
 
 

 

Institute for Software-Integrated Systems 
 

 

 

 

Technical Report 
 

 

 
TR#:   ISIS-15-101 

 

Title: Component Models for Vehicle Software Platforms: 

Two Case Studies 

 

Authors: Daniel Balasubramanian, Gabor Karsai 

 

 

 
 

Copyright (C) ISIS/Vanderbilt University, 2015 
 

 

 
 



 

 

2 

Component Models for Vehicle 
Software Platforms: Two Case Studies 

 

Daniel Balasubramanian 

Abstract: This report (1) presents use cases and requirements for a vehicle 
information architecture platform (VIAP), (2) reviews and evaluates the Automotive 
Open System Architecture (AUTOSAR) and the Distributed Real-time Managed 
System (DREMS) architecture specifications, and (3) presents a preliminary 
architecture specification VIAP that addresses the needs of the DARPA Adaptive 
Vehicle Make program. 
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Requirements for a Vehicle IAP 
A Vehicle Information Architecture Platform (VIAP) is a software platform for 
running mission-relevant software applications on the embedded computers of a 
vehicle. Mission critical applications may include navigation applications, 
management of digital communications, sensor management and processing, 
storage management, and many others. The list below summarizes high-level 
requirements for such a platform. Note that these requirements have been 
influenced by earlier work on the DARPA System F6 Program where a similar 
Information Architecture Platform was designed for fractionated satellites.  

1. Support a full spectrum of modern software application architecture and 
design approaches 
The VIAP should permit application developers to use a wide-range of design and 
implementation techniques, particularly with respect to existing and anticipated 
developments in hardware and software platforms. Techniques such as massive 
parallel processing, virtual machines, application controlled memory management, 
garbage collection, modern implementation languages (including but not limited to 
functional, actor-based and object-oriented languages), component-based software 
development, model-based code generation, etc. should be usable on the platform.  

2. Enable efficient use of system resources 
The VIAP should enable the efficient use of all low-level platform resources, 
including: (1) processing (e.g., CPU time), (2) dynamic memory (e.g., RAM), (3) 
persistent storage (e.g., file space), (4) communication (e.g., network bandwidth), 
and (5) system services (provided by the VIAP).  
Efficient use means that the resources are well-utilized (nothing is over- or under-
utilized), and that effective resource management services are available on the 
platform to make this feasible.  

3. Enable flexible use of system resources 
The VIAP should enable the dynamic change and adjustment of resource usage, so 
that the system can respond effectively and, to the degree possible, autonomously, 
to changes in application needs, system configuration and/or operating 
environment. 

4. Provide a robust, flexible, and manageable software infrastructure 
The software platform has to be robust and dependable, but it also has to permit the 
configuration and management of the software applications.  Mission software can 
and will change over time, so a robust administration interface is required to 
facilitate these software configuration changes. 

4. Enable controlled sharing of system resources 
The VIAP should enable controlled sharing of low-level platform resources among 
applications potentially running on multiple security levels. Shared resources 
include (1) processing (e.g., CPU time), (2) dynamic memory (e.g., RAM), (3) 
persistent storage (e.g., files, flash memory), (4) communication (e.g., network 
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bandwidth), (5) hardware devices (e.g., special physical interface devices for 
sensors, etc.), and (6) system services (provided by the VIAP). The purpose of the 
controlled sharing is to ensure non-interference among applications and compliance 
with security policies.  
The VIAP should provide flexible administrative mechanisms to ensure control of 
both the static and dynamic allocation of system resources. 

5. Provide operational flexibility and maintainability 
The VIAP should provide flexibility for the operation and maintenance of itself and 
of applications that it hosts. This requirement calls for features to support, 
including, but not limited to: system and application debugging, on-line and post-
mortem fault diagnosis, analysis of system and application operating state, analysis 
of system and/or application state after a failure, tracing and inspection of system 
and application activities, and replacement and update of system and application 
software components. 

6. Provide a comprehensive framework for fault management 
A fault management framework should enable accommodation of arbitrary inputs 
from within and from outside of the system, diagnostic procedures, and response 
mechanisms, supporting both manual and autonomous fault responses. 
The fault management framework should accommodate fault detection and 
response for the VIAP itself, for system and vehicle special hardware, and faults and 
responses within applications. The fault management framework is required to 
provide resilience; mission-critical system functions are expected to be restored 
even if hardware and software fail.  

7. Provide a comprehensive framework for quality of service and resource 
management 
A QoS framework provides a system-wide view for resource definition, allocation 
and management. It provides for autonomous responses to changing resource needs 
or system resource availability. It should provide strong predictability to mission 
application designers and operators, enabling rigorous service level guarantees. 
Resources that can participate in a QoS framework include: (1) network resources 
(e.g. bandwidth), (2) communication quality (e.g., latency, jitter, and reliability), (3) 
processing resources (e.g. CPU utilization), (4) dynamic memory, (5) persistent 
storage, (6) special vehicle hardware, (7) system services. 

8. Support real-time processing within a computing node 
The VIAP should provide well-defined and predictable real-time properties for all its 
functions, and should provide scheduling mechanisms (e.g., for processing and 
communication) that ensure predictable performance in response to explicitly 
defined real-time requirements within a computing node. Within a computing node, 
real-time operation is constrained primarily by processor scheduling. 

9. Support real-time processing across the distributed computing platform 
The VIAP should provide well-defined and predictable real-time properties for all its 
functions, and should provide scheduling mechanisms (e.g., for processing and 
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communication) that ensure predictable performance in response to explicitly 
defined real-time requirements, across the distributed computing platform (that 
includes vehicle local area networks).  Within the network, real-time operation is 
constrained primarily by network bandwidth and latency. 

10. Provide security mechanisms sufficient to satisfy system security 
requirements 
The platform should support applications running side-by-side that are of different 
security levels. Isolation between levels and the prevention of unauthorized 
information flows is of utmost relevance. The platform should provide assurances 
for robustness and resistance to attacks, including ones introduced by untrusted 
applications. 
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Overview of AUTOSAR 
The Automotive Open System Architecture (AUTOSAR) is an open and standardized 
automotive software architecture jointly developed by manufacturers, suppliers and 
tool developers working in the automotive industry. Its primary objective is to 
create standards for automotive electrical/electronic (E/E) architectures that 
provide the basic infrastructure to assist with developing vehicle software, user 
interfaces and management functionality. AUTOSAR can be seen as an infrastructure 
that supports many standards. 
The stated goals of AUTOSAR include the following: 

 Standardize basic software functionality of ECUs. 

 Reduce complexity of the heterogeneous software landscape within cars. 

 Implementation and standardization of basic system functions as an OEM 

wide “standard core” solutions. 

 Scalability to different vehicle and platform variants. 

 Transferability of software. 

 Definition of an open architecture. 

The motivation for AUTOSAR is the following: 
 Management of complexity associated with increase in functionality. 

 Flexibility for product modification, upgrading and updating. 

 Improved quality and reliability of E/E systems. 

 
The main intention of AUTOSAR is a common standard for the layer of software in 
automobiles that is invisible to end-users, with the objective of creating a basis for 
industry collaboration on basic functions and competition on innovative functions. 
One of the basic sayings of AUTOSAR is to “collaborate on standards, compete on 
implementations.” 
 

The Run-Time Environment (RTE) 
At system design level, (i.e. when drafting a logical view of the entire system 
irrespective of hardware) the AUTOSAR Runtime Environment (RTE) acts as a 
communication center for inter- and intra-ECU information exchange. The RTE 
provides a communication abstraction to AUTOSAR Software Components attached 
to it by providing the same interface and services regardless of whether inter-ECU 
communication channels are used (such as CAN, LIN, FlexRay, MOST, etc.) or 
communication stays intra-ECU. As the communication requirements of the 
software components running on top of the RTE are application dependent, the RTE 
must be tailored, partly by ECU-specific generation and partly by configuration. 
Thus, the resulting RTE will differ between one ECU and another due to the fact that 
it is partly generated and also configured for specific ECUs. How the RTE is realized 
in the run-time system differs between implementations (it could, for instance, be 
realized as a lightweight middleware). 
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The RTE provisions inter- and intra-ECU communication across all nodes of a 
vehicle network and is located between the functional SW-components and basic 
SW-modules. It also enables integration of customer specific functional SW modules. 
Figure 1 below shows how the RTE fits in with the other software modules and 
components in an AUTOSAR system. 
 

 
Figure 1 - The AUTOSAR RTE and Overall Architecture. 

