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Abstract

This paper describes a comprehensive and systematic framework for building mixed
continuous/discrete, i.e., hybrid physical system models. Hybrid models are a natural
representation for embedded systems (physical systems with digital controllers) and for
complex physical systems whose behavior is simpli�ed by introducing discrete transitions
to replace fast nonlinear dynamics. In this paper we focus on two classes of abstraction
mechanisms, viz., time scale and parameter abstractions, discuss their impact on build-
ing hybrid models, and then derive the transition semantics required to ensure that the
derived models are consistent with physical system principles. The transition semantics
are incorporated into a formal model representation language, which is used to derive
a computational architecture for hybrid systems based on hybrid automata. This ar-
chitecture forms the basis for a variety of hybrid simulation, analysis, and veri�cation
algorithms. A complex example of a colliding rod system demonstrates the application
of our modeling framework. The divergence of time and behavior analysis principles
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are applied to ensure that physical principles are not violated in the de�nition of the
discrete transition model. The overall goal is to use this framework as a basis for de-
veloping systematic compositional modeling and analysis schemes for hybrid modeling
of physical systems. Preliminary attempts in this area are discussed, with thoughts on
how to develop this into a more general methodology.

Keywords: hybrid modeling, systematic model abstractions, parameter abstraction, time
scale abstraction, model veri�cation.

1 Introduction

The need to achieve more optimal and reliable performance in complex physical systems that

span from consumer products to aircraft and nuclear plants, while meeting more rigorous safety

standards has led to a proliferation of computer-based techniques for modeling and analysis of

these systems. The complexity of simulating, analyzing, and understanding system behavior

is often handled by replacing nonlinear models by simpler component model constructs that

together provide a good approximation to actual system behavior.

Traditional qualitative reasoning methods in Arti�cial Intelligence (e.g., [9, 14, 24]) em-

ploy abstractions in (i) the quantity space of system variables, and (ii) the functional relations

among these variables to create simpler discretized piecewise behaviors that emphasize qualita-

tive di�erences between di�erent components of the behavior [9, 22]. However, these methods,

tend to generate a large number of behaviors, many of them spurious, thus limiting their use-

fulness in real world applications. A key to generating correct physical system behavior is to

ensure that energy conservation and continuity of power constraints [51] are properly incor-

porated into the system model. System models expressed as ordinary di�erential equations

(ODEs) or a combination of di�erential and algebraic equations (DAEs) generate quantitative

behavior in real space. However, the continuous behavior may contain steep gradients, often

of a nonlinear nature, and behavior generation algorithms have to deal with the resulting

numerical sti�ness which hampers systematic analysis and interpretation of the results.

Previous work in qualitative reasoning (e.g., [18, 23]) has recognized that complex physi-

cal system behaviors often occur at di�erent temporal and spatial scales. Iwasaki and Bhan-

dari [18] have used relative magnitudes of coeÆcients in an inuence matrix (i.e., the Amatrix)

of a linear system to determine \nearly decomposable" substructures. They assume a linear

system whose inuence matrix is nearly decomposable. Making a further assumption that

the system is stable, they replace the tightly-coupled variables within each submatrix by an

aggregated variable using eigenvector techniques, and reformulate the original ODE set into
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a smaller ODE set, that can be solved to derive the dynamic behavior of the system. This

is similar to Kuipers' [23] approach in QSIM [22] where the relations between tightly-coupled

variables are replaced by instantaneous algebraic relations. Methods for simulating across

multiple time scales in QSIM are formulated using a hierarchy of constraint networks. Our

work generalizes and extends these approaches to linear and nonlinear systems. Analyzing

behaviors of complex systems, we realize that small time constant e�ects cannot always be

ignored in generating dynamic system behavior. We identify relatively small and large pa-

rameters in the physical system model and apply systematic techniques to abstract away their

e�ects or condense their e�ect on gross behavior to occur at a point in time [32, 34, 37, 43]. The

resultant system model exhibits multiple modes of operation [50], each with simpler piecewise

continuous behavior, but transitions between the modes may introduce discontinuous changes

in the system variables.

Consider the system of three masses, shown in Fig. 1. Initially, masses m2 and m3 are

touching and at rest, and m1 is moving toward m2 with a constant velocity v. For simplicity,

we assume equal masses, i.e., m1 = m2 = m3, and no frictional losses. When m1 collides with

m2, there is a redistribution of momentum, which results in an abrupt change in the velocities

of m1 and m2, i.e., v1 = 0 and v2 = v. The mass m2 begins its continuous motion just after

the abrupt change, but immediately collides with m3. The phenomena repeats, with all of

m2's momentum being transferred to m3, causing another discontinuous change in velocities.

On a more detailed scale, if one takes into account the elasticity of the material of the bodies,

the collision process can be described by more complex continuous models that describe the

fast exchange of momentum in terms of energy conversion from kinetic to potential to kinetic

energy at a very �ne grained time scale. However, such models are hard to build and analyze.

Even if one could build a good representative model of the detailed phenomenon, accurate

estimation of the parameters of the model is a very diÆcult task. Creating a more abstract but

simpler model of the collision phenomena produces a discontinuous change that occurs at a

point in time. A convenient formalism for representing phenomena that combine discrete and

continuous behaviors are hybrid dynamic system models [2, 15, 43]. These models generate

continuous behavior interspersed with discrete events. A sequence of discontinuous changes

may occur between two continuous behavior time intervals (for the colliding bodies, a collision

between m1 and m2 is immediately followed by a collision between m2 and m3).

Hybrid behaviors may naturally occur in physical systems with embedded digital control,

because the controller can force the system to operate in multiple con�gurations or modes.

For example, the Airbus A-320 y-by-wire system includes the take-o�, cruise, and go-around

operational modes [55]. Within each mode, system behavior evolves continuously but discrete

mode changes dictated by a supervisory controller can occur at points in time, resulting in

3



v

m1 m2 m3

Figure 1: Physical system with discontinuities.

discontinuities in overall system behavior.

Our goal in this work is to develop comprehensive methodologies for analyzing behaviors

of abstract models of complex dynamic physical systems that necessarily exhibit mixed con-

tinuous and discrete, i.e., hybrid behavior. There is a rich body of work in developing and

analyzing hybrid system models [2, 5, 15, 16, 25, 37, 49, 54]. We adopt the generic hybrid sys-

tems framework and develop a set of unambiguous and consistent physical system principles

that govern the model formulation process and de�ne the execution semantics for behavior

generation. This paper establishes a formal speci�cation language for building hybrid system

models and de�ning execution semantics for behavior generation. This encompasses model

de�nition as a combination of continuous di�erential equations and algebraic constraints that

de�ne discrete mode transitions in dynamic system behavior, and jumps in the state vec-

tor that may accompany the discrete transitions. A well-de�ned mathematical formulation

(DAEs plus �nite state machines) that includes the generation and analysis of Dirac pulses

facilitates behavior analysis and the de�nition of simulation algorithms based on physical

principles. Examples are presented to demonstrate the e�ectiveness of this approach. Other

papers describe the underlying physics [37], its application to the development of simulation

algorithms [36, 42] and observer schemes to track dynamic behavior evolution [38].

2 Background

A physical system can be regarded as a con�guration of connected physical elements that ex-

hibit ideal reversible or ideal irreversible behavior [7]. Capacitive (e.g., spring, tank, electrical

capacitor) and inductive (e.g., mass, uid inertia, electrical inductor) processes are reversible

in that they can store and release energy. Resistive processes (e.g., dashpots, viscous friction,

electrical resistances) are irreversible in that they dissipate energy. The total energy content

in a system at any point in time is the sum of the energy amounts stored in the reversible

processes. Therefore, variables associated with these processes reect the behavioral history

of the system, and de�ne the traditional notion of system state. Future behavior of the system

is a function of its current state and input to the system from the present time. State changes

are caused by energy exchange between the system components, expressed as power, the time
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derivative of ow of energy. The notions of system state, energy, and power are independent

of the physical domain (e.g., mechanical, electrical, hydraulic, and thermal), and they form

the basis for de�ning a set of mathematical equations that govern physical system behavior.

Di�erential equations are a common representation for continuous system behavior. The

system is described by a minimal set of state variables (generalized momentum and displace-

ment variables that are directly related to the energy content of the inductive and capacitive

elements, respectively [6, 51]), called the state vector, x, that completely captures its behavior

history. System behavior over time is speci�ed by a gradient of ow or �eld, f . Interaction

with the environment is speci�ed by input and output signals, u and y, respectively. The gra-

dient of behavior, _x, is a�ected by the state and system input expressed as a set of di�erential

equations, i.e., _x = f(x; u) where f is time invariant. All other variables called signals, s, are

algebraically related to the state and input variables by mathematical functions, s = h(x; u).

Hybrid modeling paradigms [2, 15, 43] supplement continuous system descriptions by mech-

anisms that model discrete mode changes with associated discontinuities in the �eld descrip-

tion and the continuous state variables. Hybrid dynamic systems consist of three distinct

subdomains:

� A continuous domain, T , with time, t 2 T , as the special independent continuous

variable. This de�nes the continuous time line.

� A piecewise continuous domain, V�, that speci�es variable ow, x�(t), uniquely on the

time-line.

� A discrete domain, I, that captures the operative piecewise continuous domain, V�,

corresponding to the system modes.

We adopt notation similar to Guckenheimer and Johnson [15] and specify I to be a discrete

indexing set, where � 2 I represents the mode of the system. Each mode is de�ned on

its domain V� of <n. The behavior trajectory, F�, is a continuous C2 ow on a possibly

open subset U� � V� (shown for a planar hybrid system in Fig. 2). The ows constitute

the piecewise continuous part of the hybrid system. System behavior at a point in time is

speci�ed by x�(t), a location in mode � at time t. A discrete switching function �� is de�ned

as a threshold function on V�. If �� � 0 in mode � the system transitions to �, and this is

de�ned by the mapping g�� : � ! �. The piecewise continuous level curves �� = 0, denoted

as S�
�, de�ne transition boundaries. If a ow F� intersects the level curve, S�

�, it contains the

boundary point, B� (see Fig. 2, where the ow includes boundary point B2). In summary, a

hybrid dynamic system is de�ned by the 5-tuple1

H =< I;X�; f�; 
�
�; g

�
� > : (1)

1Guckenheimer and Johnson refer to the respective parts as < V�; X�;F�; h
�
�; T

�
� > [15].
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Figure 2: A planar hybrid system.

