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Diagnosis of Continuous Valued
Systems in Transient Operating Regions

Pieter J. Mosterman and Gautam Biswas,Senior Member, IEEE

Abstract—The complexity of present day embedded systems
(continuous processes controlled by digital processors), and the
increased demands on their reliability motivate the need for
monitoring and fault isolation capabilities in the embedded pro-
cessors. This paper develops monitoring, prediction, and fault
isolation methods for abrupt faults in complex dynamic systems.
The transient behavior in response to those faults is analyzed in
a qualitative framework using parsimonious topological system
models. Predicted transient effects of hypothesized faults are
captured in the form of signatures that specify future faulty
behavior as higher order time-derivatives. The dynamic effects
of faults are analyzed by a progressive monitoringscheme till
transient analysis mechanisms have to be suspended in favor
of steady state analysis. This methodology has been successfully
applied to monitoring of the secondary sodium cooling loop of a
fast breeder reactor.

I. INTRODUCTION

T HE complexity and sophistication of the new generation
of engineered systems along with growing demands for

their reliability, safety, and low cost operation, is being met
by the use of more automated monitoring and fault detection
and isolation (FDI) subsystems. The goal is to accurately1

isolate problems and restore the system to normal operation
by making control changes to bring system behavior back to
desired operating ranges or at least asafemode of operation.
This defines a paradigm for fault detection, isolation, and
recovery (FDIR).

Functional redundancy schemes use measured system vari-
able values with relations imposed by the system configuration
and functionality to analyze discrepancies among the mea-
sured values [20]. Deviations in measurement values can be
expressed in terms of changed component parameter values,
which are then mapped to faulty components. Traditional
functional redundancy schemes employ state and parameter es-
timation methods, adaptive filtering, and logic based schemes
for analysis [4]–[6].

System models capture relations between measured vari-
ables and system component parameters. FDI methods often
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1Accuracy is the assessment of whether the actual fault is contained by the

estimate. Precision is a measure of the difference between the estimated faults
and the true faults.

employ failure models to establish the relations between
measurements and a pre-enumerated set of faults [9], [18], but
the disadvantage of this approach is that it fails to identify
unusual and novel faults. More general functional models
describe system behavior, and fault isolation is based on
analysis of reported deviations in the context of the given
model [1], [15]. Faults can be characterized as follows [4].

• Incipient faults occur slowly over time, and are linked
to the wear and tear of components and drift in control
parameters.

• Intermittent faults are only present for very short periods
in time, but sometimes can have disastrous consequences.

• Abrupt faults are dramatic and persistent, and they cause
significant deviations from steady state operations called
transients. In time the system either moves into a new
steady state or returns to its original steady state.

The difference in fault characteristics requires different
schemes for effective and reliable detection and isolation.
For example, parameter estimation methods which compute
parameter values from input-output relations work well for
incipient faults because the system changes slowly and tends
to remain in steady state [5].

Our primary focus is on abrupt fault analysis in continuous
dynamic systems. This makes it essential to track and analyze
system behavior at frequent intervals from the point of failure
so transient characteristics are not lost. Capturing behavior at
or very close to the point of failure is important, because,
as time progresses, compensating effects such as dynamic
feedback may begin to mask the effects of the fault. Moreover,
it may be impractical to rely on subsequent steady state
analysis because the system may take a long time to reach
a new steady state.

Fig. 1 illustrates a generic model based approach to fault
detection and isolation [5], [6]. A set of variables, called
observations, are monitored at frequent intervals. Deviations
in observations imply faults.

Definition 1 (Observation):An observation is a variable in
the system model that is measured.

Models that reason about dynamic behavior of the sys-
tem are utilized to predict operating values for the chosen
observations. Residuals,, are computed as the difference
between the observations,, and predicted normal behavior,

(Fig. 1). Nonzero residuals trigger the diagnosis algorithm.
The analysis of these residuals in the context of the model
generatesone or more hypothesizedcauses, , that explain
the observed deviations. System models with imposed hypoth-
esized faults are then used to predict future system behavior.
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Fig. 1. Diagnosis of dynamic systems.

Continued monitoring and comparison with these predictions
helps refine the initial fault set, . Faults whose predictions
remain consistent with the observations establish the root-
causes for the observed failures. Monitoring, comparison, and
refinement continues till a unique fault has been isolated or
transient analysis has to be suspended. The overall process of
monitoring, hypothesizing faults, prediction, and fault isolation
with explicit system models as the core of the analysis scheme
is referred to asmodel based diagnosis.

In processes that operate mostly in steady state, nominal
values and their upper and lower limits can often be re-
trieved from design specifications or documentation created by
process engineers. For systems whose normal operation modes
include transients and dynamic behaviors, it is harder to de-
termine nominal values and thresholds from which deviations
in process variables can be derived [19]. A fairly accurate
process model that simulates system behavior under normal
conditions is required to run in parallel with the operating
process. In reality, approximations in the models and drift in
the system may result in the estimated state vector slowly
deviating from the actual system values. To prevent this, an
observer mechanism [6] is employed to make corrections to
the estimated state vector. A critical issue with observers
is the model adaptation rate, especially in case of incipient
faults. If this rate is too fast, the model quickly adapts to
changes in the system variables caused by the incipient faults,
therefore, the generated nominal values do not indicate a
deviation. The comparison of actual measurements to predicted
nominal values of measured system variables leads tofault
detection. To account for the effects of noise and measurement
inaccuracies, based on design documentation, a margin of error
is added to the nominal values to increase robustness and avoid
false alarms [19]. When error thresholds are exceeded, the
diagnosis system responds by setting corresponding alarms.

