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Abstract 

This paper presents a model-based approach to diagnosis of 

hybrid systems. We have developed a combined qualitative-

quantitative diagnosis scheme that uses hybrid models of the 

system and a model of the supervisory controller. By apply-

ing the supervisory controller model to diagnostic analysis 

we significantly cut down on the complexity in tracking 

behaviors, and in generating and refining hypotheses across 

discrete mode changes in the system behavior. We present 

the algorithms for hybrid diagnosis: hypotheses generation 

by back propagation, and hypotheses refinement by forward 

propagation and parameter estimation. Example scenarios 

demonstrate the effectiveness of this approach. 

1. Introduction 

Modern systems, such as aircraft and manufacturing plants, 

are complex and include supervisory control that switches 

modes of behavior of the system to increase reliability and 

improve performance. Consider a plant with a supervisory 

controller in Fig. 1. Actuators directly controlled by the su-

pervisory controller govern the system input, and sensors 

measure system variables that are used to estimate the sys-

tem state.  

 

The supervisory controller is a software program running on 

a digital processor. Unlike lower-level regulators in feed-

back loops, this controller is not tightly meshed with the 

continuous plant dynamics. It maintains pre-defined system 

functionality by generating discrete actions at pre-

determined points in time, and when pre-defined events oc-

cur in the plant dynamics. Variables values are directly 

sensed or computed from the measurements made on the 

system. The discrete actions of the controller change the 

input to the plant, or cause a reconfiguration of the plant.  

This changes the models that govern the continuous dynam-

ics of the plant. We call such a system (plant + supervisory 

controller) a hybrid system, where the continuous behavior 

of the plant is interspersed by discrete changes in the plant 

models and the plant variable values. 

 

The continuous dynamics of the plant are defined by differ-

ential and algebraic equations 

)(tx� = f(x(t),u(t),q(t)) 

y(t) = g(x(t),u(t),q(t)), t >= 0, 

where x(t) is the continuous state vector, u(t) is the input, 

y(t) is the output vector, and q(t) is the discrete mode.  Mode 

changes in the plant are attributed to controlled and 

autonomous events [2]. The supervisory controller may 

change the discrete mode resulting in changes to the u(t), 

f(.), and g(.) functions. This is called a controlled event. The 

discrete mode, q(t), may also change when the state vari-

ables, x(t), cross boundary values, which brings about a 

change in f(.) and g(.). These are called autonomous events, 

typically attributed to modeling abstractions [9]. 

  

We study the fault detection and isolation (FDI) problem in 

hybrid systems with supervisory controllers. System faults 

may be component, actuator, sensor, and controller faults. 

When the controller issues commands that generate behav-

ior in conflict with the desired functionality, the controller 

may be said to be faulty.  We do not deal with these kinds of 

faults and make the assumption that the commands issued 

by the controller are consistent with the desired functional-

ity. This paper develops a model-based methodology that 

combines qualitative and quantitative reasoning techniques 

to perform parameterized fault isolation of plant component 

faults.   

2. Modeling for Diagnosis 

Model-based approaches to FDI in hybrid systems with su-

pervisory control uses explicit models of the plant and con-

troller to track system behavior and detect and analyze 

faults.  

2.1 Controller Model 

The primary model of the controller is implemented as a 

finite state machine (FSM). States of the FSM correspond to 

the states of the controller, which in turn define modes of 

the physical plant. The transitions determine the conditions 

for switching states and specify the discrete actuation signal 
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generated when the transition is executed. The transitions 

also describe the initialization of variables in the new state 

based on values from the previous state. They define a par-

tial order of discrete events that may occur in the system. 

Fig. 2 illustrates a supervisory controller model for a con-

nected three-tank system shown in Fig. 3. Tanks 1 and 3 can 
be filled and emptied independently. The supervisory con-

troller directly controls the actuators that open and close the 

valves on the pipes. Autonomous events occur when liquid 

levels attain particular heights, which cause the intermediate 

connecting pipes to become active or inactive. 

2.2 Plant Model 

Our approach to modeling the plant involves building hybrid 
automata that model the continuous and discrete parts in a 

unified framework [1]. We use a hybrid bond graph model-

ing paradigm for the hybrid automata. Hybrid bond graphs 

include controlled junctions that facilitate the modeling of 

discrete mode transitions in system behavior [7].  This pro-

vides a compact representation of the system model across 

all its nominal modes of operation. Instead of pre-

enumerating the bond graph for each mode, the hybrid bond 

graph uses individual junctions to model local mode transi-

tions. The controlled 0- and 1- junctions represent idealized 

discrete switching elements that can turn the corresponding 

energy connection on and off.  A finite state machine deter-
mines the ON/OFF physical state of the junctions. The tran-

sitions in this automaton depend on both control signals and 

internal variable values. 

