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Abstract

Functional redundancy techniques for fault detection and isolation (FDI) in dynamic systems requires close
interaction between system instrumentation, modeling and analysis. Effective FDI requires detailed and accurate
models to track and analyze system behavior, including transient phenomena that result from faults. It also requires
appropriate instrumentation technology to provide the measurements to capture and analyze system behavior. Mod-
els and measurements must be matched carefully to provide sufficient observability and effective analysis. In this
paper we demonstrate the development of FDI systems for complex applications by presenting an overview of the
modeling and instrumentation of an automobile combustion engine cooling system. We have developed a qualitative
parameter estimation methodology for FDI. A system model is represented as a graph that captures the dynamic
behavior of the system. To demonstrate the applicability a small leak is artificially introduced in the cooling system
and accurately detected and isolated.

1 Introduction

In complex industrial processes, operational safety and reduced down-time are ensured by hardware redundancy
and localized hardware safety mechanisms (e.g., check valves). To reduce cost, hardware redundancy is increasingly
being replaced by use of functional redundancy techniques which relies on a model of the system under scrutiny and
uses functional relations between system variables to infer discrepancies between measured variables. When such
discrepancies occur, a fault is detected and appropriate action has to be taken. Fault detection followed by a fault
isolation stage to accurately locate the failing physical component, establishing the fault detection and isolation
(FDI) paradigm.

Fault detection and isolation in complex dynamic systems requires the use of modeling approaches that capture
system dynamics and the transients that arise when faults occur. In previous work [11], we have developed a
systematic approach using bond graph modeling to derive the temporal causal graph (TCG) representing the func-
tional relations of a system subject to FDI. The inherent physical constraints of a bond graph model (conservation
of energy, conservation of the physical state, continuity of power) result in well constrained models that prevent



the generation of spurious results, one of the most important drawbacks of traditional qualitative methods used in
artificial intelligence approaches to the diagnosis problem. The genericity of the bond graph modeling approach
allows seamless integration of multi domain models (e.g., electrical, mechanical, hydraulic) into one representation.

Another critical issue in FDI is the instrumentation of the system. The FDI quality is typically constrained by
the measurements that are available and their quality. The bandwidth of the measurement system determines the
range of values of the modeled time constants. A larger bandwidth allows the inclusion of smaller time constants,
and, therefore, functional redundancy is enhanced. Furthermore, even in a qualitative framework, more precise
sensors allow for a smaller error tolerance (typically between 2% and 5% of the nominal value), and, therefore,
deviating values may be detected that otherwise go unnoticed. In our qualitative FDI approach, implemented
as the Transcend system, measured deviations drive the isolation process, therefore, the ability to identify and
characterize deviations is the key to diagnostic analysis. We demonstrate that this implies a tight coupling between
the instrumentation and the model of a system, which requires an integrated approach to achieve effective FDI.

In this paper we show how the qualitative approach to FDI, embodied by the Transcend system applies to
the fault isolation in an automobile engine cooling system test bed. To this end, a bond graph model of the system
is designed that includes mechanical, thermal, and hydraulic phenomena. The model is automatically converted
into a TCG representation that serves as the input to Transcend. The model of the cooling system is described
in Section 2 where the challenge is to capture the level of physical detail corresponding to the bandwidth of the
measurement system and relevant to the set of faults we need to diagnose. Section 3 describes the experimental
setup. Section 4 describes the FDI approach and presents and interprets the results. Section 5 summarizes the
conclusions from this work.

2 Modeling

Modeling for diagnosis requires the construction of a parsimonious model that captures all phenomena that are
important to distinguishing the different faults in the system However, the model must not include phenomena
that cannot be observed with the available instrumentation. To isolate faults accurately, the system needs to model
nominal behavior as well as transients that occur after a fault manifests. This requires that the model captures
the system dynamics quite precisely, even in the presence of faults.

2.1 The System

An automotive cooling system uses a liquid coolant pumped through passageway in the engine block by a
centrifugal pump driven by the crank axis. Figure 1 shows a block diagram of the fluid path. Starting at the
pump, coolant is pumped into the lower part of the engine block. The coolant passes through the block and
through passageway in the cylinder, and heads up to the intake manifold from where it flows back towards the
front of the engine. A thermostat regulates the flow of coolant at this point. Before the engine reaches its desired
temperature the thermostat is closed and the coolant is pumped back into the engine block without passing through
the radiator. When the engine reaches its desired temperature, the thermostat opens and the coolant now circulates
through a hose to the radiator. The radiator acts as a heat exchanger and air blown through the radiator by a
fan and/or motion of the vehicle cools the coolant. Controlling the flow of coolant in this manner ensures that the
engine reaches normal operating temperature as quickly as possible.