A trajectory in the system starts at an initial point x�1(t0), and if �2�1 > 0 8�2 2 I, it

continues to ow in �1 speci�ed by F�1 until the minimal time ts at which �2�1 (x�1(t)) = 0

for some �2. Computing x�1(t
�
s ) = limt"ts F�1(t) the transformation g�2�1 takes the trajectory

from x�1(t
�
s ) 2 V�1 to x�2(ts) 2 V�2 . The point x�2(ts) = g�2�1 (x�1(t

�
s )) is regarded as the new

initial point in mode �2.

If there exists �3 2 I, such that �3�2 (x�2(ts)) � 0, the trajectory is immediately transferred

to g�3�2 (x�2(ts)) 2 V�3 . A characteristic of hybrid systems is the possibility of a number of these

immediate changes occurring without an intermediate ow of continuous behavior [1, 15, 32,

50]. In general, this situation occurs if �k+1
�k

transports a trajectory to �k+1, and the initial

point is transported by g�k+1
�k

to a value that results in �k+2
�k+1

� 0, i.e., g�k+1
�k

(x�k) 62 U�k+1
, and

another mode �k+2 is instantaneously arrived at. These immediate transitions continue till a

mode �m is arrived at where the initial point is within U�m . To deal with these sequences of

transitions, Alur et al. [1, 2], Guckenheimer and Johnson [15] and Deshpande and Varaiya [11]

propose model semantics based on temporal sequences of abutting intervals

[t1 t2]| {z }
�1

! [t2 t3]| {z }
�2

! : : :! [tm tm+1]| {z }
�m

(2)

with behavior that satis�es the following sequence:

(
x = x�1
_x = f�1(x; t)| {z }

�1


�2
�1

(x)

x�2=g
�2
�1

(x)
�!

(
x = x�2
_x = f�2(x; t)| {z }

�2


�3
�2

(x)

x�2=g
�3
�2

(x)
�! : : :


�m
�m�1

(x)

x�m�1=g
�m
�m�1

(x)
�!

(
x = x�m
_x = f�m(x; t):| {z }

�m

(3)

Figure 3 shows a schematic representation of the semantics that produce a sequence of tran-

sitions of this form.
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Figure 3: A model of hybrid dynamic systems.

This paper develops the hybrid modeling paradigm for dynamic physical systems by in-

troducing constraints on the state vector function g�� during discrete transitions [36]. Fur-

thermore, it modi�es the de�nition of �� to closely match requirements of object oriented

modeling methods [8, 10, 20].

3 Hybrid Modeling of Physical Systems

In previous work we have applied systematic modeling principles to derive hybrid models in

a number of di�erent physical domains, e.g., the freewheeling diode circuit [32, 37, 43] in

the electrical domain, braking and clutch mechanisms [42] in the mechanical domain, the

secondary sodium cooling loop [43] in the combined thermal and uid domains, and the

elevator control system of aircraft [40] in the combined mechanical and uid domains. The

common theme in all of the above work was the abstraction of parasitic elastic, inertial, and

dissipative e�ects, so that complex phenomena at fast time scales could be condensed into

discontinuous changes to reduce the complexity in analyzing model behavior. This paper

integrates all the past work into a comprehensive and formal approach for specifying hybrid

models of dynamic physical systems. The abstracted phenomena, that occur as discontinuous

mode changes are represented by discrete switching mechanisms implemented as �nite state

machines that are then integrated with the continuous ordinary di�erential equation (ODE)

models to generate piecewise continuous behaviors [30, 37]. System topology in a mode is

generated dynamically, and the switching speci�cations are derived as inequality constraints

on state variables.

This section develops the systematic modeling principles into a formal mathematical frame-

work to facilitate the analysis of hybrid systems behavior. We �rst discuss how conservation

principles can be applied to generate physically consistent behavior. The mechanisms for

parameter and time scale abstraction are introduced. The abstractions introduce discrete

switching conditions in the behavior trajectory. We show that the transition conditions that
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result from parameter abstractions have to be in terms of a posteriori state vector values (the

�nal value around a discontinuous change), and the transition conditions that result from time

scale abstraction have to be in terms of a priori state vector values, (the initial value around

a discontinuous change). These results are then incorporated into the speci�cations for the

formal mathematical model of hybrid systems.

3.1 Conservation of State

Physical system behavior is governed by macroscopic conservation laws. For example, the

vector components of the momentum of a number of bodies that collide is conserved. The

overall system momentum is unchanged by the collision process even though there may be

instantaneous dissipation due to frictional e�ects in a non ideal elastic collision resulting in

the loss of kinetic energy. Similarly, the charge in an electrical circuit is conserved, but

instantaneous loss of electrical energy may occur. In general, except for energy which may be

instantaneously dissipated [12, 44],2 the extensive variables that de�ne the physical state of a

system are conserved. This conservation law needs to be preserved when generating behavior

from hybrid physical system models and can be derived from the system model by integrating

the system of di�erential equations [31].

Consider the two colliding bodies in Fig. 4, wherem1 moves towardm2 with initial velocity,

v1 = v and m2 is at rest (mode �0). This can be described by the system of di�erential

equations using Newton's Second Law:

f d :

"
m1 0
0 m2

# "
_v1
_v2

#
=

"
1 0
0 1

# "
F1

F2

#
; (4)

where F1 and F2 represent the forces on masses m1 and m2, respectively. Furthermore, the

following algebraic constraints hold:

fa :

"
1 0
0 1

# "
F1

F2

#
=

"
0
0

#
(5)

indicating the two masses are moving with constant velocities.

For the point masses, collision occurs when x1 � x2, and the system transitions into mode

�1 where the momentum is instantaneously redistributed between m1 and m2 resulting in

v+2 � v+1 = 0; (6)

where v+1 and v+2 represent the instantaneous change in velocity of masses m1 and m2, respec-

tively, after the collision. The values of v1 and v2 are known at the point x1 � x2 becomes

true. At this point, the continuous behavior evolution of v1 and v2 stops. However, both v+1
2Note that this does not mean there is a loss of energy, but that free energy is instantaneously dissipated.
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Figure 4: Non-elastic collision between a bullet and a piece of wood.

and v+2 are unknown, and cannot be solved for with one equation. It is also known that in

the collision mode, �1, Newton's Third Law applies, and F1 = �F2 6= 0. These constraints

can be added to the system of equations by replacing Eq. (5) with

fa :

"
1 �1 0 0
0 0 1 1

# 26664
v1
v2
F1

F2

3
7775 =

2
6664
0
0
0
0

3
7775 : (7)

Combining equation (4) and Newton's third law yields m1 _v1 = �m2 _v2. This can be inte-

grated over an in�nitesimal time interval [t; t+] to express the instantaneous e�ects around

the discontinuous change, i.e.,

m1(v
+
1 � v1) = �m2(v

+
2 � v2): (8)

This embodies the conservation of momentum constraint generated from physical principles.

Equations (6) and (8) together provide a unique solution for v+1 and v+2 :

g�1 :

"
v+1
v+2

#
=

"
m1

m1+m2
v

m1

m1+m2
v

#

There may be instantaneous dissipation when discontinuities occur resulting in loss of kinetic

energy in the system. In case of a nonelastic collision, free energy in the system before collision,
1
2
m1v

2, exceeds the free energy in the system after collision, 1
2

m2
1

m1+m2
v2. In general, the derived

conservation laws are the instantaneous equivalent of the continuous dynamics in a new active

mode. This corresponds to a projection onto a manifold de�ned by the algebraic constraints

that replace the fast continuous behavior. The projection takes place in the impulse space or

jump space and causes the system behavior or state space trajectories to include discontinuous

jumps onto the manifold [17, 31, 56].

3.2 Abstractions in Physical System Models

The macroscopic view of the physical world is that its behavior is continuous and all physical

system behavior is governed by the principle of continuity of power [51]. However, when one
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looks at complex physical systems, their behaviors combine phenomena at multiple temporal

and spatial scales. Depending on the granularity of the observations and the detail at which

analysis is performed, certain aspects of a system's behavior may appear to be instantaneous.

Consider the example of two bodies one on top of the other, shown in Fig. 5, sliding towards a

rough surface that has a very high coeÆcient of friction. When m1 reaches the rough surface,

shown as switch variable Sw1 going from 0 to 1 in the graph, the frictional force opposing

the motion is large enough to bring it to rest almost immediately. The resulting deceleration

force Ff also acts on mass m2. If the Coulomb friction force between m1 and m2 is exceeded,

i.e., jFf j > Fth, m2 starts to slide on top of m1. This new mode is indicated by discrete

variable Sw2 = 1 in the graph. Whether jFf j exceeds Fth depends on the initial velocity of the

combined mass system. If the initial velocity is suÆciently low, m1 and m2 will come to rest

together without exceeding the breakaway force, Fth. Otherwise, after a very short period of

initial deceleration, m2 starts to slide on top of m1 with a constant friction force, Fth, acting

between the two.

m1
v

vm2

v2Sw1 Sw2

Ff

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

time

Figure 5: A body that starts to slide.

In many situations, when analyzing complex models of much larger systems, one would like

to avoid such detailed analysis of phenomena and the corresponding computational complexity

in behavior generation. In such cases, it may suÆce to model the transition that occurs when

Sw1 = 1 by an instantaneous change where m1's velocity goes to zero, and m2 continues to

move with a �nite velocity. In e�ect, what this avoids is generating behavior that captures

the details of the quick build-up of the frictional force. This is referred to as a parameter

abstraction.