The monitoring stage plays a crucial role in successful fault
detection, isolation, and refinement. Monitoring parameters
such assampling ratesaffect measurement interpretation,
and, therefore, fault hypothesis generation and refinement.
Depending on the monitoring implementation, certain faults
may or may not be distinguishable from others, and this deter-
mines the overall diagnostic accuracy. A critical and related
issue in FDI is sensor placement and measurement selection.
This is an integral component ofdiagnosability analysis,
i.e., choosing measurements that help isolate and differentiate
among possible faults that may occur in the system [9], [14].
This paper develops an integrated framework for monitoring,
prediction, and diagnosis from transients TRANSCEND, based
on the architecture presented in Fig. 1.

II. M ODEL BASED DIAGNOSIS

Our approach to diagnosis uses qualitative dependency re-
lations between parameters and observed variables to generate
hypothesized faults from observed deviations and to predict
their future transient and steady state behavior.

A. Model Based Diagnosis System

In previous work, static models based on qualitative con-
straint equations [1] and signed directed graphs (SDG) [16]
led to under constrained models that caused combinatorial
problems in the diagnosis task. These system models did
not incorporate dynamics, therefore, temporal feedback effects
could not be dealt with, or had to be re-introduced on an ad
hoc basis [15].

1) Modeling for Diagnosis:Generating successful models
for diagnosis of continuous dynamic systems introduces a
unique set of requirements.

• The models should describe both normal and faulty sys-
tem behavior. The former provides the reference variable
values for the monitoring task, and the latter forms the
core for the prediction algorithm.

• The model should generate dynamic behavior under faulty
conditions, so fault transients can be predicted by the
model.

• The model should incorporate sufficient behavioral detail
so deviations in observed variables can be mapped back
to system components and parameters.

• When faults occur, the system may undergo a structural
change. Analyzing structural changes is beyond the scope
of this paper. However, they constitute an important
category of failures, so it is important to not preclude
them from the underlying framework. In parallel, we
have been developing modeling techniques that combine
discrete changes with continuous behavior analysis [11].

In addition, to constrain the inherently exponential search
space for diagnosis, it is important that the model impose all
relevant physical constraints on the search process. Also, given
the limits of purely qualitative and purely quantitative schemes
that have been discussed elsewhere [5], [6], [16], models that
generate and use both qualitative and quantitative information
are preferred to prevent loss ofa priori information.

Analyzing the effects of abrupt faults is the key to successful
fault isolation. Abrupt changes in the parameter values of
energy storage elements may cause an abrupt change in some
measured variables [10], [13]. To illustrate, assume that at
time , a rock falls into an open tank with capacity, and an
outflow resistance for a connected outlet pipe (Fig. 2). The
capacity of the tank decreases abruptly to. Since ,
and , the amount of liquid in the tank is conserved (assuming
no overflow), the abrupt change in the capacitance value must
reflect as an abrupt change in pressure,, to . This
does not have to be the case always. For example, an abrupt
change in pipe resistance, may cause an abrupt change in
outflow, but not an abrupt change in.

2) Bond Graphs for Diagnosis:Bond graphs [17] provide
a systematic framework for building consistent and well con-
strained models of dynamic physical systems across multiple
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Fig. 2. Discontinuous change in tank capacitance.

domains. They include causality constraints that provide the
mechanisms for effective and efficient diagnosis. An added
advantage of bond graph representations is their direct ap-
plicability to qualitative processing, making them useful in
situations where precise numerical information may not be
available. Analytic system models derived from bond graphs
are also amenable to quantitative simulation and analysis.
Tanginaet al. [21] derived analytic redundancy relations, and
Linkens and Wang [7] compute local qualitative relations for
fault isolation. Our work exploits the topological constraints
of bond graph model for efficient diagnosis.

To extend bond graph modeling to component oriented diag-
nosis requires establishing correspondence between individual
components and bond graph elements. In the bond graph
framework, primitive elements, such as resistors and capacitors
represent mechanisms which may not always be in one-to-one
correspondences with individual system components [2]. An
individual component may have multiple aspects represented
in the bond graph. For example, a component such as a pipe
may be represented in the bond graph by its build-up of flow
momentum and resistance to flow . Biswas and Yu
[2] describe a compositional methodology for deriving bond
graph models for diagnosis from a physical system description
so that the bond graph elements directly correspond to system
components and mechanisms under diagnosis scrutiny. The
modeling methodology is further developed by Mosterman and
Biswas [11], [13]. In our framework, a fault manifests as a
deviation of a component parameter in the bond graph model.

Definition 2 (Fault): Faults are defined by model parame-
ters that have deviated from their normal operating values.

B. Diagnosis from Transients

Abrupt faults like sudden blockages in pipes create tran-
sients in dynamic system behavior. This differs from a pipe
that slowly accumulates dirt creating an incipient fault, which
is more likely to cause a gradual drift in the system steady
state behavior.

1) Characterizing Transients with Time Constants: Time
constantsplay a key role in characterizing the dynamic behav-
ior of physical systems. Faults cause instantaneous changes
in some system variables. For other variables, energy stor-
age elements acting as buffers introduce propagation delays
and changes take longer to manifest. In general, variables
with larger time constants take longer to produce observ-
able changes when compared to variables with smaller time
constants. If measurement snapshots are available from the

Fig. 3. Delay times of two first order systems (�1 and �2), their
sum (�1 + �2), and the actual delay time of their combined effects
(F (t; �1) � F (t; �2)).