 

 Fig. 4 illustrates the hybrid bond graph model of the three-

tank system. The two flow sources into tanks 1 and 3 are 

indicated by Sf1 and Sf2, respectively, the tank capacities 

are shown as C1, C2, and C3, and the pipes are modeled by 

simple resistances. Valves are modeled by controlled junc- 

Figure 4: Hybrid Bond Graph for Three-tank system 

tions, which are shown in the figure as junctions with sub-

scripts. The control signals for turning these junctions on 

and off are generated by the finite state automata shown in 

Fig. 4. The toggling signal for the automata comes directly 

from the supervisory controller. For autonomous transitions 

in the system, also modeled by controlled junctions, the 

transition conditions computed from system variables (e.g., 

see the transition conditions for junctions 4 and 6). A mode 

in the system is defined by the state of the eight controlled 

junctions in the hybrid bond graph model. Therefore, theo-
retically the system can be in 256 different modes. 

 

State equations and temporal causal graphs (TCGs) can be 

systematically derived from the bond graph representation 

of the system [8,14]. When mode changes occur, the appro-

priate controlled junctions are toggled, a new bond graph 

model is derived corresponding to the current system con-

figuration, and a new state equation model and TCG can be 

derived for this mode. The state equations simulate system 

behavior, and they along with the temporal causal graphs 

constitute our diagnosis models.  

3. Our Methodology for Hybrid Diagnosis 

Our model-based approach (Fig.5) requires the use of a hy-

brid observer to track normal system behavior, a fault detec-

tion mechanism, and a fault isolation unit. The observer uses 

a quantitative hybrid model of the plant to follow the con-

tinuous dynamics of the plant in a continuous operating re-

gion, and identify discrete mode changes to make the switch 

from the current to the new mode of system operation by 

updating the plant model and its continuous system vector. 

We have adopted a combination of a hybrid automata and 

Kalman filtering approach to design our hybrid observer 

[12]. Small differences, attributed to minor imperfections in 

the model and noise in the measurements, are compensated 

for in the observer mechanism. Significant differences that 

the observer cannot compensate for cause the fault detection 
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unit to signal the presence of a fault in the system. In most 

cases, noise and the complexity of the signals, and the im-

perfections in the sensors and the system model, require the 

use of sophisticated signal analysis techniques to detect dis-

crepancies in the observed measurements [5].  The fault 

isolation unit generates candidate faults and refines them 

with the hybrid model and measurements from the system.  

 

Algorithm 1 gives a high level overview of the computa-

tional mechanism we employ for model-based diagnosis of 

hybrid systems. The following information is assumed to be 

available to all modules of the diagnosis system: (i) HBG - 

Hybrid Bond Graph model of the system, (ii) FSAsystem - 

Hybrid Automaton model of the system, (iii) FSMcontroller  - 

FSM model of controller, (iv) �A  - all possible autonomous 
events in the system, (v) U - inputs to the system, (vi) Y – 

measurements from the system, and (vii) Parametersnominal  - 

nominal values of all parameters in the system. M and X 

refer to the discrete mode and, the continuous system state, 

respectively. Our focus in this paper is on the fault isolation 

algorithms for hybrid diagnosis. 

4. Fault Isolation 

The type of plant model employed determines the scheme to 

be employed for fault isolation. Discrete event approaches 

pre-compile fault models and fault trajectories into finite 

state automata for tracking nominal and faulty system be-

havior [4,15]. Traditional fault observer schemes in the con-

tinuous domain use structured and directional residual ap-

proaches. An algebraic function transforms the raw residual 

generated by the observer scheme into a form where there is 

a one-to-one mapping between hypothesized faults and the 
observed residual vectors [13]. These techniques mainly 

apply to linear systems, though recently there have been 

some applications to non-linear dynamic systems [3]. Ex-

tending these continuous methodologies to hybrid systems 

becomes intractable because the residual transformation 

functions have to be pre-computed for all modes of opera-

tion.  Further, when faults occur, predicting the true system 

mode in itself becomes a challenging task. The fault isola-

tion problem becomes even more complex, when the fault is 

detected in a later mode of operation. The predicted mode 

sequence may no longer be the true mode sequence the sys-

tem goes through after the occurrence of the fault. Addi-
tional methods have to be introduced for detecting mode 

transitions, switching the system model when such transi-

tions occur, and correctly initializing the system state so that 

the fault observers perform correctly. Mode changes intro-

duce discrete effects and transients making it difficult to 

analyze fault transients across mode changes.  Therefore, 

extending continuous FDI schemes to hybrid systems is a 

non-trivial task.  

Our approach to fault isolation involves hypotheses genera-

tion and hypotheses refinement. We use a qualitative 

framework for hypotheses generation, and a combined 
qualitative-quantitative approach for hypothesis refinement. 

Qualitative analysis requires a symbol generation methodol-

ogy (SIGNAL_TO_SYMBOL) presented in [5]. The use of 

qualitative methods to initiate hypotheses generation and 

refinement overcomes a number of the limitations of quanti-

tative schemes, such as convergence and accuracy problems 

in dealing with complex non-linearities and lack of precision 

of parameter values in system models. We use a combina-

tion of extended versions of the backward and forward 

propagation algorithms [8] that operate on the TCGs repre-

senting the system dynamics to generate fault hypotheses 

and predict their consequences over time as fault signatures. 
When used in conjunction with the supervisory controller 

model, this can provide a computationally simpler mecha-

nism to track faulty behavior across discrete mode changes. 