De�nition 1 (Parameter Abstraction) Parameter abstractions remove small and large,

often parasitic, dissipation and storage parameters from the system model causing discontinu-

ous changes in system behavior.

Another situation where abstraction of fast continuous transient behavior may be applied

is the example of two colliding bodies shown in Fig. 6. Upon collision, represented by the

discrete change Sw1 = 1, small elasticity e�ects in m1 and m2 become active and store the

kinetic energy of m1 as elastic (potential) energy. Spring-like or elastic e�ects cause the
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stored energy to be returned as kinetic energy in a very small time interval. The exchange of

momentum as a continuous transient was illustrated for equal masses earlier.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

time

m1 v1

Sw1

v2

m2

v

Figure 6: A collision between two bodies with equal mass.

This example again illustrates that complex phenomena over small time intervals (a colli-

sion in this case) can be replaced by a more abstract model where the exchange of momentum

caused by elasticity e�ects is modeled as an instantaneous change. In this case, the e�ects of

the elasticity parameters are not abstracted away. Their end e�ect is explicitly modeled as a

discontinuous change in the velocities at the point of collision. This is referred to as a time

scale abstraction.

De�nition 2 (Time Scale Abstraction) Time scale abstractions compress behaviors that

occur on a small time scale relative to the primary behavior(s) of interest to explicit discon-

tinuous changes at a point in time.

3.3 The Di�erent Semantics

Both parameter and time scale abstractions provide mechanisms for reducing model com-

plexity by eliminating higher order derivatives and nonlinear e�ects that cause fast transients

in the ODE formulation of the system model. However, applying these abstractions cause

discontinuous changes in the system variables at points in time. Systematic incorporation

of the abstractions into the modeling mechanism requires careful analysis of the underlying

physical nature of these continuous transients to ensure that the behaviors generated by the

simpli�ed hybrid models correspond to the real system behavior. The analysis reveals the need

for di�erent semantic speci�cations for parameter and time scale abstractions. This section

demonstrates how these semantics translate to the formal speci�cations for de�ning hybrid

system behavior.

3.3.1 Parameter Abstraction

Consider the two bodies on top of one another in Fig. 5 that slide towards a rough surface

as discussed in Section 3.2. If the detailed continuous transients on contact with the rough

surface are abstracted away, the resultant hybrid system model is made up of three modes as
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illustrated in Fig. 7. In the initial mode, �00, the combined masses m1 and m2 slide toward

the rough surface.

F > Ff,2 th

+
xthx1

m1 m1
v

v v

Ff,1

Ff,2

m2

α00 α01 α11

m2

xth xth xth

Figure 7: The top body may continue to slide.

When m1 makes contact with the rough surface at x1 � xth, the model switches mode

to �01. In this mode, it has to be determined if m2 comes to rest with m1, or whether the

resultant force on m2 is large enough to cause it to slide on m1. This requires computation of

the force Ff;2. Since the impact is idealized, it occurs at a point in time causing the velocity of

the masses to change discontinuously. The resultant force on m2 is an impulse [4], Pf;2, which

is represented mathematically as a Dirac function (Æ) that occurs at the time point of impact.

Its area is determined by the velocities immediately prior to (v2 = v) and after (v+2 = 0) the

impact, i.e., v+2 � v2.

Pf;2 being an impulse, its value cannot be directly compared against a threshold force to

determine whether m2 slides or not.
3 Instead, a linear approximation is applied to compute

the resultant force from the change in velocity. This requires us to go back to the more

detailed model which includes the small elasticity (modeled as spring capacitance, C) and

friction parameters (modeled as damper resistance, R) to compute a more realistic value of

the maximum force generated. This results in the system of equations"
_p1
_q

#
=

"
� R

m1+m2
� m1

C(m1+m2)
1
m1

0

# "
p1
q

#
: (9)

From this, the detailed behavior of the force Ff;2 can be computed as

Ff;2 =
Rm2

m1(m1 +m2)
p1 � (

m1

C(m1 +m2)
�

1

C
)q (10)

where p1 is the momentum of massm1 and q the displacement associated with the small spring

e�ect. In case of complex eigenvalues, �1;2 = �r � i�i, solving for p1 and q yields (q(0) = 0)

p1 = p1(0)e
��rt(cos(�it) +

�r �
R

m1+m2

�i
sin(�it)) (11)

and

q(t) = p1(0)e
��rt

1

�im1
sin(�it) (12)

3Since an impulsive force has in�nite magnitude, a direct comparison would imply that Pf;2 always exceeds
the threshold frictional force, implying the mass m2 will start sliding.
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Substitution in Eq. (10) yields an expression for Ff;2 that can be approximated by a Taylor

series expansion [41]. For example, in the reduced order model the ff;2 = m2 _v2 equation

can be replaced by a linear approximation Ff;2 = Kdv1(0), where m1v1(0) = p1(0) and Kd

embodies the parameters R, C, m1, and m2.

This value of Ff;2 can then be compared against the breakaway force value, Fth. If the

detailed temporal behavior is such that the breakaway value is exceeded, the �11 mode of

the hybrid model is activated. In this continuous mode, m2 slides with initial velocity that

equals the �nal velocity when �00 was departed and a constant frictional force acting on it.

Therefore, the velocity in the intermediate mode does not a�ect the velocity of m2 in �11, the

sliding mode. In such a case, this mode, �01, is called a mythical mode [32, 50].

De�nition 3 (Mythical Mode) When parameters a�ecting the fast behaviors of a system

are abstracted away and replaced by discrete transitions, they may result in a behavior trajec-

tory that goes through discrete modes of behavior that have no existence on the real time line.

These modes are called mythical.

Principle 1 (Invariance of State) Mythical modes have no e�ect on the system state vec-

tor.

This follows from the invariance of state lemma presented in [43]. The proof is presented in

[35].

Formally, the consecutive mode switch to �11 has to occur before the state vector is updated

to its a posteriori values, x = x+. Mathematically this can be represented as8><
>:

x+ = g�1(x)
x = x+

_x = f�1(x; t)| {z }
�1


�2
�1

(x;x+)
�!

8><
>:

x+ = g�2(x)

| {z }
�2


�3
�2

(x;x+)
�!

8><
>:

x+ = g�3(x)
x = x+

_x = f�3(x; t)| {z }
�3

; (13)

where �2 is a mythical mode. In this example, it is clear that determining whether a switch

occurs has to be based on x+ rather than x, as shown in Fig. 7.

3.3.2 Time Scale Abstraction

Consider the elastic collision of two bodies shown in Fig. 8. The mass m1 moves with initial

velocity v towards the mass m2, that is at rest. As discussed earlier, a detailed analysis of the

collision indicates that elasticity e�ects store the initial kinetic energy as potential (elastic)

energy, and then return this energy as kinetic energy over a very small time interval. Often,

the time scale of this phenomenon is very small compared to the behavior of interest, so it
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can be modeled as an instantaneous change at a point in time governed by two equations: (i)

Newton's collision rule [4]

v+1 � v+2 = ��(v1 � v2); (14)

where the coeÆcient of restitution, �, determines the amount of energy dissipated upon colli-

sion, and (ii) the conservation of momentum principle (discussed in Section 3.1):

m1v
+
1 +m2v

+
2 = m1v1 +m2v2; (15)

If the collision is perfectly elastic, � = 1, and with m1 = m2 this yields(
v+1 = v2
v+2 = v1

(16)

which results in v+1 = 0 and v+2 = v. As soon as the new velocities are computed, the bodies

disconnect. In this case, the new con�guration is reached after the state vector is updated.

Otherwise, m1 would still have velocity v, and m2 would be at rest, and the collision process

would repeat. Note that the switching speci�cations have to ensure that the collide mode

is departed immediately after the state vector, x, is updated to its a posteriori values, x+,

x = x+. This is implemented by the v2 > v1 constraint. Otherwise, the collision e�ect in

Eq. (16) would be executed again, causing the velocities of m1 and m2 to revert to their values

immediately before collision, and the process would repeat ad in�nitum. Mathematically this

is represented as8><
>:

x+ = g�1(x)
x = x+

_x = f�1(x; t)| {z }
�1


�2
�1

(x;x+)
�!

8><
>:

x+ = g�2(x)
x = x+

| {z }
�2


�3
�2

(x;x+)
�!

8><
>:

x+ = g�3(x)
x = x+

_x = f�3(x; t)| {z }
�3

(17)

where �2 is a pinnacle.

De�nition 4 (Pinnacle) An explicitly de�ned point on the time line that is not part of a

continuous behavior interval, V�, but embodies a change in the continuous system state vector

is called a pinnacle, P�.

Fig. 8 illustrates that switching speci�cations have to be in terms of a priori state variable

values.

3.3.3 Summary

The two types of abstraction have a distinctly di�erent e�ect on how to formulate switching

speci�cations and introduce the fundamentally di�erent behavior between mythical modes and

pinnacles. As illustrated, time scale abstraction collapses behavior during small intervals into
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Figure 8: A collision between two bodies.

points, and the switching model uses a priori state values. In contrast, parameter abstraction

abstracts away complex nonlinear behaviors, that are modeled by switching conditions based

on a posteriori state values computed by g��. The mythical modes that result from these

conditions are modeling artifacts that have no real representation, and, therefore, do not

a�ect the state vector, x. This is called the principle of invariance of state [35, 43].

Since mythical modes have no e�ect on system state, they may be replaced by direct tran-

sitions to the �nal real mode (either a pinnacle, P�, or a continuous mode, F�) in a simulation

or behavior generation algorithm. However, deriving these direct transitions before hand may

require considerable computational e�ort, and because they describe a global phenomena,

they will have to be pre-compiled for every possible local change derived from the model. The

complexity of precomputing transitions past mythical modes is further compounded by the

fact that a mode may be labeled mythical for certain state vector values, and not for others.