(a) (b)

Fig. 4. Delay times for observing deviations.

system at rates that are faster than the smallest time constant, it
becomes easier to track transients, and relate them to primary
fault causes. In this work, without much discussion, this is
assumed to be true.

Assumption 1 (Time Scale of Observation):Observations
are sampled at rates that are faster than modeled system time
constants in both normal and faulty operation.
Physical systems are inherently continuous, and hypothesized
abrupt changes (e.g., the abrupt pressure change caused by
the falling rock) actually occur on time scales smaller than
the sampling rate for the observations. Therefore, they seem
to manifest as discontinuous changes, but this is a sampling
artifact attributed to the time scale of observation.

Definition 3 (Discontinuity): A change in a signal value
that takes place on a time scale much smaller than the time
scale of observations is classified as abrupt, and called a
discontinuity.

Observed transients in system behavior may be affected
by the combination of multiple time constants in subsystems
that define the overall delay. The combined effects are a
convolution rather than the sum of individual time constants
[10]. As an illustration, Fig. 3 shows the step response of two
first order systems with time constantsand , respectively.
The combined effect of these systems is given by

(convolution) whereas the sum of their individual
delay times is shown by . Tracking of the measured
values will produce significant error if the sum of the time
constants is used instead of the convolution. This approach is
further complicated by the fact that nominal time constants
change when faults occur.

A qualitative framework mitigates this tracking problem to
some extent but introduces problems in temporal ordering.
Qualitatively, a measurement is considerednormal if it is
within a certain percentage (say 2%–5%) of its nominal value
and deviant otherwise. Fig. 4(a) shows two variables affected
by a fault, a first order effect, , and a second order effect,.
The delay times, i.e., the time before these variables cross the
error threshold are and , respectively. At times between
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and is reported deviant but is reported normal.
Although embodies a second order effect with a zero value
first-order derivative at the point of failure, it crosses the
error threshold before a first order effect. This is contrary to
expectations; a first order effect is expected to dominate (i.e.,
be much faster than) a second order effect. Fig. 4(b) compares
two signals whose first order time constants are equal. The
pure first order effect is faster than the signal that combines
the first order effect with a second order effect.

This brings up an important issue when dealing with normal
values and deviations from normal in a qualitative reasoning
framework. A temporal ordering of first and higher order
effects in studying deviations from normal is, in general,
impossible unless the sensor system is wired and calibrated
with extreme care to guarantee a temporal ordering in response
times. Also, an observation being reported normal at a given
time may actually be a slowly changing value that has not
crossed the threshold, and, therefore, it should not be used
to refute faults. This invariably produces contradictions in
consistency based diagnoses.

In our approach, deviant observations are individually an-
alyzed to generate sets of single fault hypotheses. Normal
observations are not necessarily used to refute faults because
it is hard to differentiate between a truly normal signal
versus one that is changing slowly and will cross the normal
threshold at some future point in time. Only in situations
where discontinuities can be reliably detected can normal
observations be used to refute faults that would cause a
discontinuous change for that observation.

2) Feature Detection:Individual signal features are the
prime discriminating factor between competing fault hy-
potheses. Signals can be noisy, therefore, prudence must
be exercised in distilling information from them. Magnitude
or zero order changes are measurable within a given error
tolerance that is determined by the properties of the associated
sensors. Slopes or first order derivatives can be reliably
computed from measured signals in a qualitative framework
[no change (0) and increasing or decreasing ] using
standard filtering techniques. However, the measurement or
derivation of higher order derivatives produces unreliable
results [3]. Dedicated transducers, such as accelerometers,
may be employed to measure second derivatives, but only for
specific kinds of measurements. Therefore, our monitoring and
feature detection subsystem focuses on making magnitude and
slope measurements. Like magnitude, a slope that is currently
within bounds and labeled normal (0) cannot be used to derive
diagnostic conclusions because its value may change with
time. Only when the measured slope deviates significantly
from the expected value is this value directly used for fault
isolation and refinement.

Specialized algorithms may be employed to derive other
useful features from signals in a qualitative framework. For
example, a simple discontinuous change detection mechanism
can be based on observing that the magnitude and slope
of an observed signal at the time point of failure have
opposing signs. This discontinuity detection scheme has been
successfully applied to systems in the hydraulics domain.
Not all discontinuities take this form, and, therefore, the

Fig. 5. Bi-tank system and its causally augmented bond graph model.

characteristic forms a necessary but not sufficient condition
for discontinuity detection.

Another general characteristic of most physical systems is
that dissipative effects eventually cause the system to return
to a steady state. This translates to another feature that aids
the fault isolation process. If it can be determined from the
monitoring process that the eventual steady state will be above,
below, or at the previous steady state value, one can distinguish
between certain resistive and energy storage element faults.

Overall, our approach uses three features that take on the
following values in our qualitative reasoning framework:

• magnitude:

—low, high;
—discontinuity low, no discontinuous change, discontin-

uously high.

• slope:below normal, above normal;
• steady state:below, at, above original.

III. FAULT HYPOTHESES ANDSIGNATURES

The general FDI methodology illustrated in Fig. 1 is im-
plemented using bond graphs as the underlying modeling
language. Dynamic characteristics of system behavior derived
from the bond graph are represented as atemporal causal
graph. Our algorithms for monitoring, fault isolation, and pre-
diction are based on this representation. The fault analysis and
refinement process continues till fault transients are masked
by interactions or the system reaches a steady state. The goal
is to uniquely identify the true fault using a combination of
transient and steady state analysis.