Figure 1. A block diagram of the engine cooling system.
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2.2 Model

We derive the cooling system bond graph model in three stages that correspond to constructing partial models
in the mechanical, hydraulic, and thermal domains. Figure 2 shows the complete model of the cooling system.
Energy exchange between the mechanical and the hydraulic domain occurs in the pump through rotation of the
crank axis to produce coolant flow. It is indicated by the power coupling of bond 51. The interaction between the
mechanical and the thermal domain is negligible. Measurements indicate that the power interaction between the
hydraulic and thermal domains is be negligible because the coolant is basically incompressible. However, there is a
convective connection between the hydraulic and the thermal domain, modeled by signal lines (dashed light gray),
which will be explained in the discussion of the thermal part. There is no influence from the thermal domain to
either the hydraulic or the mechanical domain.

To enable easy linkage to the fluid domain, the thermal part is modeled using pseudo bond graphs. Since the
fluid is assumed to be incompressible, the fluid part can be modeled either using pressure and mass flow rate as
conjugate pairs (pseudo bond graphs) or pressure and volume flow rate as conjugate pairs (true bond graphs). To
establish direct links between the mechanical and fluid systems they are both modeled as true bond graphs. As a
result the convection resistors that model convective heat flow in the thermal domain are controlled by the volume
flow rate with the density parameter incorporated into the resistance parameter.

Figure 2. Complete model of the engine cooling system with relations accros domains.

2.2.1 The Mechanical Domain

The engine crank axis is modeled by a flow source. The transmission ratio between the crank axis and the pump,
due to the connecting V-belt, is represented by a transformer where the efficiency attributed to the pump losses is
modeled by the resistor Reffic. The inertia of the pump rotor is taken into account by the inertia Ipr. The model of
a centrifugal pump can be derived using conservation of power and momentum. This generates by approximation
the constituent relations for the torque and the pressure τ = KV̇ and p = Kω2, respectively [9]. Here V̇ is the
volume rate, ω the angular frequency and K a constant that depends on the construction of the pump. These
relations can be described with a modulated gyrator (MGY).

2.2.2 The Hydraulic Domain

The coolant flows through the engine block to the radiator and back via upper and lower hoses. Cblair represents
air and steam in the block that embodies compression effects. Rbl is the lumped parameter resistance of the fluid
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path that includes the block and hoses. The thermostat presents a narrow opening and is modeled by resistance
and inertial parameters, Rs and Is, respectively. The fluid path that exists when the thermostat is closed (the
primary circuit), is neglected in steady state. The air present at the top of the radiator is modeled by Crair. The
flow through the radiator is governed by the parameters Rrad and Irad. Two resistances, Rrluh and Rlklh, are
explicitly added to model leakages in the upper and lower hose, respectively. A fault implies their values drop
considerably allowing flow out of the system through these elements.

2.2.3 The Thermal Domain

Two approaches to describe convective heat flow are used in thermodynamics. The Lagrangian approach tracks a
fixed packet of particles [5]. The Eulerian approach applies observations made at a fixed point in space through
which fluid passes and is more useful in practice [15]. Because of the fixed reference used in the Eulerian description,
convective terms will appear in the momentum and energy equations that are not easy to model with true bond
graphs. Therefore, pseudo bond graphs are used for the modeling of the dynamics. In these models, the connections
between bond graph elements and their causality assignment is analogous to bond graphs. However, instead of
using entropy flow as the flow variable, the enthalpy flow is chosen instead. With temperature as the effort variable,
the product of effort and flow does not equal power. Though this requires special care when using transformers
and gyrators, this drawback is outweighed by the modeling advantage this approach offers.

In pseudo bond graphs, the energy entering a moving fluid, enthalpy h, will split up into two parts (i) the energy
carried by pressure and volume and (ii) the convected internal energy.1 Using the notation of extensive variables,
h ≡ u+ pv, where h is the enthalpy, u is the internal energy, p is the pressure, and v is the volume.

The convection resistor [5] is developed in this framework. The energy transport of a moving mass can be viewed
as the transport of mechanical, hydraulic, or electrical energy by moving accumulators, like stressed springs, fluid
containers under pressure or charged electric capacitors [15]. The convective energy flow from one energy storage
element to another is not only a function of the effort flow relation but also a function of the volume flow, these
flows are indicated as dashed light gray vertices in Figure 2. The convection resistor can be interpreted as a
modulated resistor [2] shown in Figure 3 along with its constitutive equations (see also [5]) where ṁ is the mass
flow, cp is the specific heat at constant pressure, V̇ the volume flow, and ρ is the density of the coolant.

Ėh = ṁcpTi = V̇ ρcpTi ; ṁ ≥ 0

Ėh = ṁcpTo = V̇ ρcpTo ; ṁ < 0

Figure 3. Convection represented by a modulated two port R and corresponding constitutive equations.