 

AUTOSAR Basic Software (BSW) 
The Basic Software (BSW) is standardized software layer which provides services to 
AUTOSAR software components. As Figure 1 above shows, the BSW layer sits below 
the RTE and contains standardized and ECU specific components. The BSW layer 
includes modules for primitive operations, such as communication, and is used by 
higher-level components. The BSW contains components that are standardized 
across all systems, as well as components that are specific to an ECU. Examples of 
the standardized components of the BSW include: 

 System services (NVRAM, flash, memory management) 

 Communication management (FlexRay, CAN, LIN), I/O management, 

Network management 

 OS specifications (see below) 

 Microcontroller abstractions (see below) 
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ECU specific components includes: 
 ECU abstraction to provide a software interface to electrical values of any 

ECU. 

 Complex Device Driver (CDD) allows direct access to hardware for resource 

critical applications. 

AUTOSAR Operating System 
AUTOSAR specifies only the requirements for an operating system (OS), and thus 
any OS that satisfies its OS specification can be used on the ECU, including 
proprietary OSs. Any OS must be abstracted to an AUTOSAR OS by providing the 
interfaces and services listed in the AUTOSAR OS Specification. The Standard OSEK 
OS (ISO 17356-3) is used as the basis for the AUTOSAR OS. The following are 
example requirements for the OS: 

 Must be configured and scaled statically. 

 Must be amenable to reasoning about real-time performance. 

 Must provide priority-based scheduling. 

 Must provide protective functions at run-time. 

 Must run on low-end controllers and without external resources. 

Even though the AUTOSAR OS does not explicitly state which OS must be used, the 
majority of the implementations seem to use a derivative/modification of the OSEK 
OS. 

AUTOSAR Microcontroller Abstraction Layer 
Access to the underlying hardware is routed through a layer called the 
Microcontroller Abstraction Layer (MCAL) to avoid direct access to registers from 
high-level software (see Figure 1). MCAL is a hardware-specific layer that provides a 
standard interface to the Basic Software (BSW). This interface is then used by the 
BSW layer to query specific information from the underlying microcontroller. This 
allows the BSW to provide higher-level components with microcontroller 
independent values. 
The Microcontroller Abstraction Layer can provide several capabilities, including 
Digital I/O, Analog/Digital Conversion, Pulse Width Modulation, Flash, Watchdog 
Timers and I2C Bus interfacing. 

AUTOSAR Applications 
An application in AUTOSAR consists of interconnected Software Components 
(SWCs). These can be seen at the top of Figure 1. AUTOSAR makes a clear distinction 
between application and infrastructure. Each instance of an AUTOSAR software 
component is assigned to one ECU, and in this sense they are atomic. The 
communication is described at a very abstract level called the “Virtual Function Bus” 
(VFB). Components communicate through ports with no knowledge of the 
communication path. The Run-Time Environment (RTE) implements the VFB on the 
ECU. The RTE gives an interface that is bus-independent and issues commands to 
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the basic software of the ECU. The basic software can then access the hardware 
directly. 
To create an executable ECU component, there are series of steps. XML is used as the 
interchange format (the XML is based on a schema derived from the AUTOSAR UML 
model). The schema file consists of 4 basic parts: 

1. Software component template (defines individual software components). 

2. Basis software module description template (describes all information about 

a Basis Software Component). 

3. ECU configuration template (describes architecture and interfaces of ECU). 

4. System template (defines overall system). Stores information about bus 

systems, signals, mapping and topology. Shares commonality with FIBEX 

standard. 

 

Encryption in AUTOSAR 
AUTOSAR supports security by providing the Crypto Security Manager (CSM), which 
is an integral part of the system. The CSM provides an abstraction layer in the form 
of a standardized interface that gives access to basic cryptographic functionalities 
for all software modules. Software modules that need access to cryptographic 
functionality can configure and initialize the CSM for their specific needs, such as 
synchronous or asynchronous processing. 
The current specification of the CSM does not place a requirement on where the 
CSM executes in relation to the software components that use it. This permits, for 
example, the CSM running on one ECU to be used by software components running 
on different ECUs. This may have security implications because the data a software 
component wants to encrypt must first travel to the SCM over a communication 
channel that is not necessarily encrypted. 
Currently, encryption is done in software, but there is on-going work to implement 
the encryption functions in hardware which would improve the security (because 
the private keys are then stored in a way that prevents external access).  A hardware 
solution would also increase performance. Hardware support for encryption will 
enable the encryption of all on-board data communications across CAN, FlexRay and 
Ethernet bus systems. Currently, messages across the communication busses carry a 
signature but are not encrypted. The encryption will massively restrict the access to 
internal data buses and ECUs. This is currently one of the big topics for OEMs and 
tier ones. 
Data in the system may be encrypted for a variety of reasons. Manufacturers may 
wish to encrypt proprietary data to prevent third-party vendors from reverse 
engineering their protocols. As automobiles integrate more multimedia 
functionality and connectivity to devices such as cell-phones and tablet computers, 
data may need to be encrypted to keep it safe from malicious network attacks. This 
is especially true as the use of Car-to-X is being integrated into cars. 
Reference: 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager
.pdf 

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_CryptoServiceManager.pdf
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TCP/IP in AUTOSAR 
TCP/IP is specified in version 4.1.1 of the AUTOSAR specification. The entire 
communications stack is specified according to AUTOSAR, which means it can be 
configured using the AUTOSAR methodology. Although the specification does not 
prescribe a certain physical layer or data rate, currently only Ethernet over wired-
LAN is being considered (the upcoming BMW 7 Series will be the first vehicle to 
integrate Ethernet). The benefit of Ethernet is that it is very mature. Even though 
such a communication stack requires more hardware resources than, for example, 
CAN communications (for both computing power and in particular for RAM), the 
benefit is that it provides a high-performance data network technology suitable for 
future applications, such as multimedia applications and Car-to-X. 
Reference: http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_TcpIp.pdf 
 

Memory Protection with AUTOSAR 
Memory protection prevents a process from accessing memory that has not been 
allocated to it. This helps prevent a memory bug in one process from affecting other 
processes or the operating system. For instance, memory protection can prevent 
one process from accessing the memory stack of another process. 
 
Section 7.7.1 of the AUTOSAR OS specification states that memory protection will 
only be possible on processors that provide hardware support for memory 
protection. The memory protection scheme is based on the data, code and stack 
sections of the executable program. However, because the AUTOSAR OS 
Specification is based on OSEK and OSEK systems are expected to run on chips 
without memory protection, it is not unexpected for AUTOSAR to assume that 
memory protection will not be available. 
 

Error reporting with AUTOSAR  
Error reporting in AUTOSAR is enabled through the Diagnostic Event Manager 
(Dem) service, which is a component that processes and stores Diagnostic Events 
(errors) and associated data. A Diagnostic Event defines the atomic unit that can be 
handled by the Dem module. The Dem handles and stores events detected by 
diagnostic monitors in both Software Components (SWCs) and Basic Software 
(BSW). 
A diagnostic monitor is a routine entity that determines whether a component is 
functioning properly. The diagnostic monitor provides monitoring that identifies a 
specific fault type (for example, short to ground, open load) for a monitoring path. A 
monitoring path represents the physical system or a circuit that is being monitored. 
Each monitoring path is associated with exactly one diagnostic event. A diagnostic 
monitor is implemented as a piece of code in a SWC (or in the BSW) that 
communicates with the Dem using AUTOSAR standard communication ports. 
Each Diagnostic Event has an associated priority that ranks the event based upon its 
level of importance and determines whether its fault entry may be removed from 
the event memory of the Dem in case the event memory is full. The Dem also stores 

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_TcpIp.pdf
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an occurrence counter per event memory entry (with a maximum limit of 255, after 
which the counter stays at 255). Each Diagnostic Event falls under one of two types 
of significance levels that is configurable per event: 

 Fault: classifies a failure that relates to the component or ECU itself and 

requires, for example, a repair action. 

 Occurrence: Classifies an issue which is not a fault, but which indicates 

insufficient system behavior. This may relate to an condition out of the ECU’s 

control. 

While the Diagnostic Event Manager is the entity that stores diagnostic events, the 
Diagnostic Communication Manager (Dcm) Software module is what provides a 
common API for diagnostic services. The DCM module is what is used by external 
diagnostic tools during development, manufacturing or maintenance and servicing. 
A Diagnostic Trouble Code (DTC) defines a unique identifier that is shown to the 
diagnostic tester. This unique identifier is mapped to a Diagnostic Event of the Dem 
module. The Dem then provides the status of the DTC to the Dcm. 
The Dem module supports DTC standardized formats, including ISO 14229-1, ISO 
15031-6, SAE J1939-73 and ISO 11992-4. DTC groups (as opposed to single DTC 
values) are also supported. The AUTOSAR provides DTC groups for powertrain, 
chassis, body and network communication codes. 
References: 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicat
ionManager.pdf 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManag
er.pdf (especially Sections 7.1 and 7.1.6). 
 