Therefore, replacing mythical modes by direct transitions requires the inclusion of ranges of

state vector values.

A more pragmatic approach is to incorporate systematic techniques in a compositional

modeling formalism to deal with these artifacts. Furthermore, translating a system model into

a model where only a priori state variable values are used complicates the model veri�cation

task considerably. If a posteriori values are used, invariance of state can be conveniently

applied for model veri�cation purposes [32, 33, 43].

3.4 A Formal Representation

We now develop a mathematical model that embodies the physical abstraction semantics

discussed above. At the core of this speci�cation is the establishment of the switching function,

��, that depends on the state vector values x�, prior to the discontinuous change, and the

state vector values x+� immediately after the discontinuous change. The semantics of a mode

transition (�k to �i) are speci�ed by the recursive relation between �i�k and the function that

speci�es the change in the state vector across mode transitions, g�i�k ,(
x+�k = g�i�k(x�k)
�i+1
�i

(x�k ; x
+
�k
) � 0

(18)

Note the �k subscript in g
�i
�k

and its argument x�k . In physical systems, the new continuous
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state only depends on its previous continuous state and the present mode, but not on the

previous mode. Therefore, the �k dependency of g�i�k can be removed. The general form of

the resulting sequence of mode transitions is given by:8><
>:

x+ = g�1(x)
x = x+

_x = f�1(x; t)| {z }
�1


�2
�1

(x;x+)
�!

8><
>:

x+ = g�2(x)
x = x+

_x = f�2(x; t)| {z }
�2


�3
�2

(x;x+)
�! : : :


�m
�m�1

(x;x+)
�!

8><
>:

x+ = g�m(x)
x = x+

_x = f�m(x; t)| {z }
�m

(19)

When comparing with the general sequence in Eq. (3), one notes that the g�� operation can

be linked either to the transition or the new operational mode. This is equivalent to the

di�erence between Moore and Mealy state machines, and does not result in di�erences as far

as behavior generation is concerned [45]. We choose to follow the Moore-type speci�cation

and associate g�� with modes for two reasons: (i) a change in the state vector values implies

an energy redistribution in the system, therefore, it should correspond to a physical mode

of operation, and (ii) for mythical mode transitions, the state vector x remains unchanged,

therefore, it makes it easier to translate these speci�cations into a simulation algorithm if g��
is associated with a mode rather than a transition.

In the sequence in Eq. (19), a mode � may be departed when any of the three assignments

or updates are executed:

1. computing x+ from x, and

2. updating the state vector, x, across the discrete transition,

3. evolving the state vector, x, in the continuous mode.

The di�erence between the general form of Eq. (3) and Eq. (19) can be attributed to the

application of parameter and time scale abstractions to physical system models where (x; x+)

becomes the argument to ��, and this can be justi�ed by physical system principles. The

computational model corresponding to the use of (x; x+) is illustrated in Fig. 9. When com-

pared to the model in Fig. 3 (corresponding to Eq. (3)), there is additional feedback, x+ into

, which introduces a loop between g and . In other words, updating the state vector from x

to x+ may trigger another mode transition resulting in a new mode �, and a new state vector,

x+, and this sequence can repeat.

Overall, three transition speci�cations follow from the mathematical model in Fig. 9 cor-

responding to the mode departures listed above and illustrated in Fig.10 [36].

(a) Mythical mode: This occurs when x+ = g�i(x) leads to �i+1
�i

(x; x+) � 0. The immediate

transition to mode �i+1, caused by x+ by-passes the integrator (
R
) and the state vector,

x, is unchanged through the transition.
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Figure 9: A mathematical model based on physical semantics.

(b) Pinnacle: This occurs when the assignment of x = x+ is made, and the update of x by

the integrator causes an immediate mode transition because �i+1
�i

(x; x+) � 0. Therefore,

mode �i only exists at a point in time.

(c) Continuous mode: In this mode update of the state vector using _x = f(x; t) results

in �i+1
�i

(x; x+) > 0. System behavior evolves continuously till a point in time when

�i+1
�i

(x; x+) � 0, indicating the mode is departed.

Pinnacles and continuous modes are realmodes because the state vector, x, that de�nes system

behavior on the real time line, is directly a�ected within that mode of operation.

αf αfαf

g gg
α αα

γ γγ

+x +x+x

+x +x+x

x xx x xx

(a) (b) (c)

Figure 10: Classes of mode transitions.

4 Behavior Analysis

A number of important issues arise in analyzing hybrid system models that impact the validity

of system behavior in terms of physical principles. The two primary principles discussed in

this section are: (i) divergence of time, to ensure the evolution of physical system behavior
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across discrete mode transitions on the time line, and (ii) temporal evolution of state to ensure

systematic update of the state vector about the point of discontinuity requiring state variable

values to be continuous in left-closed intervals.

4.1 Divergence of Time

Mode transitions de�ned by Eq. (18) may generate a trajectory that goes through a sequence of

mythical modes before a new real mode is reached where system behavior resumes continuous

evolution on the time line. In generating this sequence, if a mode can be reached more

than once, the implication is that the trajectory can end up in a loop of discrete changes.

Therefore, this behavior trajectory may not progress to a real mode, which implies that the

system behavior evolution stops in time. This conicts with physical system principles because

their behaviors always evolve or diverge in time.

Principle 2 (Divergence of Time) Physical system behavior must evolve in time. There-

fore, hybrid models of physical systems cannot include loops of discrete changes.

Corollary Discrete mode changes in a hybrid system model have to terminate in a real system

mode where behavior evolves in real time.

To illustrate the principle of divergence of time, consider the elastic collision between the

two bodies in Fig. 6 where m1 with initial velocity, v1 = v moves towards m2, that is at rest.

The collision event for the point masses is de�ned as

�1�0 : x2 � x1 � 0) �collide: (20)

As discussed earlier, if m1 = m2 this event results in instantaneous transfer of all of m1's

momentum to m2.

Combining Newton's collision rule in Eq. (14) and the physical conservation of momentum

constraint in Eq. (15), and making the assumption m1 = m2, we obtain the g function for

updating the state vector:

g�1 :

"
v+1
v+2

#
=

"
v2
v1

#

As a result, m1's momentum is transferred to m2, v1 = 0 and v2 = v. Since, v2 > v1 the

bodies disconnect because the event

�0�1 : v1 � v2 < 0) �disconnect: (21)

becomes true.

The transition function in Eq. (20) speci�es that the two bodies collide when x1 � x2. The

collision rule is then applied at the ensuing pinnacle to compute the new velocities v1 and v2,
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and this moves the system back into its free mode because v2 > v1 as speci�ed by Eq. (21).

But, since no time has elapsed and x1 � x2 still holds, the system switches to the collide

mode again.4 This mode is departed immediately because v2 > v1 still holds (the a priori

values have not been updated yet), which implies that it is mythical. At this point both of

the transition functions that generate �collide and �disconnect are true and g� only changes the

a posteriori values. This results in a loop of instantaneous mode changes between �0 and �1,

and the divergence of time principle is violated.

Divergence of time can be enforced in one of two ways:

� adding more detail to model so that discontinuous phenomena are modeled as continuous

e�ects, and

� modifying the switching conditions to ensure there is only one possible mode associated

with a given value of a state vector.

Adding more continuous detail is undesirable because it is likely to cause a signi�cant increase

in the computational complexity of the model. Modi�cation of switching speci�cations requires

revisiting the assumptions under which the discontinuous approximations were made. In case

of the elastic collision, the coeÆcient of restitution is normally a function of the impact

velocities [4]. For collisions at low velocities, the collision phenomenon discussed above does

not occur, and the coeÆcient of restitution is a poor discrete approximation of the underlying

continuous behavior. Therefore, the transition conditions for the collision may be modi�ed by

adding the constraint v1 � v2 � vth. In the limit, as vth ! 0 the original transition condition

v1 > v2 is attained. If the transition condition to collide adds on this constraint, one notes

that the behavior trajectory does not switch back from the free mode to the collide mode, and

divergence of time is enforced for the collision model.

In previous work, we have shown how analysis of multiple piecewise phase spaces can be

applied to establish a necessary condition for divergence of time [32]. The necessary condition

is established by mapping each mode of system behavior into a k dimensional phase space

representation for a state vector of size k. This requires all discrete switching functions  to be

expressed in terms of the state variables, x. Typically this includes algebraic substitutions, but

it may require special computations if Dirac functions are involved. A pairwise region checking

algorithm is used to check for overlap between behavior regions for the individual modes. The

necessary condition for divergence of time to be satis�ed is that there be no overlap between the

behavior regions of the individual modes. SuÆcient conditions are much harder to establish,

because it requires taking into account the mode switching function . We are looking into a

4This also occurs if the state change due to the collision is modeled as a transition action rather than a
separate state [45].
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more systematic computational methodology based on constraint satisfaction techniques [53]

in the continuous domain to solve the general n�dimensional phase space problem. A detailed

application of the divergence of time algorithm to the falling rod example appears in Section

7.1.

Note the di�erence between divergence of time and Zenoness [6, 19]. Behavior that is non-

Zeno does not progress beyond a point in time. However, such behavior may still diverge by

taking increasingly smaller steps in time (e.g., a model of a bouncing ball can be constructed

so that the ball never comes to rest).

4.2 Temporal evolution of state

When discontinuous state changes occur at a time point ts on a trajectory that goes from an

interval to a pinnacle (x(t�s ) to x(ts)) or a pinnacle to an interval (x(ts) to x(t
+
s )) (see Fig. 11),

discontinuous changes in system variables may result in the generation of Dirac pulses, viz.,

Æ1(t � ts) and Æ2(t � ts), respectively. This occurs in the two mass problem discussed in

Section 3.3. Dirac pulses have �nite area and occur at a point in time. Since both pulses

occur at ts, the total pulse can be de�ned as the aggregate Æc(t� ts) = Æ1(t� ts) + Æ2(t� ts).