A. The Temporal Causal Graph

The temporal causal graph is derived in two steps [12].

1) An extension of the SCAP algorithm [17], [22] is used to
generate a graph that incorporatescause-effectrelations
among the power variables in the bond graph.

2) Component parameters and temporal information are
added to individual causal edges to form the temporal
causal graph. This adds temporal characteristics to the
relations between variables.2

The temporal causal graph for the bi-tank system in Fig. 5 is
shown in Fig. 6. The graphical structure represents effort and
flow variables as vertices, and relations between the variables

2Note that the bond graph formalism presents one way to derive temporal
causal graphs. Other modeling formalisms that support the physical modeling
paradigm and allow for the generation of a temporal causal graph may be
employed in its place.
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Fig. 6. Temporal causal graph of the bi-tank system.

as directed edges. The relations can be attributed to junctions
and system components. Junctions are of two types:

1) parallel or common effort (0-) junctions;
2) series or common flow (1-) junctions.

0-junctions require that the effort (e.g., pressure) values of
all bonds incident on that junction be equal, and the sum
of the flow (e.g., the fluid flow rate) values be zero. 1-
junctions require that the flow values of all incident bonds
be equal, and the effort values sum to zero. In the qualitative
framework these relations impose labels1, 1, and on
graph edges. The implies that the junction constrains the
two variable vertices associated with the edge to take on equal
values, 1 implies a direct proportionality and1 implies an
inverse proportionality for the variables associated with the
two incident vertices. An edge associated with a component
represents the component’s constituent relation. For example,
the edge corresponding to a resistive element involved in an
effort to flow relation is labeled , and for a capacitor in
integral causality the edge from flow to effort is labeled .

Junctions, transformers, and resistors define instantaneous
magnitude relations, whereas capacitors and inductors in-
troduce magnitude and temporal effects on causal edges.
In general, the temporal effects areintegrating, and their
associated rate of change is determined by the path that links
an observed variable to the initial point where a deviation
occurs. Natural feedback mechanisms in dynamic physical
systems result in closed paths in the temporal causal graph
(see Fig. 6). For loops with passive elements, these feedback
mechanisms always have a negative gain [23] (e.g., the

loop). Loops that include an integrating
effect (e.g., ) are
referred to asstate loops.

Definition 4 (State Loop):A closed causal path with one
and only one time-integrating effect is called a state loop.
In previous diagnosis work, where temporal aspects of rela-
tions were not modeled explicitly, these ubiquitous negative
feedback mechanisms caused difficulties in assigning deviation
values in a consistent manner during the fault generation stage
(see Section III-B). The problem was addressed by employing
ad hoc criteria to break loops. In our work, this problem is
easily addressed by exploiting the time delays in propagating
signal values introduced by the integrating effects in state
loops.

An added advantage of bond graph models is that they allow
automatic derivation of the steady state model of the system.
For the bi-tank system, both the tank capacities in steady state
can be replaced by flow sources with value 0, since no change

Fig. 7. Steady state bond graph of the bi-tank system and its corresponding
causal graph.

Fig. 8. Backward propagation givene+7 to find faults.

of stored energy takes place. The steady state bond graph and
its resulting steady state causal graph are shown in Fig. 7. In
steady state, causality assignments do not imply a temporal
ordering, and a steady state graph represents a set of algebraic
equations rather than differential equations. Therefore, causal
links in the steady state graph have less meaning. Because
the set of algebraic equations is invariant, parameter deviation
effects do not change for different causality assignments.

B. Component Parameter Implication

For every recorded discrepancy between measurement
and nominal value a backward propagation algorithm
(Algorithm 1) is invoked on the temporal causal graph
to implicate component parameters. Implicated component
parameters are also labeled(below normal) and (above
normal). The algorithm propagates observed deviant values
backward along the directed edges of the temporal causal
graph and consistent and deviation labels are assigned
sequentially to vertices along the path if they do not have a
previously assigned value. An example of its application is
shown in Fig. 8 for a deviant pressure, , in the right tank
of the two tank system in Fig. 5. When is measured to be
above its nominal value, backward propagation starts along

and implicates as below normal or
as above normal . Backward propagation from along

implies , and the inverse relation on
implies . Propagation along a path is terminated when a
conflicting assignment is reached.

Backward propagation accounts for temporal effects by
propagating deviant values along edges with instantaneous
relations first. This ensures that no faults associated with
higher order effects conflict with faults identified with lower
order effects. An example is shown in Fig. 9. Backtracking

along the path , hypothesizes
as a fault consistent with the observation, but the link

introduces a first order effect. However, the path
depicts a set of instantaneous relations

that support the hypothesis, implies . At the point of
failure, the instantaneous effect dominates the
first order effect. When analyzing an individual
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Fig. 9. Instantaneous edges propagate first.

signal’s transient behavior, it is clear that its lower order
effects manifest before its higher order effects. Therefore, the
backward propagation algorithm is designed to propagate in a
depth-first manner in increasing order of time-derivatives. All
component parameters along a propagation path are possible
faults. As discussed earlier, observed normal measurements do
not terminate the backward propagation process. The result of
backward propagation is a set of hypothesized single faults
that are consistent with the reported deviant observations.
—————————————————————————
Algorithm 1 Identify Possible Faults
—————————————————————————

for all reported discrepant measurementsdo
add vertex corresponding to deviant measurement to

and mark vertex with qualitative deviation value
while is not emptydo

the first vertex in (and delete
from )

while has unmarked ancestorsdo
if ancestor relation includes a parameterthen

add the parameter with consistent label to the

end if
if ancestor vertex is unmarkedthen

ancestor value new value(current value,
relation)
if relation is instantaneousthen

add the ancestor vertex to the beginning of

else
add the ancestor vertex to the end of

end if
end if

end while
end while

end for
—————————————————————————

C. Prediction

Once faults are hypothesized, prediction and refinement
schemes are employed to converge on the true fault. A more
complete prediction module may be required to handle model
changes when faults cause structural changes in the system. We
assume faults do not cause changes in system configuration,
and the system model remains valid even after faults occur
in the system.