Timing Specification with AUTOSAR 
Beginning with version 4.0, AUTOSAR provides Timing Extensions that provide the 
basic means to describe and specify timing information: Timing descriptions, 
expressed by events and event chains, and timing constraints that are imposed on 
these events and event chains. Both means, timing descriptions and timing 
constraints, are organized in timing views for specific purposes. The timing 
extensions serve two main purposes. The first is to provide timing requirements 
that guide the construction of systems which eventually shall satisfy those timing 
requirements. The second purpose is to provide sufficient timing information to 
analyze and validate the temporal behavior of a system. 
Events refer to locations in systems at which the occurrences of events are 
observed. The AUTOSAR Specification of Timing Extensions defines a set of 
predefined event types for such observable locations. Those event types are used in 
different timing views and each of these timing views correspond to one of the 
AUTOSAR views: VFB Timing and Virtual Function Bus VFB View; SW-C Timing and 
Software Component View; System Timing and System View; BSW Module Timing 
and Basic Software Module View; as well as ECU Timing and ECU View. 
In particular, one uses these events to specify the reading and writing of data from 
and to specific ports of software components, calling of services and receiving their 

http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticCommunicationManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManager.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_DiagnosticEventManager.pdf
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responses (VFB, SW-C, System and ECU Timing); sending and receiving data via 
networks and through communication stacks (System and ECU Timing); activating, 
starting and terminating executable entities (SW-C Timing and Basic SW Module 
Timing); and last but not least calling basic software services and receiving their 
responses (ECU Timing and Basic SW Module Timing). 
An Event Chain describes the temporal correlation between two observable events 
(referred to as the stimulus and response) that have a functional dependency and 
contains a timing constraint. Event chains can be built-up in hierarchies. The notion 
of an event chain enables one to specify the relationship between two events, for 
example when an event A occurs then the event B occurs, or in other words, the 
event B occurs if and only if the event A occurred before. In the context of an event 
chain, the event A plays the role of the stimulus and the event B plays the role of the 
response. Event chains can be composed of existing event chains and decomposed 
into further event chains; in both cases, the event chains play the role of event chain 
segments. 
The notion of an Event is used to describe that specific events occur in a system and 
at which locations in this system the occurrences are observed. In addition, an Event 
Triggering Constraint imposes a constraint on the occurrences of an event, which 
means that the event triggering constraint specifies the way an event occurs in the 
temporal space. The AUTOSAR Specification of Timing Extensions provides means 
to specify periodic and sporadic event occurrences, as well as event occurrences 
that follow a specific pattern (burst, concrete and arbitrary patterns). 
Latency and synchronization timing constraints impose constraints on event chains. 
With timing constraints on Events, the constraint is used to specify a reaction and 
age, for example if a stimulus event occurs then the corresponding response event 
shall occur not later than a given amount of time. For timing constraints on Event 
Chains, the constraints are used to specify that stimuli or response events must 
occur within a given time interval (tolerance). 
In addition to the timing constraints that are imposed on Events and Event Chains, 
the AUTOSAR Timing Extensions provide timing constraints which are imposed on 
Executable Entities, namely the Execution Order Constraint and Execution Time 
Constraint. 
There are five distinct timing views, each associated with a particular AUTOSAR 
view: 

 Virtual Function Bus: describes timing information related to the interaction 

of software components at the VFB level. Typically captures end-to-end 

timing constraints, including physical sensors and actuators. Does not refer 

to the internal behavior of a SWC. Can express timing constraints such as, 

“From the point in time when a value is received on an input port, at most 

2ms can elapse before a value is produced on an output port.” 

 Software Component (SWC): describes timing information related to the 

internal behavior of a Software Component. This timing description can refer 

to the activation, start and termination of the execution of Runnable Entities 
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within a SWC (the description of the internal behavior of a SWC is broken 

down into Runnable Entities, which are executed at runtime). 

 System: describes timing information at a system level using information 

about topology, software deployment and signal mapping. This view allows 

timing to refer to the concrete communication of software components, 

which is either local communication over the RTE if the components are on 

the same ECU or remote communication over the RTE if the components are 

on different ECUs. 

 Basic Software Module: describes timing information about a single Basic 

Software Module. This view is similar to the timing view for Software 

Components described above, and the timing description also refers to the 

activation, start and termination of Runnable Entities within the Basic 

Software Module. 

 ECU: describes timing information that can reference all ECU-relevant 

information, including the deployed software component instances and ECU 

related interactions (such as bus communication or Basic Software 

interactions). This timing view has the same expressivity as the System 

Timing view, but only focuses on one specific ECU. 

To summarize: the timing description for the entities in a system is specified by 
describing Events or Event Chains (which specify some observable behavior) and 
then describing timing constraints on those Events or Event Chains. This timing 
description is a requirement on the eventual implementation of the system and 
should not necessarily be considered as describing characteristics of the actual 
implementation (unless the actual implementation of the system has somehow been 
proven or shown to meet the requirements). The specification does acknowledge 
that the worst-case execution time (WCET) of a SWC, which is specific to a CPU, is 
needed to perform timing assessments. This is enabled by having the SWC template 
specify the timing-requirements of each runnable entity of a SWC, including the 
period (how often it has to be run) and the reaction time (time between stimulus 
and response). However, the specification does not specify a methodology for 
checking either timing constraints of individual software components or global 
timing properties of an integrated system.  

Timing Protection with AUTOSAR OS 
In regards to the timing protection of the AUTOSAR OS, a timing fault is defined as 
what occurs when a task or interrupt in a real-time system misses its deadline at 
runtime. The AUTOSAR OS does not offer deadline monitoring for timing protection 
due to the fact that it is insufficient to identify the task/ISR causing the timing fault 
in the system. Instead, whether a task or ISR meets its deadline in a fixed priority 
preemptive system like AUTOSAR OS is determined by: 

1. Execution time of the tasks/ISRs in the system 
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2. The blocking time that tasks/ISRs suffer from lower priority tasks/ISRs 

locking shared resources or disabling interrupts. 

3. The interarrival rate of tasks/ISRs in the system. 

 
The system must control these three factors at runtime for timing protection. 
AUTOSAR prevents (1) by using execution time protection. Execution time protection 
here consists of first statically configuring an upper bound, called an execution 
budget, on the execution time of tasks and category 2 ISRs (a category 2 ISR is 
supported by the OS and can make OS calls; a category 1 ISR is not supported by the 
OS and is only allowed to make a very small selection of OS calls to enable and 
disable all interrupts). At run-time, the OS monitors the time that a task or category 
2 ISR executes and preempts the task if its execution time exceeds its statically 
configured execution budget. 
AUTOSAR OS prevents (2) by using locking time protection to guarantee a statically 
configured upper bound (called the Lock Budget) on the time that resources are 
held by tasks/category 2 ISRs, OS interrupts are suspended, and all interrupts are 
suspended. 
AUTOSAR OS prevents (3) by using inter-arrival time protection to guarantee a 
statically configured lower bound (called the Time Frame) on the time between (1) 
a task being permitted to transition into the ready state, and (2) a category 2 ISR 
arriving. 
Section 1.1 of the Time Service specification describes the Time Service module, an 
AUTOSAR Basic Software module, that is part of the System Services Layer and 
provides services for time-based functionality. It can be used for time measurement, 
time based state machines (state changes based on time can be implemented), 
timeout supervision and busy waiting (can use predefined “Predef” Timers instead 
of loops or no-op instructions to implement timeout supervision or busy waiting). It 
can be used to measure the execution time and cycle time of code, including the run 
time and cycle time of tasks, ISRs, functions and pieces of software. However, section 
4.2 (Limitations) states that functionality of the time service module is based on 
hardware timers provided by the GPT (General Purpose Timer) driver. The 
specification defines no standardized AUTOSAR interfaces, meaning that the 
services of the Time Service module are not accessible by AUTOSAR SWCs located 
above the RTE; a standardized interface may be added in the future. 
References: 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_TPS_TimingExtensions.pdf 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_RS_TimingExtensions.pdf 
http://www.bmw-carit.com/projects/AUTOSAR-timing-specification.php 
http://www.AUTOSAR.org/download/R4.1/AUTOSAR_SWS_TimeService.pdf 