However, Æ2(t � ts) is not known at ts. It can only be determined when time is advanced.

Therefore, Æc(t� ts) is unknown. The variable values in the switching conditions that depend

on Æc and govern the con�guration change from t�s to ts are also unknown. Correct physical

models are enforced by determining the actual Æc based on an interval to interval change. To

prevent ill-de�ned noncausal models, execution semantics in the form of temporal evolution

of state is imposed on hybrid models so that discontinuous state changes only occur from t�s

to ts (i.e., Æ2 = 0) [43]. The variable that is involved has to be continuous on the left-closed

interval, [ts;!> in time.

Principle 3 (Temporal Evolution of State) Continuous state variable values have to be

continuous in left-closed intervals in time.

The proof of this lemma is presented in [43].

The requirement that state variable values evolve through left closed intervals in time,

implies that discontinuous changes in the state vector can only occur when the system transfers

from an interval to a point. This does not prohibit con�guration changes occurring from

a point to interval transition, provided no discontinuous changes in state variables occur.

Further, to ensure Æ pulses only occur on left closed interval switching, the transition conditions

that result in discontinuous changes in state variable values have to be of the form � or �.

For example, the transition condition from free to collision mode for the colliding bodies

is represented as x1 � x2. Discontinuous changes in the state vector occur when its size
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Figure 11: Switching around a point may require two jumps.

changes and can be derived by inspection of a hybrid bond graph model or by systematic

analysis [30, 37].

5 A Complex Example

We describe a more complex example to illustrate the physical principles that are employed

in constructing and analyzing hybrid system models. Consider a thin rigid rod falling towards

a oor (Fig. 12). The system can be modeled to operate in one of three modes: (i) free, there

is no contact between the rod and the oor, (ii) stuck, the rod is in contact with the oor at

point A, and this point is �xed while the rod rotates, and (iii) slide, the rod is in contact with

the oor at point A, and this point slides along the oor while the rod rotates.

In other work [27, 52], the sliding and rotating behavior of the rod when in contact with

the oor has been analyzed using complementarity principles. These studies have shown

that for certain values of the parameters (friction coeÆcient, �, rod length, l, and angle,

�) there are regions in the phase space (i.e., the space spanned by the linear rod velocities,

vx and vy, and the rotational velocity, !) where the rod model exhibits multiple behavior

trajectories and some regions where no behaviors exist. The parameter values that correspond

to these situations are rather extreme, and we do not deal with these particular regions in our

analysis of the rod behavior in this paper. Instead, we focus on modeling and analyzing the

behavior of the rod upon collision with the oor. We derive physically consistent values of the

linear and angular momenta and perform analyses to determine the new mode of operation.

In addition, we ensure that the conditional speci�cations for the slide and stuck modes are

mutually exclusive. We also formulate switching conditions to ensure the consistency of Dirac

pulses generated during mode transitions.

When collision occurs, small deformation e�ects force the vertical velocity of the rod-tip, A,

to quickly become 0. Since the time scale for the collision process is much faster than the time

scale for the overall behavior, we assume that the collision phenomenon can be reduced to occur
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Figure 12: A collision between a thin rod and a oor.

at a point in time. The rod's vertical velocity vy at its center of mass M changes quickly, so

that the resultant angular velocity, !, satis�es the equation vA;y = vy + l!cos� = 0. Further,

if the breakaway force is not exceeded by the force along the surface, i.e., jFA;xj < �FN ,

the rod is stuck, and the horizontal velocity of the rod tip becomes zero, i.e., vA;x = 0.

The resultant change in the center of mass velocity in the horizontal direction, vx, satis�es

vA;x = vx � l!sin� = 0.
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Figure 13: Simulation of a collision scenario.

If the breakaway force is exceeded during the quick continuous transient at collision the

rod starts to slide in the next continuous mode, and the vA;x = 0 constraint is not included

in the set of equations for the active model. Since this happens at initial contact, there is

minimal change in the value of vx through the collision process. The collision process at
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yA = 0 is illustrated in Fig. 13 at two di�erent time scales for normalized parameters of mass

mx = 1 and my = 1, moment of inertia J = 1, Fg = 1, frictional coeÆcient � = 0:05, and

spring C = 1 and damper R = 750 parameters to provide a �rst-order approximation of the

detailed behavior. The continuous transient behavior generated from a detailed model of the

collision process, occurs in the time interval [0:14; 0:16]. It is illustrated in the behavior plot

on the right. The gross behavior just before and after the collision is shown on the left. At

the point of collision, Sw1 = 1, the breakaway force is exceeded, therefore, Sw2 = 1, and the

rod starts to slide. The amount of change in vx depends on the friction coeÆcient �. In the

extreme case, � = 0, the breakaway force is immediately exceeded, and vx remains 0, since no

horizontal force is active in the new mode.

The existence of Coulomb friction [27] between the rod and oor may cause the rod to

stick and rotate around the point of initial contact (mode �01 in Fig. 14). Alternately, as

discussed above, if the rod-tip exerts a force in the horizontal direction that is larger than the

product of the normal force and friction coeÆcient (breakaway force) , i.e., jFA;xj > �Fn, the

rod starts to slide (mode �11 in Fig. 14). To evaluate which scenario occurs, the force values

need to be calculated at the time of collision. Since the impact is idealized, the forces occur

as impulses [4], and take on the form of Dirac functions (Æ). These impulses occur at the time

of impact, and their areas are determined by the state vectors immediately prior to and after

the impact, x and x+, respectively.
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Figure 14: The rod may start to slide and rotate around the point of contact.

On contact, i.e., in the mode �01, the linear velocities of the center of mass, vx and vy, are

completely determined by the angular velocity, !, and the algebraic relations(
v+x = l!+sin�

v+y = �l!+cos�:
(22)

This is illustrated in Fig. 12. Conservation of momentum involving !+, v+x , and v+y produces

one more equation that can be used to solve for the new state vector x+ [34].

These a posteriori values may be such that the corresponding impulses result in jPA;xj >

�Pn and the rod starts to slide (mode �11). In this mode, v+x is not algebraically dependent
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on !, and only v+y = �l!+cos� holds. Thus the rod-tip moves freely in the x-direction, and

its vertical momentum immediately before contact (mode �00), is distributed only over its

posteriori angular momentum and vertical momentum to ensure vA;y = 0 and yA does not

change (i.e., it satis�es the constraint to remain in contact with the oor). If the continuous

state vector in the sliding mode, �11, was computed from the previously inferred mode, �01,

because of the v+x dependency on !+ in that mode, it would have a horizontal velocity asso-

ciated with its center of mass which would keep the rod-tip from moving in the x-direction as

well, which is incorrect. So the consecutive mode switch to �11 has to occur before the state

vector is updated to its a posteriori value, i.e., x = x+.

A behavior trajectory with the same parameter values as in Fig. 13, but with the fast

continuous transients removed by parameter abstraction is shown in Fig. 15(a). The compu-

tation of the new angular and linear velocities is based on the principles of conservation of

state and invariance of state [43] (see Section 3). The results show close conformance with

the �nal values that result from the continuous transients (Fig. 13). As a comparison, the

same system is modeled by applying time scale abstraction semantics to the discontinuous

change at the point of impact. The results of this are shown in Fig. 15(b). In this case, the

intermediate stuck mode, �01, that was mythical for parameter abstraction, is now a pinnacle

and real. Thus, the state vector is updated in mode �01, and the intermediate dependency

between !, vx, and vy causes an instantaneous discontinuous state change in vx, that becomes

the initial velocity value in the sliding mode, �11. When comparing the results of the two

abstractions to the real behavior, it is clear that parameter abstraction matches the detailed

continuous behavior. This is because the collision phenomenon for this example is dominated

by the dissipative (frictional) phenomena. In other situations, such as a bouncing ball or an

elastic collision of two bodies, the collision phenomenon would be dominated by the capaci-

tive or energy-storage elements, and restitution of momentum would determine the transition

behavior. Time scale abstraction would then generate the correct simpli�ed model [44].

Further, the results in Fig. 15 demonstrate that switching in this example has to be based

on x+ rather than x (Fig. 14). Figure 14 also shows the constraint on the rod-tip position, yA,

to achieve the contact mode of operation. As long as the rod exerts a negative, i.e., downward,

force on the oor it stays in contact. Otherwise, the normal force, Fn, becomes negative which

means the rod disconnects and lifts o� the oor.

The complementarity technique applied in other work [27, 52] does not require iteration

across a series of mode changes, and, therefore, is more eÆcient. However, it is less general

as it does not allow sequential logic to be used in the discrete model speci�cation. All mode

changes have to be formulated in complementarity terms.
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Figure 15: The falling rod with (a) parameter abstraction and (b) time scale ab-
straction semantics.

6 A Computational Architecture

When detailed physical system models are employed for behavior analysis, no discontinuous

changes in state variable values occur, and simulation algorithms can be constructed from a

single set of ODEs. However, these models often incorporate higher order derivative terms with

complex nonlinearities (complex ODE, cODE, systems) that complicate the simulation and

behavior analysis algorithms and make them hard to implement [41]. Accuracy of numerical

results cannot be guaranteed because of numerical sti�ness caused by behaviors occurring at

multiple time scales (some very fast), and because the system parameters associated with these

models are hard to estimate accurately. Our work has proposed an alternate methodology,

which allows the cODE system of equations to be replaced by a set of simpler ODEs (sODEs)

derived from the original system model by applying parameter and time scale abstractions.