A model of the thermal part is then developed as follows. Energy added to the coolant is modeled by the
entropy source, Sf , that represents the combustion process (see Figure 2). This energy is buffered in the block
represented by Cbl or convected via the upper hose to the radiator. Cu takes the heat capacity of the upper hose
into account. The heat capacity of the radiator is Cr. The ambient temperature of the outside air is modeled by
the effort source Tamb. The convection from the copper to the air is a function of the air velocity (the fan) and
is modeled by the modulated resistor Rca. The fan is also driven, just like the pump, by the V-belt. The exact
function between the crank axis angular velocity and the resistance Rca is not required in a qualitative framework.
Cc represents the heat capacity of the radiator metal and Rlc the conduction from liquid to metal. The energy that
does not leave the coolant is convected back to the block, passing through the lower hose Cl. There are no leakage
resistances added to the thermal domain because of the assumptions that the energy leakage, if any, is relatively
small. If required for fault modeling, a Rfield convection resistor and an effort source that serves as entropy sink
may be added. The inverse of the angular velocity controls the MTF and consequently the heat resistance from
the radiator to the outside air. The coolant volume flows derived from the hydraulic part modulate the convection
resistors.

1When the flow velocity is relatively high the kinetic energy has to be added.
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3 Experimental System

The instrumentation consists of network enabled sensors and transducers.

3.1 Instrumentation of the Cooling System

The cooling system in our engine test bed is currently outfitted with four sensors. Two temperature sensors,
T1 and T2, measure temperatures in the leakage valve and in the thermostat, respectively. Two pressure sensors,
P1 and P2, measure the pressures in the lower hose, just before the block and in the upper hose just after the
thermostat, respectively. Details about the engine test bed system and sensors have been reported in [7].

3.2 Data acquisition

The instrumentation system for Transcend is based on the proposed IEEE-1451 standard for a smart trans-
ducer interface for sensors and actuators. This standard enables the development of Internet enabled measurement
and control applications [6].

3.2.1 Hardware

Figure 4 shows the instrumentation system. The sensors are network enabled through the use of two hardware
components, A Network Capable Application Processor (NCAP), and a Smart Transducer Interface Module (S-
TIM). The interface between the STIM and the NCAP is defined in an IEEE Standard [4]. In addition, the STIM
hosts an electronic data sheet that includes all information normally available on a transducer data sheet as well
as the calibration coefficients.

The NCAP used in our system is a Hewlett-Packard embedded Ethernet controller [3], a complete, network ready
interface for connecting a STIM to Ethernet. The STIM used in the current configuration ([1]) has two analog
inputs and two analog outputs. Each channel has a full analog signal conditioning ASIC with programmable filters,
multiple gain setting, offset control and programmable sample rate. A micro controller contains the analog-to-
digital converters for the input channels, and the required peripherals to directly support an IEEE-1451.2 compliant
interface.

Figure 4. The instrumentation system.

3.2.2 Programming Model

The IEEE 1451 standard defines an information model for measurement and control data (IEEE-1451.1) but an
implementation of this standard is not yet available. In the current experiments with the cooling system the data
is captured using a different method. The embedded Ethernet controller hosts an embedded web server. An HTTP
API provides access to the 1451.2 interface. The communication between an application and the controller then
becomes a client-server link. Note that the HTTP API itself is not covered by the standard but specific to the
Hewlett-Packard product. The Transcend data acquisition software then consists of a Java application that
communicates with the NCAP to obtain sample data by opening a network connection to each NCAP.

The NCAP is configured for a sample time of 1/32(s). The data is processed online using our signal analysis
software to derive symbolic input to the diagnosis system [8]. The signal analysis algorithms that extract the
symbolic feature data from the raw signals can run on the NCAP itself, in effect pushing the feature extraction
step onto the sensor, thereby reducing network traffic.
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4 Fault Detection and Isolation

This section gives an overview of our diagnosis approach developed in previous work [9, 11] and presents some
results of the cooling system testbed.

4.1 The Diagnosis Approach

Once a bond graph model of the system is designed, a qualitative representation is available that allows temporal
reasoning about the dynamic behavior when faults occur. To this end, the causal structure of the system variable
relations embodied by the bond graph is made explicit. This results in a temporal causal graph (TCG) that can
be used in two stages: (i) backward propagation generates a set of possible parameter deviations consistent with a
deviating measured variable and (ii) forward propagation predicts future behavior of all measured system variables
given each of the hypothesized parameter deviations. Details of this methodology are presented elsewhere [9, 11].

