnect network is a broadcast serial network protocol used for
communication between components in vehicles. Comprises one master and up to
16 slaves, both of which are usually microcontrollers. All messages are initiated by
the master with at most one slave replying to a given message identifier. Developed
partly because CAN bus is too expensive to implement for every component in car.
The LIN Consortium was founded by 5 automakers and the first implemented
version of the specification was done in 2002.
OBD: On-Board Diagnostics is a generic term referring to a vehicle’s self-diagnostic
and reporting capability. OBD systems give the owner access to the state of health
information for vehicle subsystems.
OSEK: Open Systems and their Interfaces for the Electronics in Motor Vehicles is a
standards body that has produced specifications for an embedded OS,
communications stack and a network management protocol for automotive
embedded systems. OSEK was designed to provide standard software architecture
for the various ECUs throughout a car. It is an open standard published by a
consortium. Some parts are standardized in ISO 17356. Specifies standard for

37

optional time-triggered real-time OSs. AUTOSAR reuses the OSEK specifications,
with the OS being a backwards compatible superset of OSEK OS which covers the
functionality of OSEKtime, and the communication module is derived from OSEK
COM.
OSEK is architecture dependent; OSEK systems are expected to run on chips without
memory protection. Features can be configured at compile-time. The number of
tasks, stacks, and mutexes is statically configured. There are two types of tasks:
basic (never block, but instead run to completion) and enhanced (can sleep and
block on event objects). Only static priorities are used for tasks. FIFO is used to
schedule equal priority tasks. The priority ceiling protocol ensures there are no
deadlocks or priority inversions. Several implementations exist: Arctic Core,
FreeOSEK, openOSEK, PICOS18, and others.
Even though the AUTOSAR OS specification does not explicitly state an operating
system that must be used, but it is widely accepted that a modified version of OSEK
is used as the underlying operating system.
Period: Describes the expected time interval between two consecutive event
occurrences, neglecting variation (jitter).
Response: End point of an event chain.
Stimulus: Start point of an event chain.