Tool support for AUTOSAR 
The majority of tools supporting the development of AUTOSAR-based systems have 
a commercial license. Four specific tools are described below; there are several 
other commercial tools that are available to the public, as well as proprietary tools 
developed by manufacturers for their own internal use. 

http://www.autosar.org/download/R4.1/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.1/AUTOSAR_RS_TimingExtensions.pdf
http://www.bmw-carit.com/projects/autosar-timing-specification.php
http://www.autosar.org/download/R4.1/AUTOSAR_SWS_TimeService.pdf
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Mentor Graphics offers a tool suite called Volcano VSx for top-down vehicle system 
and ECU design. It covers automotive software and electronic systems design, 
virtual verification, testing and configuration. It supports standard AUTOSAR 
import/exports. Timing analysis of communications is supported with the Volcano 
VSA COM Designer tool. They offer a Basic Software (BSW) stack, as well as a 
Bootloader, RTE, customized diagnostics and customized software components. 
They claim their BSW stack offers predictable real-time network behavior, efficiency 
(low memory use, fast execution time, and small code size), easy portability and 
high quality. 
ARCCORE offers a GPL license for Arctic Core and the base version of Arctic Studio 
tools. They report that a global Tier1 supplier headquartered in Japan is using the 
ARCCORE AUTOSAR 4.x solutions (Arctic Core and Arctic Studio) to develop new 
ECUs. The Arctic Core Standard Package includes features required in an ECU, 
including communication, diagnostics, safety services and an RTOS. The tools 
support PowerPC and ARM architectures, and more can be added for additional 
cost. The communication protocols support include TCP/IP, LIN services and CAN 
services; FlexRay is not advertised as being available out of the box. 
MathWorks is an AUTOSAR premium member and actively participates in 
development of the standard with a focus on how to use model-based development 
within an AUTOSAR development process. Simulink and Embedded Coder allow 
engineers to import and export AUTOSAR software component descriptions and 
generate AUTOSAR production code in an integrated environment. Simulink 
provides support through model configuration settings rather than AUTOSAR 
specific blocks, allowing a single model to be used as a reference for simulation, 
prototyping and production code generation in both AUTOSAR and non- AUTOSAR 
environments. Advanced capabilities for AUTOSAR applications are provided 
through the AUTOSAR Target Production Package (ATPP), which may be requested 
at the following site: http://www.mathworks.com/matlabcentral/answers/97870-
are-AUTOSAR-advanced-production-capabilities-available-for-simulink-and-
embedded-coder. 
The current workflow for using Simulink for AUTOSAR development includes the 
following steps. 

1. Use an AUTOSAR Authoring Tool to design the software architecture of the 

vehicle functionality. 

2. Export the software component description files using the AUTOSAR .arxml 

format. 

3. Import these software component description files into Simulink, which will 

automatically generate a skeleton model of the interfaces and internal 

behavior defined in the software component description. 

4. To generate AUTOSAR compliant code, finalize and validate the AUTOSAR 

Configuration using the Simulink AUTOSAR Mapping Editor. 

5. AUTOSAR compliant code and corresponding .arxml files can then be 

generated directly from Simulink. The generated components are then ready 

for integration into the ECU. 

http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder
http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder
http://www.mathworks.com/matlabcentral/answers/97870-are-autosar-advanced-production-capabilities-available-for-simulink-and-embedded-coder
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BMW has a tool called Artime that is a textual editor to create text-based timing 
models that comply with the AUTOSAR Timing Extensions. Artime is a domain-
specific language built on top of the AUTOSAR Tool Platform (Artop), a base platform 
for developing AUTOSAR tools, as well as ARText, a framework for building textual 
modeling languages for AUTOSAR. The level of support this tool provides for 
automatically checking whether timing requirements can/are satisfied is unclear. 

Vehicles using AUTOSAR 
While the adoption of AUTOSAR was primarily found in high-end automobile 
manufacturers in its early years, several automobile makers now use it in at least 
some components of their cars. BMW originally introduced AUTOSAR ECUs in their 
7 Series and now uses it in all of their product lines. The next 7 Series BMW will fully 
use version 4 of the AUTOSAR specification and will be the first car to introduce 
Ethernet as a data backbone in vehicles. 
The latest Mercedes S-Class used AUTOSAR in about 70 ECUs, which is considered 
fairly large scale. Other lines besides the S-Class will use AUTOSAR in the future. 
Robert Bosch is now using AUTOSAR in all markets and integrating it into all 
relevant vehicle domains. 
Toyota had their first ECU with AUTOSAR-based software as of 2013 and expects to 
gradually transition to a heavier use of AUTOSAR over time. 
PSA Peugeot Citroen states that all engine management systems and body 
controllers now run on AUTOSAR ECUs. 
Reference: 
http://www.AUTOSAR.org/download/media_release/Ten_Years_of_AUTOSAR_EN.p
df 
 
 
 
 
 
 
 
 
  

http://www.autosar.org/download/media_release/Ten_Years_of_AUTOSAR_EN.pdf
http://www.autosar.org/download/media_release/Ten_Years_of_AUTOSAR_EN.pdf
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DREMS: A Distributed Real-time Embedded Managed Systems 
Software Platform Specification 
DREMS is a software infrastructure specification for designing, implementing, 

configuring, deploying and managing distributed real-time embedded systems1 that 

describes two major subsystems: (1) a design-time toolsuite for modeling, analysis, 

synthesis, implementation, debugging, testing, and maintenance of application software 

built from reusable components, and (2) a run-time software platform for deploying, 

managing and operating application software on a network of computing nodes. The 

DREMS specification is primarily targeted towards platforms that provide a managed 

network of computers and distributed software applications running on that network; in 

other words, a cluster of networked nodes. 

The design-time toolsuite specification is naturally supported by a model-based 

paradigm of software development for distributed, real-time, embedded systems where 

modeling tools and generators automate the tedious parts of software development 

and also provide a design-time framework for the analysis of software systems. The run-

time software platform specification is to reduce the complexity and increase the 

reliability of software applications by describing reusable technological building blocks 

in the form of an operating system, middleware, and application management services. 

 

Figure 2 - DREMS Architecture 

                                                        
1 DREMS was supported by the DARPA System F6 Program under contract NNA11AC08C through 
NASA ARC. 
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Operating System

A system implementing the DREMS specification has the ability to provide a complete, 

end-to-end solution for software development: from modeling tools to code to 

deployed applications. DREMS focuses on the architectural issues of the software, and 

promotes the modeling of application software, where the models are directly used in 

the construction of the software. 

The sections below describe the high-level requirements of the DREMS specification for 

Information Architecture Platforms. 

Applications in DREMS 
Software applications running on the DREMS platform shall be distributed: an 

application can consist of one or more actors that run in parallel, typically on different 

nodes of a network. Actors specialize the concept of processes: they have identity with 

state, they can be migrated from node to node, and they are managed.  Actors are 

created, deployed, configured, and managed by a special service of the run-time 

platform: the deployment manager – a privileged, distributed, and fault tolerant actor, 

present on each node of the system, that performs all management functions on 

application actors. An actor can also be assigned a limited set of resources of the node it 

runs on: memory and file space, a share of CPU time and a share of the network 

bandwidth.  

Applications shall be built from software components – hosted by actors – that interact 

via only well-defined interaction patterns using security-labeled messages, and are 

allowed to use a specific set of low-level services provided by the operating system. The 

low-level services include messaging and thread synchronization primitives, but 

components use these indirectly through the middleware libraries.  

The middleware libraries shall 

implement the high-level 

communication abstractions: 

synchronous and asynchronous 

interactions, on top of the low-

level services provided by the 

underlying distributed hardware 

platform. Interaction patterns shall 

include (1) point-to-point 

interactions (in the form of 

synchronous and asynchronous 

remote method invocations), and 

(2) group communications (in the 

form of asynchronous publish-

subscribe interactions). Component operations can be event-driven or time-triggered, 

enabling time-driven applications. Message exchanges via the low-level messaging 

Figure 3 - DREMS applications, actors, components and 
services 
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services are time-stamped, thus message receivers are aware of when the message was 

sent. Hence temporal ordering of events can be established (assuming the clocks of the 

computing nodes are synchronized).  

Specialized, verified platform actors shall provide system-wide high-level services: 

application deployment, fault management, controlled access to I/O devices, etc. Each 

application actor exposes the interface(s) of one or more of its components that the 

components of applications can interact with using the same interaction patterns. 

Applications can also interact with each other the same way: exposed interfaces and 

precisely defined interaction patterns.  