Assumption 2 (No Structural Changes):Faults do not
cause the system model to undergo configuration changes.
The prediction module uses the system model to compute the

dynamic, transient, behavior of the observed variables and the
eventual steady state behavior of the system under the fault
conditions. Future behavior is expressed in qualitative terms:
magnitude (zeroth order time-derivative), slope (first order
time-derivative) and higher order effects.

Definition 5 (Signature):The prediction of zeroth, first, and
higher order time-derivative effects of a system variable as
qualitative values: below normal (low), normal, and above
normal (high) in response to a fault is called its signature.

—————————————————————————
Algorithm 2 Predict Future Behavior for a Fault
—————————————————————————

add initial vertex, i.e., immediate consequence of the fault
to list
mark vertex order derivative with qualitative value
while is not emptydo

the first vertex in
while has successorsnot determined to
sufficient order do

if successor relation includes a time integral effect
then increase current derivative order

end if
if derivative order maximum orderthen

if successor derivative isno mark then
successor derivative value new value(current
value, relation)

else if successor derivative has opposite value of
current
then

successor derivative value conflict
end if
add the successor to end of

end if
end while

end while
for all vertex derivativesdo

if value no mark and any higher order derivative
no mark

then
replaceno mark with normal

end if
if value conflict then

replaceconflict with no mark
end if

end for
—————————————————————————

The method for predicting future system behavior is pre-
sented as Algorithm 2. The algorithm propagates the effects
of a hypothesized fault to establish a qualitative value for
all measured system variables. Forward propagation along
temporal edges implies an integral effect, therefore, the cause
variable affects the derivative of the effect variable. All
deviation propagations start off as zeroth order effects, i.e., as
magnitude changes. When an integrating edge is traversed, the
magnitude change becomes a first order change, i.e., the first
derivative of the affected quantity changes. This is illustrated
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Fig. 10. Forward propagation forimplicated componentR
+

b2
to establish its

signature.

by an in the propagation example in Fig. 10. Similarly,
a first order change propagating across an integrating edge
produces a second order change , i.e., the second
derivative of the affected variable changes. Second order
changes propagate to third order changes, and so on. The
forward propagation algorithm operates breadth-first along the
temporal causal graph.

The forward propagation algorithm terminates when a sig-
nature ofsufficientorder is generated. Acompletesignature for
an observation contains derivatives specified to its sufficient
order. The sufficient order of a signature depends on the set
of chosen measurement variables and the desired level of
diagnosabilityfor the system.

Definition 6 (Diagnosability): Diagnosability is a function
of the number of possible faults that can be uniquely identified
by a fault isolation system.

A fault detection scheme iscompletely diagnosablefor a
given set of measurements if it can isolate all possible single
faults with the set of measurements.

Definition 7 (Complete Diagnosability):A fault isolation
system is completely diagnosable if it can uniquely isolate all
possible hypothesized faults.

Diagnosability depends on the selected observation set
and the chosen order of their signatures [14]. In theory,
consideration of higher order variable effects is likely to results
in greater diagnosability. Therefore, the same diagnosability
can be achieved with a smaller number of total observations
but considering higher order signatures, or using a larger num-
ber of observations with lower order signatures. In practice,
using signatures of lower order has advantages. Higher order
effects take longer to manifest, and fault patterns take longer
to establish after failure occurs. During this time, feedback
effects in the system may be superimposed on initial fault
behavior and change the nature of the patterns. This problem
is compounded even further when cascading faults occur.

The steady state causal graph derived from the bond graph
model of the system determines the final steady state value
for each observed variable under the faulty conditions. The
predicted steady state value for each observed variable, i.e.,
below the original, at the original, or above the originalsteady
state, is attached to the signature and used in the monitoring
stage.

IV. M ONITORING

The monitoring module compares predicted signatures of
the hypothesized faults to actual measurements as they change
dynamically. A number of issues of practical importance,
related to the quality and characteristics of the measurements,
are incorporated into the monitoring scheme so dynamic
effects can be realistically measured using local mechanisms.

Fig. 11. Signal interpretation.

Fig. 12. Progressive monitoring.

A. Sensitivity to the Time Step

The monitoring time step is critical to the success of the
overall fault isolation scheme. The step size depends on the
different rates of response that the system exhibits. Too large
a time step may produce incorrect inferences as shown for the
signal (solid curve) at the left in Fig. 11. A large monitoring
time step gives the appearance that this signal undergoes
a discontinuous change (dashed curve). Decreasing the time
step helps in differentiating discontinuities (abrupt changes)
from continuous effects but if the time step is too small, it
appears that the signal does not change for a large number
of steps (see plot on right of Fig. 11). Too small a time step
may result in lack of sensitivity to changes and unnecessary
computational expense on the analysis task. If the variable cor-
responding to a slowly changing measurement is prematurely
reported to be normal, or to have reached a new steady state
value, this may result in elimination of true faults. To mitigate
this problem, fault refutation based on a given observation is
only invoked after an initial deviation is detected. As discussed
earlier, the sampling rate also determines whether the effect
of a fault is observed to be discontinuous.