Figure 5 shows the TCG of the cooling system that is automatically derived from the bond graph using the
HyBrSim modeling tool [12]. The measurements p1, p2, T1, and T2 correspond to the edges e46, e62, e4, and e5,
respectively. If the measured value of p1 is less than its nominal value, the corresponding model variable in the
TCG, e46, is marked −, e46−. Backward propagation now infers that either e51+ or e47−. Propagation continues

until an edge with a parameter relation is traversed, e.g., along the path e46− +1← e47− =← e62−
1

Cblair dt← f62. At this
point, the parameter is implicated according to the propagated deviation, i.e., C+

blair, and the upstream variable
is marked as well, f62−, to include the case the parameter has not deviated. Backward propagation along a path
terminates when a conflicting assignment to a variable deviation is found

Figure 5. Temporal Causal Graph of the cooling system. Measured variables are indicated as circled
vertices

The result of the back propagation is a set of hypothesized parameter deviations consistent with one of the
measured deviations. To find the correct parameter deviation, predictions of future behavior are generated by
forward propagation and continued monitoring of the predicted behavior. Inconsistency between prediction and
measurement causes a parameter deviation to be removed from the set of hypothesized faults.

For the parameter deviation C+
blair, forward propagation predicts e62−. Further propagation along one path

results in e62− =→ e61− +1→ e50−
1
Isdt→ f50↓. Note that traversing the temporal relation 1

Isdt (the dt element
indicates a time integrating effect) changes the prediction from a 0th order deviation to a 1st order deviation.
For this variable, if along other paths no prediction of its 0th order behavior is available, it is considered normal,
i.e., f500,↓. Propagation continues until all higher order derivatives of the measured variables are predicted.
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The maximum order of the prediction is a design consideration and linked to the measurement selection task [13].
When conflicting assignments to the same time derivative arise, this prediction is unknown and further propagated,
overwriting any previously assigned predictions of the time derivative. This has an especially disastrous effect in
case of algebraic loops, i.e., when there is no delay between two opposing effects. In this case, many variables
become unknown which prohibits precise fault isolation. In other work [14], we present an algorithm to handle
such algebraic loops with minimal loss of predictive information.

4.2 Introducing Faults

To test the model for correctness some artificial faults were induced, while the engine was running close to
steady state. Here we describe a slow leakage in the lower hose caused by opening a valve.

Figure 6(a) shows the signal data for the lower hose leakage fault (Rlklh−). We can observe that the pressures
decrease. The temperatures have a very small slope due to the fact that the temperature had not quite reached
steady state when the fault was introduced (i.e., it is no behavioral artifact of the failure) Figure 6(c) shows the
FDI results from Transcend. After two time steps the minimum set of fault candidates is obtained. The leak
cannot be uniquely isolated because there is not sufficient discriminating information about the system available.
For example there is no flow measurement which makes the distinction between Rrad, Irad and Rlklh difficult and
explains why these components are fault candidates.
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(a) Data segment

Step T1 T2 P1 P2

0 ( 0 , · ) ( 0 , · ) (−, · ) (−, · )
1 ( 0 , · ) ( 0 , · ) (−,−) (−,−)

(b) Signal to Symbol Transformation

step 1
actual
e61: − −
e46: − −
e5: 0 ·
e4: 0 ·

Irad+ e61: − − +
e46: − − +
e5: 0 0 −
e4: 0 − ·

Crair+ e61: − − −
e46: − − −
e5: 0 0 +
e4: 0 0 −

Rrad+ e61: − − −
e46: − − −
e5: 0 0 0
e4: 0 0 −

Rlklh− e61: − − +
e46: − − +
e5: 0 0 −
e4: 0 − ·

(c) Diagnosis result

Figure 6. FDI of leakage in the lower hose.

5 Conclusions and Discussion

This paper describes the modeling process for a qualitative diagnosis model of a complex dynamic system.
Qualitative modeling has the advantage that non linearities can be approximated and that parameter values do
not have to be estimated. The model is successfully applied in a realistic setup. Results of an artificially introduced
leak show that the FDI system Transcend correctly hypothesizes the corresponding model parameter as a possible
cause. Three additional parameters are hypothesized as fault candidates because the four measured variables do not
provide sufficient discriminating information. Systematic measurement selection [13] will identify which additional

7



variables need to be measured to further prune this set of four down to only the one actual deviating parameter
and to achieve complete diagnosability in general.

In the experiment, the system was close to steady state and the thermostat was open. In general, during
dynamic behavior the thermostat state may change between open and closed, causing a structural change. When
the thermostat is open the radiator is a part of the coolant fluid whereas when it is closed only the primary circuit
remains. In the present model, this phenomena has not been modeled. Modeling structural changes can be handled
properly by the use of hybrid models [10] and their application to diagnosis will be explored in future research.
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