The DREMS Operating System shall implement all the critical low-level services to 

support resource sharing (incl. spatial and temporal partitioning), actor management, 

secure (labeled and managed) information flows, and fault tolerance. A key feature of 

the OS layer is support for temporal partitions (similarly to the ARINC-653 standard): 

actors can be assigned to a fixed duration, periodically repeating interval of the CPU’s 

time so that they have a guaranteed access to the processor in that interval. In other 

words, the actors can have an assured 

bandwidth to utilize the CPU and actors in 

separate temporal partitions cannot 

inadvertently interfere with each other via 

the CPU. The DREMS Operating System 

specification provides the possibility for 

several types of implementations, such as 

a set of extensions to the Linux kernel or 

possibly using a microkernel approach. 

DREMS Run-time Software Platform 
Specification 
The run-time software platform shall 

consist of several layers, as shown in the 

Figure. Practically all layers are based on 

existing and proven open-source 

technology. The bottom of the Figure 

shows how the operating system layer 

could be implemented by extending the 

Linux kernel with a number of specific 

services while at the same time keeping 

the existing Linux system calls. The 

advantage of this approach is that 

developers can use existing Linux system calls, side-by-side with the DREMS OS system 

calls. 

Figure 4 - DREMS run-time software layers 
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The C and C++ run-time support libraries implement the conventional support services 

needed by the typical C and C++ programs. The C run-time library has entry points to 

access the DREMS OS system calls. These calls utilize data structures that shall be 

defined using the standard Interface Definition Language (IDL), which will allow them to 

be created, and manipulated using generated constructor and manipulation operators. 

The implementation of the DREMS operating system calls shall check the integrity of all 

data structures passed on the interface. This enables validation of the data structures on 

the interface, preventing potential abuse of the system calls.  

Layered on top of the C and C++ run-time libraries are the Adaptive Communication 

Environment (ACE) libraries, which shall provide a low-overhead isolation layer for the 

higher level middleware elements that support CORBA and DDS. The CORBA 

implementation can be based on The ACE ORB (TAO, currently: version 6.1.4) that 

implements a subset of the CORBA standard for facilitating point-to-point interactions 

between distributed objects. Such interactions are in the form of Remote Method 

Invocations (RMIs) or Asynchronous Method Invocations (AMIs). RMIs shall follow the 

call-return semantics, where the caller waits until the server responds, while the AMIs 

shall follow the call-return-callback semantics, where the caller continues immediately 

and the response from the server is handled by a registered callback operation of the 

client. The CORBA subset that shall be implemented by the middleware has been 

selected to support a minimal set of core functions that are suitable for resource-

constrained embedded systems. 

The DDS implementation can be based on 

the OpenDDS (currently: version 3.4) that 

implements a subset of the DDS standard 

for facilitating anonymous publish/subscribe 

interactions among distributed objects. In 

these interactions, publishers send typed 

messages of specific topics via the 

middleware which then distributes them to 

subscribers interested in those topics. 

Subscribers can be anywhere on the 

network, they can join and leave the system 

at any time – the distribution middleware 

decouples publishers from the subscribers. 

There shall be several quality-of-service 

attributes associated with publishers and subscribers that control features like 

buffering, reliability, delivery rate, etc. DDS is designed to be highly scalable, and its 

implementations meet the requirements of mission-critical applications.  

CORBA and DDS shall provide for data exchange and basic interactions between 

distributed objects, but in DREMS objects are packaged into higher-level units called 

Figure 5 - A DREMS component 
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components. A component, shown in the Figure, shall publish and subscribe to various 

topics (possibly many), implement (thus provide) interface(s), and expect (thus require) 

implementations of interfaces. Note that a component may contain several, tightly 

coupled objects.  Components may expose (part of) their observable state via read-only 

state variables, accessible through specific methods. Components shall be configured 

via parameters and have memory resources needs. Component operations shall be 

scheduled based on events or the elapse of time. An event can be the arrival of a 

message to which the component has subscribed or an incoming request on a provided 

interface. Time-triggering is done by associating a timer with the component that 

invokes a selected operation on the component when a configurable amount of time 

elapses, possibly periodically repeating the operation. Component operations can 

perform computations, publish messages and call out to other components via the 

required interfaces. To avoid having to write complex locking code for components, 

component operations shall always be single threaded: inside of one component at 

most one thread shall be active at any time.  

Actors shall be 

formed from 

interacting 

components, 

and applications 

shall be formed 

from actors that 

interact with 

each other via 

their interacting 

components. 

Actors (together 

with their components) can be deployed on different nodes of a network, but their 

composition and interactions shall always be clearly defined: they must happen either 

via remote method invocations or via publish/subscribe interactions. The Figure above 

shows an application where a Sensor component periodically (P) publishes a message 

to which a GPS component subscribes and which, in turn, sporadically (S) publishes 

another message that a NAVDisplay component consumes. This last component 

invokes the GPS component via a provided interface when it needs to refresh its own 

state. The messages published can be quite small, while the method invocation (that 

happens less frequently, and on demand) may transfer larger amounts of data. The 

number of possible combinations of interactions among components is quite large, but 

each interaction pattern is precisely defined, which allows application developers to 

understand all operational scenarios. Note that applications can be multi-threaded, but 

individual components shall be single threaded. 

Figure 6 - Interacting DREMS components deployed on two different nodes 
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Interactions shall be realized by connectors that support specific interaction patterns. In 

addition to the two main patterns described above, components may interact using 

network sockets (for conventional message oriented networking using POSIX standard 

socket APIs), timers, and I/O devices. For each case, the synchronization between 

component code execution and the events of the external world is precisely defined and 

allows the implementation of 

various interactions to 

enable a high degree of 

asynchrony and 

responsiveness.  

The run-time software 

platform shall include a key 

platform actor: the 

Deployment Manager (DM) 

that shall instantiate, 

configure, and dismantle 

applications. Every node on a 

network shall have a copy of 

the DM that acts as a 

controller for all applications on that node. The DMs shall communicate with each 

other, with one being the lead ‘Cluster’ DM. This cluster leader DM shall orchestrate the 

deployment of applications across the cluster with the help of the node DMs. For 

deployment, the binaries of application components and a deployment plan (an XML 

file) shall be placed on each node, then the cluster lead DM shall read and execute the 

plan: it shall start with the actors, install components, configure the network 

connections among the components, etc., and finally activate the components. This last 

step shall release the execution threads of the components. When the applications need 

to be removed, the DM shall stop the components, remove the network configuration, 

and stop the actors. A key feature of the deployment process is that the network 

connections among the parts (i.e., actors and components of the distributed 

application) shall be managed: the application business logic does not have to deal with 

this problem; everything is configured based on the deployment plan. 

DREMS Design-time Development Platform Specification 
Configuring the middleware and writing code that takes advantage of the component 

framework provided by a DREMS system can be a highly non-trivial and tedious task. To 

mitigate this problem and to enable programmer productivity, a model-driven 

development environment shall be available to simplify the tasks of the application 

developers and system integrators.  

Figure 7 - The DREMS Deployment Manager and Applications 
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In this environment, developers shall 

define with graphical and textual 

models various properties of the 

application, including: interface and 

message types, components types (in 

terms interfaces and 

publish/subscribe message types), 

component implementations, 

component assemblies, and 

applications (in terms interacting 

components and actors containing 

them). Additionally, the hardware 

platform for the cluster can be 

modeled: processors, network and 

device interfaces, network addresses, 

etc. Finally, the deployment of the application(s) on the hardware platform can be 

modeled (in terms mapping actors onto hardware nodes, and information flows onto 

network links). The framework shall permit both dynamic deployments that change over 

time as well as static deployments to be modeled. Models shall be processed by code 

generators that in turn produce several artifacts: source code, configuration files, scripts 

that facilitate the automated compilation and linking of the components, and other 

documents. The application developer shall provide the component implementation in 

the form of C++ code (currently; in the future: any other, supported executable 

language) and add it to the generated code. The compilation and debugging of the 

applications shall happen with the help of a conventional Interactive Development 

Environment (such as Eclipse) that supports editing, compiling and debugging the code.  

The result of this process shall be a set of component executables and a deployment 

plan – ready to be deployed on a cluster of nodes.  

The model-driven approach has several benefits. (1) The model serves as the single 

source of all structural and configuration information for the system. (2) The tedious 

work of crafting middleware ‘glue’ code and configuration files for deployment is 

automated: everything is derived programmatically from the models. (3) The models 

provide an explicit representation of the architecture of all the applications running on 

the system – this enables architectural and performance analysis on the system before it 

is executed. (4) Models can be used for rapidly creating ‘mockup’ components and 

applications for rapid prototyping and evaluation. 