B. Progressive Monitoring

Transient characteristics at the time of failure tend to
change over time as other phenomena in the system affect
the measured variables. The signatures for a candidate fault
can change dynamically. For example, a fault in the system
may have no effect on the initial magnitude (th order value)
of a variable, but it may affect itsst derivative, predicting
that it will be above normal. Therefore, immediately after
the fault occurs the variable value will be observed to be
normal (its deviation is within the 2–5% threshold), but as
time progresses, the derivative effect will cause the variable
value to go above normal. Fig. 12 depicts time stamps marked
1, 2, and 3, where a lower order predicted effect is replaced
by a higher order effect. The notion of employing higher
order derivatives in analyzing measured variables during the
monitoring process is referred to asprogressive monitoring.
When as observed variable does not match a predicted normal
value, the comparison is successively extended to predicted
higher order derivatives in the variables signature. If the higher
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Fig. 13. Progressive monitoring forfaultR+
b2

.

order derivatives match the observed value, the hypothesized
fault is considered plausible, otherwise it is rejected.

To illustrate, Fig. 13 shows the predicted and monitored
behavior for a sudden increase in outflow resistance in
the bi-tank system in Fig. 5, where1, 0, 1 maps ontolow,
normal, highand a period indicates that the value isunknown.
The two observed variables are the outflow of the left tank,

, and the pressure in the right tank,. Not all monitoring
output is shown; the boxes depict the monitored values at
time steps where the set of hypothesized faults changes or
where the tracking of an observation’s transient behavior is
terminated. The actual observations and the newly inferred
set of possible faults and their signatures are listed. The
values on the top of each box represent the measured signal
magnitude (zeroth order), slope (first derivative), and second
derivative3 expressed in qualitative terms. Below the reported
measurements are the predicted signatures of the measured
variables for each hypothesized fault. Consider fault and
measurement in Fig. 13. At step 9, the reported value for
is still normal (its value has not exceeded the error threshold),
and this agrees with the signature 0, 0, 1 for . At step 23,
the reported value for is 1, 0 (magnitude above normal),
which no longer appears to be consistent with fault ’s
signature. However, when progressive monitoring is applied,
the second derivative, which is positive, makes an impact
on both the first derivative and magnitude of the signal, and
the prediction for is changed to 1, 1, 1. Updating the
prediction in this manner keeps the signature consistent with
the observation, and is still a viable fault hypothesis.
Hypothesized faults are dropped if their signatures do not
match observations. Note that in step 23 the slope foris
reported to be 0 whereas the magnitude deviates. This is an
artifact of our implementation as the deviation in a slope is
computed using the first set of observations after an initial
magnitude deviation is detected.

Fig. 14 illustrates progressive monitoring with discontinuity
detection (see Section II-B). The change inand when the
fault occurs in the bi-tank system is listed. A fourth field

3As discussed earlier, second and higher order derivatives are not mea-
sured. This slot is retained to make it easier to match actual and predicted
observations.

Fig. 14. Results of the diagnosis system withC�
2

faulty and discontinuity
detection is used.

Fig. 15. Typical signal transients in physical systems that exhibit different
qualitative behavior over time.

is added to the actual observation; a value of 1 in this field
implies a positive discontinuous deviation occurred at the time
of failure. Matching an initial discontinuous change produces
a unique fault after the second time step. The discontinuous
change observed for measurementat step 2 implicates
and the other hypothesized faults are eliminated. The flowis
observed to have a positive deviation and positive slope
as opposed to for . Therefore, the change in is
not labeled discontinuous by our criteria. The discontinuity
detection criteria is a necessary but not sufficient condition.

The diagnosis engine can correctly detect and isolate all
single fault parameter deviations if the pressure in one tank
and the outflow from the other or the flow between them
were measured and first order signatures are used. In this
case, discontinuity detection is not required but steady state
detection is. If steady state detection is not feasible, three
observations and discontinuity detection have to be used, or
a second order signature without discontinuity detection can
be employed. The task of measurement selection to achieve
complete diagnosability is discussed in greater detail elsewhere
[14]. Detailed results for two-tank and three-tank systems are
presented in [12].

C. Temporal Behavior

Two distinct characteristics of signals in response to fault
disturbances, transients and steady state, carry the most distinc-
tive discriminative information for diagnosis. For monitoring
it is important to know when, after a time of failure, the
transient detection phase terminates, and the system moves
into the steady state mode, requiring steady state detection to
be activated.

Palowitch [16] reports that signals may exhibit acom-
pensatory [Fig. 15(a)] or an inverse response[Fig. 15(b)].
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A compensatory response exhibits a decreasing slope and
gradually moves toward a new steady state value. For an
inverse response, after an initial increase or decrease, the signal
may reverse direction. An additional phenomenon resulting
from abrupt faults can be categorized as areverse response
[Fig. 15(c)]. A reverse response occurs if a discontinuous
signal overshoots, and, consequently, its qualitative magnitude
reverses sign (i.e., goes from above normal to below normal
or vice versa).

In the qualitative analysis framework, the transition to
steady state analysis is detected from an initial magnitude
deviation by noting the following.

• For a compensatory response, the slope eventually be-
comes 0.