However, this requires additional e�ort in the modeling task: (a) the derivation of discrete

event transition conditions, and (b) determining the corresponding actions for representing

discontinuous jumps in the �eld and state variable values between modes of continuous be-

havior evolution. For example, a detailed continuous model for the colliding bodies in Fig. 6

would require modeling of the dynamic phenomena in terms of the position of the bodies

and the exchange of force between them during the collision process. The force computation

is a function of elasticity coeÆcients that are characteristic of the body materials and their

geometry and frictional forces. This is a very complex modeling task. When the detailed

continuous behavior of the system around �x = 0 is abstracted away by removing the elastic-

ity e�ects from the model, the force values are no longer directly computable. The collision
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process is now de�ned in terms of discrete events f�collide; �freeg using position and velocity

constraints to de�ne the  function that ensures the collide mode is immediately departed

after the velocities are changed.

Hybrid automata [1] provide a powerful speci�cation formalism for analysis of hybrid

dynamic systems. Each state of the automata can be de�ned in terms of a di�erent set

of ODEs that govern system behavior evolution. Therefore, each state corresponds to a

continuous mode. Explicit actions speci�ed along with the state transition function (the 

function) can handle the discontinuous changes or jumps in the state vector values (the g

function) between mode or state changes.

The mathematical speci�cations for hybrid system models developed in Sections 3 and 4 are

applied to generate the models of dynamic physical systems. For physical system models, the

arguments to the event generation function  are continuous system variables. From systems

theory [20], it is known that any continuous system variable can be de�ned as an algebraic

function, h, of the system state and input variables. This implies that the event generation

functions can be completely speci�ed in terms of the system state and input variables. A

mode change may result in a change in functional relations between state and input variables

and other system variables. The recomputed signal values can cause further mode changes,

leading to a sequence of mode transitions.

The hybrid system model in Eq. (1) is extended to a complete computational hybrid

physical system model de�ned by the 9-tuple [25, 43]

H =< I;�; �;X�; U�; f�; g
�; h�; 

�
� > : (23)

The model consists of three components:

1. the continuous model, where X� and U� denote the state and input vectors, and �eld,

f�, represents the continuous model in mode �,

2. the discrete model, where I denotes the discrete indexing set corresponding to the possi-

ble modes in the system and � represents the set of events that cause mode transitions,

and

3. the interaction model, where the discrete model is represented by the state transition

function �, the functions  and g de�ned earlier, and h, the system variable computation

function represent the interactions between the discrete and continuous models.

These three components are described in greater detail next.

26



6.1 The Continuous Model

Continuous physical system behavior is governed by energy interaction. Physical system

behavior is typically represented by a state space model with the dynamic behaviors expressed

as a set of DAEs. For hybrid models in semi-explicit form, the continuous behavior in each

real mode � embodies the time-derivative behavior,

_x(t) = f dif� (x�(t); u�(t); t);

and additional algebraic constraints

0 = falg� (x�(t); u�(t); t);

t 2 < and � 2 @. X� 2 <
m is the continuous state vector, and U� 2 <

p is the vector of input

variables. For each continuous mode �, there is one and only one �eld, f�, that de�nes system

behavior.

As an example, the continuous model for the falling rod system (Fig. 12) in the stuck mode

representing the rotational behavior at the point of contact, A, is expressed as

2
64 mx 0 0

0 my 0
0 0 J

3
75
2
64 _vx

_vy
_!

3
75 =

2
64 1 0 0
0 1 0
0 0 1

3
75
2
64 Fx

Fy

F!

3
75 (24)

with algebraic constraints 2
64 1 0 0
0 1 0
0 0 1

3
75
2
64 Fx

Fy

F!

3
75 =

2
64 0
Fg

0

3
75 : (25)

At the point of collision, if jv+y � vyj > �(v+y � vy), the rod starts to slide and another set of

DAEs becomes active. Fig. 12 shows that in the sliding mode, the constraint vy = lcos� holds,

and this ensures that the rod tip does not move in the vertical direction. The friction force in

horizontal direction is related to the normal force by a coeÆcient �, resulting in Fx = ��Fy.

The forces in the horizontal and vertical direction are related to the torque F! by the equation:

�lsin�Fx + lcos�Fy + F! � lcos�Fg = 0: (26)

The resulting set of algebraic constraints can be summarized as:

2
64 0 0 0 1 � 0
0 1 �lcos� 0 0 0
0 0 0 �lsin� lcos� 1

3
75

2
666666664

vx
vy
!

Fx

Fy

F!

3
777777775
=

2
64 0

0
lcos�Fg

3
75 (27)
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In this mode, vx and vy, the linear velocities, are not state variables since they are algebraic

functions of !.5 Therefore, the size of the state vector changes when the rod moves from

the free fall mode, �00, to the contact mode, �01. As discussed earlier, this can produce

discontinuous changes in the state vector. In contrast, if the rod bounces back up after contact,

the system moves from the contact mode to the free mode, and the state vector increases in

size. If a transition causes a change of algebraic constraints where algebraic relations between

state variables are removed, this does not cause discontinuous changes in the state variables.

6.2 The Discrete Model

Discrete events in hybrid dynamic systems are modeling artifacts attributed to parameter and

time scale abstractions. The discrete changes are modeled by a transition function, �, and

transitions are invoked by events in a set �. We adopt a compositional modeling approach and

systematically derive � from a set of independent state machines that de�ne local switching

e�ects. Given n independent state machines, a mode is de�ned as an n-tuple, where each

element of the tuple is a state of an independent state machine. Theoretically, if each state

machine can assume m states, the system has mn di�erent modes of behavior. However, many

of the de�ned modes may not be reachable for a physical system description. Other modes

may only be traversed as mythical modes between two real modes. An important contribution

of our work is to establish execution semantics that handle these sequences of mode changes

in a consistent manner that ensures behaviors generated are physically correct.

The discrete model can be implemented by Petri nets [47] or �nite state machines [21].

We adopt �nite state machine models in our representation, de�ned in terms of the following

components:

� I = f�0; : : : ; �kg, a set of states that describe the modes of the system.

� � = f�0; : : : ; �lg, the set of events that can cause state transitions. Events are generated

from signal values in the physical process (�s), or they can be external control signals

(�x), � = �s � �x.

� � : I � � ! I, a discrete state transition function that de�nes the new mode after an

event occurs.

6.3 Interactions

Lygeros, Godbole and Sastry [28] have shown that independent determination and proofs

about the continuous behavior and the discrete phenomena in a hybrid model do not consti-
5The choice of ! as state variable is arbitrary. Any algebraic combination of vx, vy, and ! may serve as

the state variable.
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tute proofs of correctness of their combined e�ects. Hybrid system analysis requires formal

speci�cations of the interactions between the continuous and discrete models. Interactions

between the continuous and discrete models are speci�ed by (i) events generated in the con-

tinuous model, and (ii) mode changes de�ned by the discrete model. More formally they can

be expressed as:

� S 2 <n, the system variables used for event generation.

� h : X � U � I ! S, returns system variable values from the input and state variable

values in a given mode.

� g : X � I ! X+, computes the a posteriori state vector, X+, in the new mode from the

a priori state vector, X. There may be a discontinuous change from X to X+.

�  : S � S+ ! �s, where �s is the set of discrete events generated from the system

variable values. The values S are computed from the a priori state vector, X, and the

values S+ from the a posteriori state vector, X+.

The function  generates discrete events when system variables cross prespeci�ed threshold

values. For example, collision events for the falling rod can be de�ned by the following

constraints:

 :

(
y+A � 0 ^ vA;y < 0 ) �contact
F+
n � 0 ) �free

(28)

The function h computes the values of signals that de�ne these events from the continuous

state and input vector. For the signals used in the collision transition for the falling rod, this

yields

h :

8>>><
>>>:

yA =
R
vydt� lsin�

vA;y = m(vy + l!cos�)

Fn =

(
0 if �00

m( _vy � ag) otherwise,

(29)

where ag is the gravitational constant.

Generated events may imply mode changes, i.e., a change in the DAEs that govern con-

tinuous behavior generation. The continuous state vector of the system may also undergo

discontinuous change, governed by the transformation function, g. For physical system mod-

els this function has to satisfy the principle of conservation of state (Section 3). When the

falling rod makes �rst contact with the oor, conservation of state is applied to derive the

state vector transformation function [34].

To illustrate the application of the conservation of state principle, we calculate the new

state values in the stuck mode, �01. In this mode, point A is in contact with the oor, so

vA;y = 0, which requires vy = �l!cos�. Further, since the rod does not move in the horizontal
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direction, vA;x = 0, which requires vx = l!sin�. This imposes algebraic constraints on vx, vy

and !, which may result in impulses whose values are determined by applying conservation

principles involving the components of the linear velocities and the angular velocity in the

initial con�guration. The relation between the forces in the x and y direction and the torque

F! is given in Eq. (26).

The equations representing the rotational behavior at the point of contact, A, are given

by Eq. (24) with the additional algebraic constraints

2
64 1 0 lsin� 0 0 0
0 1 �lcos� 0 0 0
0 0 0 �lsin� lcos� 1

3
75

2
666666664

vx
vy
!

Fx

Fy

F!

3
777777775
=

2
64 0

0
lcos�Fg

3
75 (30)

Combining equations (24) and (30) we can derive

�lsin�mx _vx + lcos�my _vy + J _! = lcos�Fg; (31)

and integrating this over an in�nitesimal interval [t; t+] we get

�lsin�mx(v
+
x � vx) + lcos�my(v

+
y � vy) + J(!+ � !) = 0

The right hand side of Eq. (31) Z t+

t
lcos�Fgd� = 0

evaluates to 0, because this term remains constant over the in�nitesimal small interval of time.