DREMS Summary 
The DREMS specification describes a sophisticated, end-to-end solution for building and 

running distributed real-time embedded applications. It specifies both a run-time 

framework that includes a state-of-the-art operating system with special features for 

Figure 8 - Model-driven development with DREMS 
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resource, application and network management together with a component framework 

with a precisely defined model of computation, and also a model-driven development 

toolchain that assists developers and integrators in managing the development process. 
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Suitability for a Vehicle IAP 
This section evaluates the suitability of DREMS and AUTOSAR for a vehicle IAP using 
the IAP requirements listed at the beginning of the document. 

Support a full spectrum of modern application architecture and design 
approaches 
The DREMS specification describes both a design-time methodology that uses 
model-based development as well as a run-time platform to support modern 
architectures and design approaches. The design-time tools provide analysis (the 
models can verified for conformance to certain properties) and synthesis 
capabilities (many implementation-level artifacts are generated from the models). 
The run-time platform supports the needs of modern applications: real-time 
requirements, quality of service provisions (for network communication, CPU, 
memory), a security model and memory management. 
The AUTOSAR specification places no mandates on a design-time methodology, 
which forces users to either develop their own tooling or choose a commercial 
vendor that they believe can meet their needs for application development. The 
AUTOSAR OS is designed to run on chips without memory protection, which 
imposes a severe security risk on applications that are increasingly developed by 
third parties. This puts a heavy burden on the system integrator to ensure that 
applications do not inadvertently corrupt one another and that no malicious 
applications that intentionally affect other applications are integrated into the 
system. 

Enable efficient use of system resources 
Both DREMS and AUTOSAR describe mechanisms for the efficient use of system 
resources. A DREMS run-time platform provides system-level resource managers 
that allocate and manage the use of system resources by applications. The DREMS 
design-time tools provide the ability to ensure that an integrated system is capable 
of providing the requested amount of resources to each application. 
With the AUTOSAR approach, the Run Time Environment (RTE) is partly configured 
and partly generated based on the resource needs of the software components 
(applications) running on top of it. This approach allows the RTE to be optimized for 
a specific set of applications and ensures that the run-time system is neither under- 
nor over-provisioned. The allocation of resources to software components in 
AUTOSAR is very static, with many resources (such as mutexes and memory) being 
allocated once and never changing. This is in contrast to DREMS, which allows the 
dynamic creation and allocation of many system resources, including memory and 
mutexes. 

Enable flexible use of system resources 
While both DREMS and AUTOSAR enable efficient usage of system resources, DREMS 
permits a more flexible use of system resources. With AUTOSAR, the configuration of 
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a system is very static and is not expected or permitted to change over time: the 
communication and computational requirements of components are specified at 
design-time, and the RTE is generated and configured based on these requirements. 
An AUTOSAR system is provisioned for the optimality of a given set of software 
components (applications) with the expectation that the applications do not change. 
DREMS is designed to allow dynamic software reconfigurations, both in the system 
software (the platform components) and user level applications. The DREMS 
operating system scheduler is designed to allow “extra” time to be utilized by 
applications. DREMS includes run-time support for QoS requirements on network 
communications which are expected to vary over time, and there is design-time tool 
support to analyze whether the communication requirements can be met based on 
the expected network availability. 

Provide a robust, flexible, and manageable software infrastructure 
As stated above, AUTOSAR relies on static configurations of system software. For 
instance, the AUTOSAR OS specification requires the OS to support the static 
configuration of the number of tasks and mutexes that will be created. Once 
deployed, AUTOSAR applications are not configured or updated dynamically. 
DREMS, on the other hand, allows both the system software and user applications to 
be configured and updated dynamically at run-time. The DREMS operating system is 
expected to provide an administrative interface that can be used as a “command-
line” interface to the system. This interface allows applications to be added, 
removed, stopped and started at run-time by a system administrator. 

Enable controlled sharing of system resources 
While both DREMS and AUTOSAR permit system resources, such as the processor 
and memory, to be shared between applications, only DREMS includes access 
control mechanisms (in the form of a multi-level security policy) to ensure that 
access to resources is controlled based upon a well-defined security policy. This 
allows a DREMS system to more easily include untrusted, third-party applications 
that run beside trusted applications. 
Additionally, AUTOSAR is limited on the amount of access restrictions it can place 
on memory access due to the fact that it is expected to run on systems without 
memory protection. Because of this, the AUTOSAR system integrator is responsible 
for ensuring that applications do not access memory that has not been allocated to 
them and that memory errors in one application do not cause another application to 
crash. 

Provide operational flexibility and maintainability 
Both DREMS and AUTOSAR support debugging of applications, although to different 
degrees. AUTOSAR includes a Diagnostic Event Module which can store diagnostic 
system errors based on standardized Diagnostic Trouble Codes (DTCs). These 
trouble codes can then be used for post-mortem fault-diagnosis. AUTOSAR does not 
perform or provide facilities for online inspection of system and application 
activities other than through the use of the Diagnostic Event Module. AUTOSAR 
provides no provisions for replacing/updating either user or system level software 
at runtime. 
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DREMS includes support for limited online debugging, as well as both online and 
post-mortem fault analysis through a system-level fault manager. DREMS allows and 
expects that both user level and system level software will be 
configured/replaced/updated at runtime and provides facilities and interfaces for 
performing this activity. 
 

Provide a comprehensive framework for fault management 
This is an area of large differences between the two specifications. AUTOSAR does 
not provide any specification for a fault management framework. AUTOSAR relies 
on the underlying OS to provide timing protection to applications at run-time to 
ensure that application deadlines are satisfied. AUTOSAR uses the concept of 
diagnostic monitors to monitor specific physical systems or circuits. If an error is 
detected, the diagnostic monitor logs a Diagnostic Event with the Diagnostic Event 
Manager. Complex fault detection and isolation strategies could be built-in to either 
diagnostic monitors or to custom user applications, but these are beyond the scope 
of the AUTOSAR specification. 
DREMS supports an extensive layered fault detection and isolation strategy that 
detects anomalies in different layers and diagnoses the root cause which should 
then be treated by user-provided fault mitigation logic. The DREMS fault model 
considers both physical and software faults that can occur during design-time, 
deployment-time and run-time, and prescribes measures and methodologies that 
can help prevent faults at all stages of development. 

Provide a comprehensive framework for quality of service and resource 
management 
AUTOSAR lacks a Quality-of-Service (QoS) model. Ensuring that applications meet 
their expected level of performance requires a-priori knowledge at design-time 
about their requirements and configuring/provisioning the system so that this level 
is always statically satisfied. AUTOSAR provides no way to describe levels of service 
that fluctuate over time (for instance, in response to the physical environment) and 
thus expects that all resource levels and requirements are constant throughout an 
application’s lifetime. The burden is on the system integrator to know these 
requirements at design-time and provision the system accordingly. 
DREMS includes both design-time and run-time QoS facilities. The design-time 
modeling tools can capture an application’s network QoS requirements, and design-
time analytical tools (based on Network Calculus) can then verify whether these 
requirements can be satisfied based on the expected network profile of the mission. 
DREMS assumes that both the network bandwidth and network communication 
requirements of applications can both vary over time, and includes design-time 
facilities to specify the requirements and run-time support to ensure the 
requirements are satisfied. DREMS is also capable of enforcing run-time guarantees 
on an application’s usage of other system resources, including the CPU, dynamic 
memory and persistent storage. 
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Support real-time processing within a computing node 
Both AUTOSAR and DREMS support real-time processing with single computing 
nodes. Each AUTOSAR ECU is expected to run an operating system that is amenable 
to reasoning about real-time performance. A derivative of the OSEK operating 
system is used as the basis for most AUTOSAR compliant operating systems to 
provide real-time scheduling. DREMS also provides support for real-time scheduling 
and uses a strict partition scheduler to ensure that, at run-time, tasks are run for the 
period and duration that they requested at design-time. 
Where AUTOSAR and DREMS greatly different in this regard is the methodology 
each provides for ensuring that a system is capable of meeting its real-time 
requirements. AUTOSAR prescribes no specific tool or formalism for checking 
analytically that a set of real-time tasks are capable of meeting their timing 
requirements. The timing extensions to AUTOSAR are quite recent (introduced in 
version 4 of the AUTOSAR specification) and provide only statements about the 
timing requirements that an application should satisfy; they neither provide nor 
recommend any analytical methods for analyzing these requirements for 
satisfiability. 
DREMS, on the other hand, allows timing requirements of individual processes to be 
specified at design-time in models. From this timing description, DREMS describes 
an analytical method that can not only check the satisfiability of the timing 
requirements of an integrated system, but that can generate a schedule for the 
operating system that satisfies the timing requirements. 