• For an inverse response no discontinuous change of
magnitude is associated with. The switch from transient
to steady state detection occurs when the magnitude and
slope deviations take on opposing signs. Eventually the
slope may become 0.

• For a reverse response the signal has a discontinuous
initial magnitude deviation with sign that is opposite of
the current magnitude deviation. The switch to steady
state detection occurs when the magnitude changes sign.

When any of these situations are detected, transient verification
for that particular signal is suspended (stagein Fig. 15),
and steady state detection is activated (stagein Fig. 15).
After a period of time, some signals may be processed in the
transient mode, whereas others are processed in the steady state
mode. Steady state is detected when a first order derivative
becomes 0 for a sufficient period of time. The sufficient period
of time is usually based on design information. The
in Fig. 13 illustrates that transient detection was suspended
for from time step 10. At this point in time, steady state
detection is activated for this signal only. At step 26 transient
detection for is suspended and steady state detection is
initiated. Both these are examples of a compensatory response.
However, the difficulty in detecting the final steady state value
results in it not being used as a verification mechanism here,
and, the diagnosis process ends at time step 26. In Fig. 14,
the diagnosis process terminates at step 7. As part of future
research, more sophisticated steady state detection techniques
will be investigated.

D. Summary

Monitoring plays a key role in the robustness of the fault
analysis scheme. The following issues summarize the moni-
toring and measurement selection process.

1) Only deviating signals play a role in transient fault
analysis. This circumvents the problem of insensitivity
to small time steps.

2) During this transient monitoring stage a progressive
monitoring scheme defines the dynamic characteristics
of the initial fault transients.

3) After a period of time, signal behavior may deviate
significantly from transient behavior at the time of
failure (e.g., it may reverse its slope). In this situa-
tion, the transient prediction and verification process is

Fig. 16. Secondary sodium cooling loop.

suspended, and steady state analysis is activated. This
is based on the three characteristic qualitative signal
behaviors discussed earlier in this section. Suspension
of transient analysis and steady state detection are non
trivial tasks in the monitoring and fault isolation scheme.

4) An off-line measurement selection algorithm [14] iden-
tifies the sufficient order of predictions for fault isolation
to achieve a degree of diagnosability.

V. LIQUID SODIUM COOLING SYSTEM

The scalability of our FDI methodology was tested by con-
ducting experiments on the simulation model of the secondary
liquid sodium cooling loop in a fast breeder nuclear reactor.
The need for a qualitative approach in this system is motivated
by the fact that it is modeled as a nonlinear sixth order,
system. This makes it hard to develop accurate numeric models
for generating system behavior in different modes. Moreover,
the precision of the sodium flow sensors used in the system
is limited and hardware redundancy is difficult to achieve
because of the expense involved in adding flow sensors.

A. Secondary Sodium Cooling Loop

In a nuclear reactor, heat from the reactor core is transported
to the turbine by a primary and secondary cooling system. The
primary cooling sub-system connects directly to the reactor
and transfers heat to the secondary cooling sub-system which
then transfers heat carried by the liquid sodium to the steam in
the generator (Fig. 16). Heat transfer from the primary cooling
loop to the liquid sodium in the secondary loop happens
through an intermediate heat exchanger. The heated sodium
is then pumped through two stages: the super heater and the
evaporator vessel, both of which heat up the water and steam
in the steam–water loop that then drives the turbine.

1) Bond Graph Model:The model used for diagnosis ap-
plies energy and mass balance of the system in the hydraulics
domain combined with the mechanical characteristics of the
main motor and pump. The bond graph that captures system
behavior in these domains is a nonlinear, sixth order model
(Fig. 17). The main motor driver (Fig. 18) is a synchronous
ac motor. As a simplification the electrical subsystem is not
modeled. The electrical part of the motor system can be
represented as a source of mechanical energy with a given
torque/angular velocity characteristic. The inertia of the rotor
and the mass of the transmission gear is modeled by, and
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Fig. 17. Bond graph model for the secondary sodium cooling system.

Fig. 18. Synchronous ac motor that drives a pump.

the transmission ratio between motor and pump by. Pump
losses in the fluid connection between the motor and pump are
modeled by a dissipation element, , and the pump inertia
is represented as . The model of a centrifugal pump can
be derived using conservation of power and momentum [23].
Given that the amount of mass moved by the pump depends
on the total area of its veins,, minus the effective loss in
moved mass due to the curvature of the veins,, this yields the
constituent relations and

. This describes a modulated gyrator with modulus
, where if the pump veins are not curved.

The hydraulics of the sodium loop are modeled by a closed
power loop (Fig. 17). The coil in the intermediate heat ex-
changer accounts for flow momentum build-up, represented by
a fluid inertia, . The piping from the main pump through
the heat exchanger to the evaporator vessel is represented
by resistance . The two sodium vessels are modeled by
capacitances, and and the connecting pipe by
its resistance, . An overflow column, , maintains a
desired sodium level in the main motor, and the piping between
the evaporator and this column is represented by resistance

. This storage facility is connected to a sump,, by a pipe
with resistance, .

Solving the algebraic equations in the steady state model
(i.e., all elements in Fig. 17 are replaced by and all
elements by ) results in a third order equation because of
the quadratic modulus of the gyrator. A closed form symbolic
solution was derived using Mathematica. This solution has
one real root that represents the steady state solution, and
symbolically provides the values for nominal operation.