The above equation combined with (
v+x = �l!+sin�

v+y = l!+cos�
(32)

allows us to solve for !+, producing the state projection

!+ =
!J �ml(cos�vy � sin�vx)

J +ml2
: (33)

This is in conformance with the topological analysis in [30]. Using the relations in Eq. (32),

produces the state mapping

g�01 :

8><
>:

!+ = !J�ml(cos�vy�sin�vx)
J+ml2

v+x = l!+sin�

v+y = �l!+cos�

(34)

For comparison, in mode �00, the rod has three degrees of freedom, and the state mapping

does not cause discontinuous changes

g�00 :

8><
>:

!+ = !

v+x = vx
v+y = vy

(35)
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6.4 From DAE to ODE

As shown, the initial modeling phase relies on building a system of di�erential equations

with variable algebraic constraints. The algebraic equations in these DAEs may enforce con-

straints on state variables, thereby reducing the degrees of freedom of the system. In many

cases, when a new set of algebraic equations become active, the state variable values have

to instantaneously change to satisfy the new constraints. The exact values of these instanta-

neous changes are made explicit by using conservation principles and computed by forming

the instantaneous equivalent of the dynamic behavior.

Once the instantaneous changes are computed, they become part of the g function. Now

that they are explicitly available, the DAE system can be algebraically manipulated into an

ODE form. This approach results in models that closely match the hybrid automata modeling

paradigm [2] and enables the use of standard simulation packages. Furthermore, the model is

amenable for other analyses such as, e.g., system veri�cation for control purposes.

7 Verifying the Model

We apply the principles of divergence of time and temporal evolution of state to the hybrid dy-

namic model of the falling rod system to ensure that this model generates physically consistent

behaviors.

7.1 Divergence of Time

The falling rod (Fig. 12) moves into its stuck mode (�01) if it is in contact with the oor and its

horizontal tip velocity falls below a threshold value, i.e., jvA;xj � vth, where vth is the threshold

velocity. At the same time, if the values of the friction coeÆcient, �, angle, �, and length, l of

the rod are such that jFA;xj > �Fn, the event �slide is generated, and the divergence of time

principle is violated. Since the two events �stuck and �slide alternate, the system continues to

switch between the stuck and sliding modes with no progression of behavior in real time.

Systematic checking of the divergence of time principle for the falling rod system, requires

that all local switching conditions be expressed in terms of the system state variables. The

phase space for this system is 5-dimensional with axes (�; y; vx; vy; !) (across all modes �00,

�01, �10, and �11). As discussed earlier, necessary conditions for divergence of time can be

established by looking at boundary conditions for the modes pairwise. Like before [32, 33], we

present a conceptual visual phase space analysis of the divergence of time principle, and apply

it to modes �01 and �11 of the falling rod system. To simplify the phase space representation,

we assume � and l are �xed for the rod, and consider a three-dimensional space with orthogonal

axes, vx, vy, and !.
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First, the condition for the rod being stuck in mode �11, jvA;xj � vth, is recomputed in

terms of state variables. This condition translates to l!sin� � vth < vx < l!sin� + vth (see

left hand side of Fig. 16). The translation of the sliding condition, jFxj > �FN , in mode

�01, requires the observation that Fx and Fy have derivative relations in this mode. The

corresponding switching conditions in terms of the state variables are jdvx
dt
j > �(dvy

dt
� ag).

When switching from slide to stuck, the linear velocities change discontinuously generating

Dirac pulses, which makes the e�ect of ag negligible. A comparison of the two Dirac pulse

areas results in the switching condition jv+x � vxj > �(v+y � vy). Consider the situation where

v+x � vx > 0 in the mode �01 (Fig 14). Switching occurs if v+x � vx > �(v+y � vy) where v
+
x

and v+y can be expressed in terms of vx, vy, and !. Making the substitutions produces an

inequality of the form, c1(�; �; l)vx + c2(�; �; l)vy + c3(�; �; l)! > 0.

vy

vx

ω
stuck slide

vy

vx

ω

lsinθ -vth
vth

Figure 16: Transition conditions for S.

In the three dimensional phase space, this switching condition represents one side of the

plane (see right hand side of Fig. 16) with normal vector

[c1(�; �; l) c2(�; �; l) c3(�; �; l)]
T : (36)

This represents the sliding region, and because of the strict inequality, the boundary is not

part of the region from which a transition occurs. Depending on the direction of the normal

vector, any point in the phase space may satisfy the transition condition and overlap with the

transition condition for the stuck mode. Therefore, if both spaces are intersected for vth > 0,

there is an area in (vx; vy; !) that causes the rod to be stuck as well as to slide. In this

space, the model can continue to make in�nite transitions between sliding and stuck, and,

therefore, cannot reach a new mode of continuous evolution. This violates the divergence of

time principle in Section 4.

As discussed earlier, the modeling inconsistency may be eliminated by

1. adding constraints to the mode switching conditions for sliding and stuck, or

2. modeling the system in greater detail by adding parasitic phenomena so that the model

exhibits continuous behavior and the discrete transitions are removed.
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Additional mode switching constraints may be included by modifying either the condition for

sliding or the condition for getting stuck. A modeling decision can be made to generate �stuck

only if the forces in �01 are such that �slide is not generated. This requires the addition of a

pre-condition jF �01
A;x j � �F �01

n to �stuck, where F
�01
A;x and �F �01

n are calculated from h(g�01(x)).

7.2 Temporal Evolution of State

Again consider the falling rod system in Fig. 14. At time ts when the rod collides with the oor,

the horizontal and vertical velocities of the center of mass of the rod change discontinuously.

vx(t
�
s ) = limt"ts vx(t) di�ers from vx(ts), and this results in a horizontal impulse Px;c(ts).

vy(t
�
s ) = limt"ts vy(t) also di�ers from vy(ts), and this results in a normal impulse Pn(ts)

(mode �11;a in Fig. 17). No other forces are active, and the total impulse along the surface

is PA;x(ts) = Px;c(ts). If jPA;xj > �Pn a second mode change occurs to �11;b, and the rod

starts to slide. A stiction impulse may become active when the rod starts to slide causing a

discontinuous change in the horizontal velocity of the rod, and vx(t
+
s ) = limt#ts vx(t) di�ers

from vx(ts). Now, the aggregate impulse, expressed as PA;x(ts) = Px;c(ts) + Ps(ts), may not

satisfy the criterion for sliding, jPA;xj > �Pn.

vx

Px,c

vy

−ω

11,a

nP
vx

Px,c

vy

−ω

11,b

sP
nP

Figure 17: Impulses upon collision when a sliding mode with stiction is reached.

The principle of temporal evolution of state (Section 4) implies that the stiction impulse

cannot become active after the rod-tip has started sliding. It has to be activated at time

point, ts, when it is determined whether the rod slides or not. If the e�ect of the stiction

impulse is taken into account along with Px;c(ts), PA;x(ts) is derived correctly.

For the falling rod, the state vector reduces in size upon collision, and, this may cause

discontinuous changes in state variable values. To ensure that the corresponding Dirac pulses

are well de�ned and can be aggregated as was done above, the = sign is included in the

transition condition, yA � 0. Reductions in the state vector may also occur when the rod gets

stuck after sliding, which is again why the = sign is included in the jvA;xj � vth condition.
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8 The Falling Rod Speci�cation

In sections 5 and 6, starting from the physical speci�cations, we derived the hybrid automata

model for the falling rod system. Section 7 applied veri�cation principles to ensure that the

model developed did not violate physical principles. In this section we present the complete

mathematical speci�cation for the hybrid model of the falling rod system. This speci�cation

may be employed for simulating rod behavior [36], and for other forms of behavior analysis

(e.g., [43]). It is assumed that the linear inertias are equal, i.e., mx = my = m. The three

energy storing elements, with associated linear velocities, vx and vy, and rotational velocity,

!, de�ne the system state vector,

X = f!; vx; vyg (37)

Two external input forces act on the rod,

U = fFf ; magg: (38)

Ff is the friction force, and mag represents the gravitational force (ag is the gravitational

constant). The signals that generate discrete event transitions in the system model are

S = fyA; vA;x; vA;y; Fn; FA;xg; (39)

and the corresponding discrete events are:

� = f�contact; �free; �slide; �stuckg (40)

The continuous vector �eld in each of the modes is captured by �eld functions f , de�ned

as

f :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

�00 :

8><
>:

_! = 0
_vx = 0
_vy = ag

�01 :

8><
>:

_! = �mlcos�
J+ml2

ag
_vx = lsin� _!
_vy = �lcos� _!

�11 :

8>><
>>:

_! = �ml(cos���sin�)
J+ml2cos�(cos���sin�)

ag

_vx = ��(lcos� _! + ag)
_vy = �lcos� _!

(41)

Discontinuous changes in the continuous state vector, X, caused by mode changes are

described by g. As described earlier, the principle of conservation of state is applied to derive
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Table 1: State transition table specifying �C .

�C �contact �free

0 1

1 0

the g function for each mode.

g :

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�00 :

8><
>:

!+ = !

v+x = vx
v+y = vy

�01 :

8><
>:

!+ = !J�ml(cos�vy�sin�vx)
J+ml2

v+x = l!+sin�

v+y = �l!+cos�

�11 :

8>><
>>:

!+ = !J�ml(cos���sin�)vy
J+ml2cos�(cos���sin�)

v+x = ��(l!+cos� + vy) + vx
v+y = �l!+cos�

(42)

The signal generation function, h, for each mode of system operation is de�ned as:

h :

8>>>>>>>>>>><
>>>>>>>>>>>:

yA =
R
vydt� lsin�

vA;x = vx � l!sin�

vA;y = vy + l!cos�

Fn =

(
0 if �00

m( _vy � ag) otherwise

FA;x =

(
0 if �00

m _vx otherwise

(43)

The event generation function, , is de�ned as:

 :

8>>><
>>>:

yA � 0 ^ vA;y � 0 ) �contact
F+
n � 0 ) �free
jF+

A;xj � �F+
n > 0 ) �slide

jv+A;xj � vth � 0 ^ jF �01
A;x j � �F �01

n ) �stuck

(44)

These events cause changes in the model state according to two state transition tables. Table 1

shows the state transition behavior that speci�es whether the rod is in contact with the oor,

model �C , and Table 2 speci�es the discrete event transition behavior between being free,

sliding and being stuck, i.e., model �S. In these tables, the rows represent the transition from

a state as speci�ed in the �rst entry. The remaining entries represent the new states given an

event. The states of both these tables constitute the global mode �CS.