Support real-time processing across the distributed computing platform 
Both AUTOSAR and DREMS support real-time processing across the distributed 
computing platform. However, the assumptions that each place on the platform 
plays a key role in how this works. AUTOSAR assumes that the network bandwidth 
and latency of the underlying platform remain constant, and thus providing real-
time processing across the platform partly consists of ensuring that the 
communication delays between communicating software components are 
satisfactory. Ensuring real-time processing across the whole system also involves 
finding a suitable mapping of software components to ECUs so that communication 
times are minimized but CPU requirements are still satisfied; this is a non-trivial 
constraint problem, and AUTOSAR describes no methodology to assist the user in 
this complex task. 
DREMS does not assume that the network bandwidth and latency of the system 
remain constant over time. The design-time modeling tools of DREMS allow the 
expected network availability to be modeled and design-time analytical tools can 
then be used to check whether the requirements are satisfied. The infrastructure 
then enforces QoS policies at run-time to ensure that the real-time processing 
requirements are satisfied across the system. 

Provide security mechanisms sufficient to satisfy system security requirements 
DREMS and AUTOSAR have very different capabilities in regards to security. 
AUTOSAR has the capability to provide secure communications through the Crypto 
Security Manager (CSM), a software component that provides a standardized 
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interface that gives access to basic cryptographic functionalities. However, messages 
traveling across the bus are not currently encrypted, and there is nothing in the 
AUTOSAR specification to prohibit the CSM from being placed on a different ECU 
than a software component that uses it, which presents potential security 
vulnerability in simply getting the data to the CSM. The AUTOSAR standard does not 
describe any provisions to prevent one application from snooping on another, or 
even to prevent one application from maliciously manipulating the data of another 
application. In fact, because the underlying OS of an AUTOSAR compliant system is 
expected to run on a chip that lacks memory protection, the burden of ensuring that 
applications do not maliciously interfere with one another falls entirely on the 
system integrator. As more software is purchased from third-parties and then 
integrated by a central authority, which is one of the stated goals of AUTOSAR, this 
will become more difficult to ensure. 
In addition to running on hardware that provides memory protection, DREMS also 
includes several other security features. Every process in DREMS runs in its own, 
private address space, including the operating system. Processes requiring 
persistent storage are also allocated separate file systems. The temporal scheduling 
of processes in DREMS prevents covert timing channels across different temporal 
partitions. To ensure secure communication, DREMS has a functionality called 
“Secure Transport” that provides cryptographic protection of messages sent 
between nodes, which ensures the confidentiality (only the destination can read the 
message), integrity (the message is not modified in transit) and authenticity (the 
message was sent by the source node from which it claims to originate) of each 
message. 
Further, DREMS uses a multilevel security (MLS) policy to ensure that applications 
cannot arbitrarily communicate and exchange information. DREMS does this by 
attaching labels (such as “classified” or “top-secret”) to messages and 
communication endpoints. When an application wants to send a message, it attaches 
a label to the message and specifies a destination communication endpoint. The run-
time infrastructure (i.e., the operating system) then ensures that the message obeys 
the security policy with respect to the message label (i.e., it ensures that the 
destination endpoint has permission to read messages with that label). Internally, 
DREMS uses a Bell-LaPadula model to implement its MLS policy. 
To summarize the security differences between the two platforms: DREMS has 
extensive security policies and mechanisms (MLS, IPSec, separate address spaces 
between applications, temporal isolation), while AUTOSAR provides very limited 
provisions (a cryptography module for encrypting messages sent between 
components). 

Timing model 
One major difference between DREMS and AUTOSAR is the real-time support each 
requires from the underlying operating system. The AUTOSAR OS specification 
states that it must be run on a real-time operating system that can be configured 
statically and that is amenable to reasoning of real-time performance. As described 
in the section on timing protection with AUTOSAR, the specification expects the 
underlying operating system to control three factors (the execution time of 
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tasks/ISRs, blocking time that tasks suffer from lower priority tasks locking shared 
resources, the interarrival rate of tasks/ISRs) at runtime to ensure timing 
protection. However, AUTOSAR describes no methodology for analyzing a whether a 
system design will meet its real-time requirements. The timing extensions to 
AUTOSAR are relatively recent additions, and thus manufacturers previously had to 
use proprietary timing specifications and internal tools to perform automated 
reasoning about the timing of their specifications. Even with the standardized 
timing extensions, manufacturers are on their own to devise methods and tooling 
for checking whether an integrated system is schedulable, which is a highly non-
trivial task. 
DREMS, on the other hand, uses a strict partition scheduler to ensure that at run-
time, tasks are run for with the period and duration that they requested at design-
time. This “temporal partitioning” concept is borrowed from the ARINC-653 
standard. However, DREMS extends the ARINC-653 partitioning concept by allowing 
partitions to include multiple address spaces and permitting changes to the 
partition schedule without restarting the system. This temporal partitioning concept 
lends itself to a straightforward algorithm for (1) verifying at design-time whether 
an integrated system (consisting of processes from multiple applications) is 
schedulable and (2) generating such a schedule. The DREMS tool-suite includes 
built-in support for modeling the temporal partitioning requirements of individual 
processes, analyzing whether these temporal partitioning requirements can be 
satisfied and then synthesizing a valid partition schedule for the entire system. 

Component model 
Both DREMS and AUTOSAR use the software component as a fundamental 
abstraction. With AUTOSAR, both the basic software (BSW) and higher-level 
“functional” software (which makes use of the BSW) are built from components. The 
communication of components in both models is very similar, as described below. 
An AUTOSAR component has well-defined ports through which it can interact with 
other components. AUTOSAR Interfaces define the services or data provided or 
required on/by a port. The interface can be a client-server interface (defines 
operations that can be invoked) or sender-receiver interface (allows data-oriented 
communication mechanisms). There are two types of ports: PPort and RPort. PPort 
provides an AUTOSAR interface, and an RPort requires one. A PPort either provides 
interface or sends data, and an RPort either invokes operations on an interface or 
reads data elements from a sender interface. Client-server communication can be 
either synchronous or asynchronous. Sender-receiver communication is 
asynchronous, and the sender neither expects nor gets a response from receivers. 
The communication infrastructure is responsible for distributing messages: the 
receiver does not know identity of sender. 
Similarly, components in DREMS also expose well-defined ports for interacting with 
other components. Asynchronous and anonymous publish/subscribe is possible, as 
well as both synchronous and asynchronous client/server interactions. 
AUTOSAR provides a way to describe the internal behavior of a SWC by breaking it 
down into Runnable Entities, which are executed at runtime. These Runnable 
Entities are described at design-time in an XML-configuration file. A timing 



 

 

33 

description can then refer to the activation, start and termination of the execution of 
Runnable Entities within a SWC, although this timing description is a specification of 
how the SWC and its Runnable Entities should behave, not necessarily how they 
behave, nor is a specific tool or methodology described for checking whether the 
timing description holds for a given SWC. DREMS does not provide a way to describe 
the internal behavior of a component other than its communication ports, timers 
and types the component uses.  
DREMS does include a well-defined component scheduling model that states how 
and when component operations are scheduled. The AUTOSAR specification, on the 
other hand, does not state anything regarding the scheduling of component 
operations. Thus, the AUTOSAR component model is mainly an abstraction for 
communication, while the DREMS component model abstracts both communication 
and the scheduling of operations. 

Fault model 
The fault models used by AUTOSAR and DREMS are very different. AUTOSAR does 
not specify a fault model, nor does it describe a specific mechanism or methodology 
for dealing with faults that may occur in the system. Such fault handling is high-level 
functionality must be built on-top of the basic functionalities that are specified by 
AUTOSAR. The cited reference below describes one attempt at extending the 
AUTOSAR specification with fault tolerance provisions. That paper presents the 
standard fault-tolerance concept of replication to provide duplicate copies of 
software components that are used when the primary copy of a software component 
fails. 
DREMS supports an extensive layered fault detection and isolation strategy that 
detects anomalies in different layers and diagnoses the root cause which should 
then be treated by user-provided fault mitigation logic. The DREMS fault model 
considers both physical and software faults that can occur during design-time, 
deployment-time and run-time, and prescribes measures and methodologies that 
can help prevent faults at all stages of development. 
Because the fault management portion of DREMS is so extensive, the reader is 
referred to the paper, “A software platform for fractionated spacecraft,” cited below. 
References: 
“An AUTOSAR-Compliant Automotive Platform for Meeting Reliability and Timing 
Constraints”, J Kim, G Bhatia, R Rajkumar, M Jochim, SAE Technical Paper 01/2011; 
DOI:10.4271/2011-01-0448. 
"A software platform for fractionated spacecraft", Dubey, A.; Emfinger, W.; Gokhale, 
A.; Karsai, G.; Otte, W.R.; Parsons, J.; Szabo, C.; Coglio, A.; Smith, E.; Bose, P., Vol 1, 
Number 20, IEEE Aerospace Conference, 2012. 