2) The Temporal Causal Graph:The temporal causal
graph (Fig. 19) of the system is derived from the bond
graph in Fig. 17. Because of its nonlinear character, theMGY
requires more detailed analysis. The derivation of the causal
relations of the modulated gyrator is shown in Fig. 20. First
it is observed that the modulation factor
is directly proportional to and inversely proportional to

. The dependency of on and can be explicitly

Fig. 19. Temporal causal graph of dynamic behavior.

Fig. 20. Temporal causal graph of a modulated gyrator.

Fig. 21. Detailed sensitivity analysis of@e8=@f9.

modeled by edges between these variables and the affected
variables. The bond graph indicates thatand affect
and . The corresponding edges are added to the causal graph
(Fig. 20). The added influences onresult in ambiguity. This
is revealed by studying the relation betweenand . From
the bond graph . The plot
in Fig. 21 reveals that the to link can have a positive
or negative value depending on the values of and .
From nominal steady state values, the link sign can be pre-
computed. However, once a fault occurs, changes in the values
of and may cause a change in the sign. Since the exact
values of the two variables are not known at monitoring time,
the sign on the link may or may not reverse. The reversal
occurs only when is predicted to be high based on the
proportional influence (1 or 1). Since a predicted decrease
in is unambiguous it is propagated, but a predicted increase
in is propagated asunknown. The two pump parameters

and are represented by one positive parameter,, that is
linked to pump fault.

B. Simulation Results

The numerical simulation model for the secondary cooling
loop utilizes the forward Euler integration, .
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TABLE I
SECONDARY SODIUM COOLING LOOP PARAMETER VALUES

To ensure stability, the numerical time step was chosen
to be , where is the smallest time constant of the
model [23].

From system specification documents and by consulting
domain experts, the parameter values listed in Table I were
chosen. Those values do not represent actual system parameter
values, but their relative magnitudes are such that the generated
qualitative characteristics of the behavior are correct. The

parameter indicates the maximum level of the liquid
sodium in the evaporator vessel. The overflow mechanism was
modeled but not included in the temporal causal graph to avoid
model configuration changes. The simulation used a numerical
time step of , which produced numerically stable
simulations in both normal and failure situations. Thus

for the model, which is equivalent to a minimal time
constant in the order of minutes for the actual system. This
was also chosen as the monitoring time step, which results in
a sampling rate of about 20 s for the actual system.

Failure was simulated in the system by changing the model
parameters by a factor of five. Conservation of state [13] was
applied when capacitance and inductance failures occurred.
Keeping the stored momentum or the amount of liquid constant
resulted in an abrupt change of angular velocity/flow or
pressure, respectively. Simulation was stopped when either the
transients of all observations were detected or 3913 samples
had been processed.4

The quality of the results depended on the parameter dif-
ferences in the model and unmodeled configuration changes.
For detection of high and low values for signals, a qualitative
margin of error of 2% was used to avoid spurious deviations
due to noise.

Table II summarizes the results. Columns 1 and 4 are the
introduced faults, column 2 and 5 list the faults reported by
TRANSCEND and columns 3 and 6 indicate the number of
measurement samples required to arrive at the result. Three
faults, , and , were not accurately detected or
isolated. Because of the overflow mechanism in the evaporator
vessel, a decrease in capacity, , does not result in an
increase in level and this is not detected. To detect this
failure, flow of sodium through the overflow mechanism has
to be monitored. The two other faults, and , were
detected but not correctly isolated, again because the overflow
mechanism was not modeled in the temporal causal graph.
If this phenomenon is included by tagging a predicted value
unknown instead ofhigh when it would have predicted an
evaporator level that ishigh, the faults would be accurately
isolated as indicated by the entries in parentheses in Table II.
Not all faults can be uniquely isolated because of the

4This number is derived from the time it takes a signal with time constant
1 to reach its steady state value within 2%.

TABLE II
FAULT DETECTION FORff2; f7; f11; e14; e19; e22; e33g

WITH �t = 0:001; order= 3; qmargin = 2%

lack of required measurements, or certain predicted deviations
are too small to be observed.

VI. CONCLUSIONS

This paper presents an effective mechanism for fault iso-
lation in complex dynamic systems by analysis of qualitative
transients and progressive monitoring of the evolving behavior
of the system after initial fault occurrences. The work makes
a number of important contributions:

1) use of the bond graph language to develop a systematic
framework for dynamic and steady state analysis of
physical systems;

2) use of qualitative signatures defined by higher order
derivatives for tracking system behavior based on hy-
pothesized faults;

3) progressive monitoring scheme for comparing evolving
temporal system behavior to the signatures for fault
refinement.

A number of experiments with two-tank and three-tank sys-
tems have produced excellent results. To demonstrate the value
of the system in more realistic situations, we have applied
it to a complex, sixth order model of a secondary sodium
cooling loop system for a fast breeder reactor. Results obtained
are encouraging, and the difficulties encountered are not an
issue of scalability, but more the ability to model complex
nonlinearities, the time-scales of different subsystems, and
processing the effect of structural changes in the system.

Currently we are focusing on improving the analysis of
the dynamic transients in the fault isolation mechanisms by
incorporating order of magnitude relations of the temporal
effects of integrating edges and developing more sophisti-
cated discontinuity detection algorithms. We are developing
systematic methods for handling structural faults like leaking
pipes that cause changes in system configuration. We are also
designing and implementing an environment for monitoring
and analyzing real data from an operating automobile engine.
This presents interesting challenges for developing signal
interpretation techniques that are robust to noise, and the
development of real time monitoring, prediction, and fault
isolation algorithms.
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