We have employed the mathematical model speci�cations to develop a hybrid simulation

methodology [36, 42]. This methodology allows for a direct mapping of system components

in Eqs. (41) through (44) into model fragments. The simulation algorithm encompasses dis-

crete switching implemented as instantaneous transition functions, and continuous behavior
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Table 2: State transition table specifying �S.

�S �free �slide �stuck

0 1

1 0 0

generation based on ODEs implemented using a forward Euler integrator. A third function

computes signal values at points of discontinuous change, such as pinnacles. Details of the

hybrid simulation algorithm are presented in [36].

The simulated trajectories of the rod in phase space for three di�erent values of the fric-

tional coeÆcient (�) are shown in Fig. 18. The system is initialized with zero angular and

linear velocities, (0; 0; 0). Once the rod is released with center of gravity at y0, ow F�00 ap-

plies, and the magnitude of its vertical velocity increases in time. When the rod-tip, point A,

touches the oor the rod may start to slide, governed by ow F�11 (happens when � = 0:002

and � = 0:004), or it may get stuck and behavior is governed by ow F�01 (happens when

� = 0:005). The discontinuous jumps between ows are illustrated in Fig. 18. Also, for

simulations with � = 0:002 and � = 0:004, the sliding mode, �11 is activated immediately

after �00 because a force balance computation indicates that the stuck mode �01 is departed

instantaneously, i.e., it has no real existence at the point of collision.
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Figure 18: A number of trajectories in phase space of the colliding rod, vth =
0:0015; � = 0:862; l = �0:1; y0 = 0:23.

When sliding, the center of mass of the rod accelerates in the horizontal direction, and the

negative velocity at the rod-tip decreases. When it falls below a threshold value, transition

conditions determine that the rod gets stuck, which implies a mode change to �01 and �eld

F�01 . As discussed earlier, the transition conditions had to be properly speci�ed so that the

system does not go into a loop of instantaneous mode changes (sliding and stuck), which

would violate the divergence of time principle.

If the simulation is repeated with a longer rod, initially the rod may slide on hitting

the ground, but the moment it starts sliding, the balance of forces indicates that the rod

disconnects and lifts o� the ground. In this case the rod is in the sliding mode for a point
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Figure 19: A boundary in phase space of the colliding rod, vth = 0:0015; � = 0:862; l =
�10; y0 = 23.

in time, after which it transitions back to the free mode of operation. Note that this occurs

even though the collision is modeled to be perfectly non-elastic, i.e., there is no restitution

of momentum di�erence in any of the operational modes (� = 0). Simulation results for this

example are shown in Fig. 19. This simulation demonstrates how the boundary point B�11

changes the state vector between the two ows in �00. Note that a �eld governs behavior in

�11, so the corresponding point in phase space is a boundary point rather than a pinnacle.

An important observation one makes from these simulation runs is that the system modes

cannot be labeled as mythical, continuous, and pinnacles before hand. For example, in some

cases the stuck mode, �01, is departed immediately, whereas in other cases it becomes a real

mode, where the rod begins to rotate about its point of contact with the oor. Whether a

mode is continuous, a pinnacle, or mythical depends on the state vector values. Therefore,

eliminating mythical modes from the model during a compilation stage needs to take state vec-

tor value ranges into account. Note that it is not sensible to do this in the model speci�cation

as it a�ects the model structure, and, therefore, the compositionality of the model. However,

simulation eÆciency can be increased if such processing is performed on the simulation model.

9 General Principles for Building Hybrid SystemsMod-

els

In previous work [30, 32, 37] we have employed the bond graph modeling language [20] sup-

plemented with �nite state automata to represent discrete switching actions as the framework

for constructing hybrid models of complex physical system behavior. A set of principles were

then developed to model the discrete switching between modes of continuous behavior evolu-

tion. This paper extends the work to a more general mathematical speci�cation language that

captures the semantics for parameter and time scale abstractions. Formal veri�cation6 tech-

6Veri�cation results in a physical system model that obeys the laws of physics. Validation then tests
whether the model is an accurate description of the actual system. In a sense, this corresponds to checking
meta-model and model characteristics, respectively.
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niques that include the principles of invariance of state, divergence of time, and the temporal

evolution of state have been de�ned. The formal mathematical speci�cations in conjunction

with the physical principles easily translate into computational behavior generation and anal-

ysis schemes using hybrid automata [2], where continuous behavior evolution in individual

automata states are de�ned in terms of di�erential equations (i.e., the �eld functions f in

individual modes of operation) and discrete mode changes are modeled as state transition

functions with algebraic constraints for the hybrid automata.

We have developed preliminary techniques where we start with system behavior descrip-

tions represented as complex ODEs (cODEs), identify fast transients in system behavior, and

apply parameter and time scale abstractions to simplify the system model [40]. The resultant

hybrid automata are made up of states de�ned by numerically simpler ODEs (sODEs), but

require the de�nition of the discrete transition function, �, state update function, g�, and the

event generation function, �� to complete the hybrid automata model. We have illustrated

by the falling rod example, that the construction of the  function must ensure that the prin-

ciples of divergence of time and temporal evolution of state are not violated. The g function

construction requires an understanding of the system con�guration and state vectors in the

two modes of operation, and the application of the conservation of state principle to derive

the change in the state vector across the discrete transition. Besides the falling rod system,

we have applied this hybrid modeling methodology to a number of realistic systems, such as

the secondary sodium cooling loop of fast breeder reactors [43], elevator control system of

aircraft [38, 40], cooling system of a Chevrolet V-8 combustion engine [29], braking and clutch

mechanisms [42], and a cam-follower mechanism in automobile engines [33].

The next step is to extend the formal speci�cations to design a declarative model con-

struction framework using compositional modeling techniques employed in [3, 13, 26, 48].

Preliminary work [39, 40] in composing hybrid models of aircraft elevator systems has been

demonstrated using hybrid automata. Individual component models were constructed for

valves, cylinders, pistons, and the elevator ap as hybrid automata. Each automaton included

the continuous behavior descriptions (as DAEs) and mode transition conditions expressed as

inequalities on system variables. The component automata models were composed to build

the complete simpli�ed hybrid automata model of the elevator system.

This approach needs to be extended to an environment, where model builders, depending

on the task, and the goals of their analysis can construct system models with di�erent em-

phases and at di�erent levels of detail. In previous work (e.g., [26, 48]) this has been achieved

by the construction of model fragment libraries using a declarative logical speci�cation to en-

able automated model construction using compositional modeling techniques, and to promote

model fragment reuse across multiple applications. Our goal is to construct model fragment
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libraries, employing hybrid automata as the core modeling language, and augmenting the

automata with modeling assumptions that de�ne the level of detail expressed in the model

fragment and other conditions that need to be satis�ed for the fragment to be applicable [26].

The hybrid automaton composition procedures outlined in [40] can then be applied for model

construction.

A new challenge that we face in the design of the compositional modeling algorithm is to

ensure the consistency of the composed model fragments at a chosen level of abstraction. In

recent work [39], we have demonstrated that the application of abstraction techniques to model

fragments may lead to loss of information that makes the model composition task diÆcult to

achieve. Our current solution to this problem is to use the more detailed model fragments and

rederive the sODE models and transition conditions for a new system con�guration. In future

work, we will investigate these issues in greater detail for designing compositional hybrid

modeling procedures.

10 Conclusions

This paper has developed a formal mathematical framework for representing hybrid dynamic

systems by using DAEs with variable algebraic constraints and analyzing hybrid behaviors

of dynamic physical systems. We adopted the conventional modeling framework of Gucken-

heimer and Johnson [15], and de�ned the hybrid behavior trajectory in individual modes, �,

as continuous ows F� interspersed with discrete transitions de�ned by threshold functions

��. At discrete transition points, functions g
�
� de�ne jumps in the system state vector, x. The

analysis of parameter and time scale abstractions played a key role in developing systematic

and unambiguous switching speci�cations (i.e, the  and g functions) based on physical sys-

tem principles for three modes of operation: (i) continuous, (ii) mythical, and (iii) pinnacles.

An important derivation was to show the exact dependence of the transition conditions on

a priori and a posteriori state vector values. The formal modeling speci�cations provided a

model building framework for physical systems made up of three components: (i) the contin-

uous model represented as DAEs, (ii) the discrete model represented as switching conditions

for �nite state automata, and (iii) the interaction model de�ned by the three mathematical

functions, h, g, and . The function g is implicit in the DAEs and can be made explicit

by applying conservation laws embodies by the instantaneous equivalent of the continuous

dynamics. This allows the use of ODE models combined with the g function. This model

formulation is the input to our simulation engine but could also be used for other analyses as

it is close to the hybrid automata formulation. Along with the model building framework, we

have also derived model veri�cation procedures based on the principles of temporal evolution

of state and divergence of time. In parallel work [36], the formal speci�cations have also
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been translated into a hybrid dynamic simulator, which has been used for generating all the

behaviors reported in this paper.

The use of local speci�cations to de�ne mode transitions often results in the system going

through a sequence of discrete changes, but local speci�cations simplify the modeling task

allowing the modeler to create a complex system model as a composition of individual hybrid

automata. In other work, we have investigated the issue of building compositional models as

time scale and parameter abstractions are applied to simplify the individual component cODEs

to sODEs [39]. As discussed earlier, further work remains to be done to develop systematic

compositional modeling schemes with hybrid automata. We have undertaken other research

e�ort directed toward incorporating controller actions explicitly into the modeling framework

(these will be distinguished from the autonomous jumps discussed in this paper, see [5, 46] for

a classi�cation of hybrid transitions) so that we can develop methodologies for the design and

analysis of embedded (computer-based) control [43], and to use this modeling methodology

to build hybrid observers for real time monitoring and diagnosis [38] of complex systems.
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