Tool-support 
Another big difference between the two specifications is the amount of included tool 
support for each. AUTOSAR is largely a group of specifications on different pieces of 
a system (the operating system, software components, communication, etc.) that 
does not mandate the use of any particular set of tools, nor is there a particular 
methodology recommended for the many stages of the workflow. Users must either 
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purchase or implement their own solutions for working with AUTOSAR. The result 
is that using AUTOSAR necessitates a huge commitment of both time and money. 
For this reason, many automobile companies, such as Toyota, are gradually 
integrating AUTOSAR into their workflow and do not expect to be fully AUTOSAR 
compliant for several years. 
DREMS, on the other hand, provides reference implementations and tools for all 
stages of development. A comprehensive modeling tool provides the basis for 
design-time activities: defining component interfaces, configuring communication, 
specifying process scheduling requirements, defining hardware modules, and 
mapping software onto the hardware. Design-time analysis tools include a Colored 
Petri Net based-tool for modeling and analyzing the component-based software 
applications running on the platform. This allows the system to be verified for 
properties like deadline violations of component operations. Based on the results of 
this verification, the application model can be refined and restructured as required 
before code development begins. Another included design-time tool, based on 
Network Calculus, provides an analytical method of ensuring that applications 
receive their requested Quality of Service (QoS) requirements for network 
resources. A corresponding run-time tool ensures that the requirements are also 
satisfied at run-time when the network performance and availability varies over 
time. 
The run-time software includes an operating system and middleware that provide 
the services and capabilities described in the specification. The reference 
implementation currently runs on the x86 architecture. 
References: 
J.-Y. Le Boudec and P. Thiran, “Network Calculus: A Theory of Deterministic Queuing 
Systems for the Internet.” Berlin, Heidelberg: Springer-Verlag, 2001. 

Computational requirements 
The computational requirements of DREMS and AUTOSAR are substantial. Even 
though AUTOSAR does not specify which specific operating system must be used, it 
does specify requirements on the underlying operating system, and these 
requirements are based on the OSEK operating system specification. OSEK is 
primarily designed for low-end microcontrollers, and OSEK systems are expected to 
run on chips without memory protection. The AUTOSAR OS specification also states 
that it must run on low-end microcontrollers and without external resources. 
DREMS has higher computational requirements than AUTOSAR. It expects both 
virtual memory, a memory management unit and memory protection to be present. 
The reference implementation versions of the DREMS OS and middleware run on 
the x86 architecture. 
However, as automotive applications demand more and more computing power, the 
differences in the computational requirements needed by the two specifications will 
very likely start to converge. For instance, the introduction of TCP/IP over Ethernet 
into the upcoming BMW 7 Series will necessitate more memory and computing 
power than required in previous generations of the automobile. 
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Dynamic reconfiguration capabilities 
The ability to dynamically reconfigure the system, such as adding a new application 
or moving an existing application to a different ECU, is a big advantage that DREMS 
has over AUTOSAR. In AUTOSAR, the system configuration is, by design, very static: 
the AUTOSAR OS specification states that the underlying operating system must be 
able to be configured statically, such as the number of processes and the number of 
resources (like mutexes). The AUTOSAR Run-Time Environment (RTE), which sits 
on top of the BSW but below the application-level Software Components (SWCs), is 
not only configured at compile-time for specific ECUs, but is also partly generated 
based on the requirements of the SWCs that will be running on it. A reconfiguration 
of the system, such as adding an application or moving an application from one ECU 
to another, cannot be done dynamically at run-time. 
DREMS, on the other hand, is designed with such reconfiguration capabilities in 
mind. In fact, it is expected that applications may need to migrate, at run-time, 
between physical hardware nodes in response to both anticipated changes caused 
by the environment, such as network connectivity, as well as unexpected failures in 
both software and hardware. The deployment and configuration of an application 
onto a DREMS system is handled by a trusted piece of software called the 
Deployment Manager that is responsible for starting and stopping applications 
running on the system. 
References: 
“AUTOSAR – challenges and solutions from a software vendor’s perspective”, Th. M. 
Gall and R. Pallierer, in Elektrotechnik und Informationstechnik, Volume 128, 
Number 6, 2011. 
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Glossary 
CAN: vehicle bus standard that allows microcontrollers and devices to communicate 
without a host computer. CAN uses a message-based protocol (rather than directly 
invoking a function, send a message to a process and rely on the process to select 
and invoke the actual code to run). Started in 1983, first CAN controller chips in 
1987. 
Car-to-X: technology enabling the exchange of information between vehicles and 
between vehicles and the traffic infrastructure. This is currently being integrated 
into vehicles by Mercedes-Benz. 
E/E: electrical/electronic system. The elements of a vehicle’s E/E architecture 
include data networks, diagnostics, fault tolerance, energy management, power and 
signal networks, and physical and functional partitioning. 
Event Chain: describes the temporal correlation between two observable events 
(referred to as the stimulus and response) that have a functional dependency. 
Fibex: Field Bus Exchange format. An XML-based standardized format used to 
describe complex, message-oriented communications systems. It is aimed at easing 
data/information exchange. Can be used to export on-board network databases, and 
for importing into different types of tools during development of vehicle networks. 
Fibex presently supports FlexRay, CAN, MOST and LIN. 
FlexRay: automotive network communications protocol to govern on-board 
automotive computing. FlexRay is designed to be faster than CAN and TTP, but also 
more expensive. It supports data rates up to 10 Mbps and can have 2 independent 
data channels for fault-tolerance (degraded performance). Used by BMW, Audi, 
Mercedes. 
Jitter: For a periodically occurring timing event, the jitter is defined as the 
maximum variation of its period with respect to a predefined standard period. 
Latency: The latency of a timing event chain describes the time duration between 
the occurrence of the stimulus and the occurrence of the corresponding response. 
LIN: local interconnect network is a broadcast serial network protocol used for 
communication between components in vehicles. Comprises one master and up to 
16 slaves, both of which are usually microcontrollers. All messages are initiated by 
the master with at most one slave replying to a given message identifier. Developed 
partly because CAN bus is too expensive to implement for every component in car. 
The LIN Consortium was founded by 5 automakers and the first implemented 
version of the specification was done in 2002. 
OBD: On-Board Diagnostics is a generic term referring to a vehicle’s self-diagnostic 
and reporting capability. OBD systems give the owner access to the state of health 
information for vehicle subsystems. 
OSEK: Open Systems and their Interfaces for the Electronics in Motor Vehicles is a 
standards body that has produced specifications for an embedded OS, 
communications stack and a network management protocol for automotive 
embedded systems. OSEK was designed to provide standard software architecture 
for the various ECUs throughout a car. It is an open standard published by a 
consortium. Some parts are standardized in ISO 17356. Specifies standard for 



 

 

37 

optional time-triggered real-time OSs. AUTOSAR reuses the OSEK specifications, 
with the OS being a backwards compatible superset of OSEK OS which covers the 
functionality of OSEKtime, and the communication module is derived from OSEK 
COM. 
OSEK is architecture dependent; OSEK systems are expected to run on chips without 
memory protection. Features can be configured at compile-time. The number of 
tasks, stacks, and mutexes is statically configured. There are two types of tasks: 
basic (never block, but instead run to completion) and enhanced (can sleep and 
block on event objects). Only static priorities are used for tasks. FIFO is used to 
schedule equal priority tasks. The priority ceiling protocol ensures there are no 
deadlocks or priority inversions. Several implementations exist: Arctic Core, 
FreeOSEK, openOSEK, PICOS18, and others. 
Even though the AUTOSAR OS specification does not explicitly state an operating 
system that must be used, but it is widely accepted that a modified version of OSEK 
is used as the underlying operating system. 
Period: Describes the expected time interval between two consecutive event 
occurrences, neglecting variation (jitter). 
Response: End point of an event chain. 
Stimulus: Start point of an event chain. 
 