The qualitative reasoning scheme is fast and effective, but it 

has limited discriminatory ability. To overcome this, we use 

parameter estimation schemes that involve the initiation of a 

fault observer for every hypothesized fault [6]. The use of a 

reduced set of individual observers mitigates computational 

convergence and complexity problems of quantitative analy-

sis methods. In addition, the quantitative estimate provides 

detailed information about the extent of degradation in 
faulty components. 

4.1.1 Hypotheses Generation 

Back propagation for initial hypotheses generation has to be 

MODULE DIAGNOSE(Minitial,Xinitial)
// Observe the system until a fault is detected
<Stack

M
,Y

estimated
> = OBSERVER(M

initial
X
initial

);
// Convert the quantitative residuals to qualitative values

QualResidualcurrent= SIGNAL_TO_SYMBOL(Y,Yestimated);
// Back propagate across modes to identify fault candidates
BackHorizon= 2;
List

candidates
=HYBRID_BACK_PROP(Stack

M
,QualResidual

current
,BackHo

rizon);
// Forward propagate across modes to isolate the fault
List

candidates
= HYBRID_FAULT_OBSERVER(List

candidates
,Y

estimated
);

END DIAGNOSE
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performed across modes the system has traversed through 

because the fault may have occurred in a previous mode but 

the manifestations are not seen until a later mode. For ex-

ample, this happens when none of the observed variables are 

affected in the mode in which the fault occurs. The problem 

is that once a fault occurs the predicted mode sequence of 

the observer may no longer be correct, and a worst-case 

analysis may require considering all possible modes in gen-

erating fault hypotheses. However, the assumption that the 

controller model is correct implies that the observer pre-

dicted the correct mode sequence till the fault occurred. 
Therefore, the mode in which the fault occurred must be in 

the predicted trajectory of the observer. Back propagation is 

applied to each of the modes in the mode trajectory pre-

dicted by the observer. This ensures that the true fault hy-

pothesis, which includes the fault and the mode in which the 

fault occurred (<mode, fault>) will be included in our initial 

hypothesis set. As a reasonable heuristic, we further limit 

our search by looking back only k modes (BackHorizon). 

This is based on the assumption that the effects of a fault 

must manifest within k mode changes.  

Algorithm 2 presents the back propagation algorithm ex-

tended to handle hybrid systems including the model of the 
controller. In the algorithm, Pop removes and returns the 

top element of a stack. GET_TCG returns the TCG of the 

system in the current mode. BACK_PROP_AC- 

ROSS_MODES specifies qualitative changes in variables 

across modes. CONTINUOUS_BACK_PROP back 

propagates the values of a discrepancy through the current 

TCG [8]. Add adds an element to a list. 

4.1.2 Hypotheses Refinement 
Hypotheses refinement first applies a qualitative forward 

propagation and then quantitative parameter estimation. In 

the qualitative step, for each hypothesized fault candidate 

we forward propagate the qualitative effects of the fault 

through the TCG. This is done in the mode that the fault 

occurred. If the qualitative predictions do not match the ob-

servations in the mode, then we have one of two possible 

situations. Either the fault candidate is invalid or a mode 

change has occurred in the system. To take into account 

both possibilities, all possible mode changes from the cur-

rent mode are hypothesized. This involves using the model 

of the controller plus additional information from the system 

to limit the number of possible mode transitions. For each of 

the hypothesized modes, forward propagation is continued 

to come up with qualitative predictions in the new mode. If 

the predictions still do not match the observations, then the 

mode candidate is dropped. For a fault hypothesis, if all 

mode candidates are dropped, then the fault candidate is 

dropped since none of the possible mode change sequences 

were sufficient to make the predictions for the fault candi-

date and the observations consistent.  

 

Algorithm 3 presents the hybrid forward propagation algo-

MODULE HYBRID_FAULT_OBSERVER(Listcandidates,Yestimated)

// Keep isolating till the fault set size falls to the desired size

While (COUNT(ListCandidates) > �desired)

// If the number of candidates is a manageable number, 

start parameter estimation

If (COUNT(Listcandidates) < �quant)

Fork

PARAMETER_ESTIMATION(Listcandidates);

End Fork

End If

// Check for consistency for each of the candidates

For All <Mi,Timei,Fi,Leveli> � Listcandidates
// Generate the TCG, predict signatures and perform 

progressive monitoring

TCGi = GET_TCG(HBG, Mi);

Signature
i
= CONTINUOUS_FOR_PROP(TCG

i
,F

i
);

QualResidual
i
= SIGNAL_TO_SYMBOL(Y(Time

i
),Y

estimated
);

Consistent= 

PROGRESSIVE_MONITORING(Signaturei,QualResiduali,Ti

meI+Timeincrement);

// If inconsistency has persisted across few mode drop 

candidate, else hypothesize mode change

If (Consistent = FALSE)

If (Level
i
>�

consistency
)

Remove(Listcandidates, <Mi,Timei,Fi,Leveli>);

Else

<ListM> = CALCULATE_NEXT_MODES(FSAcontroller,Mi,

Time
I
+Time

increment
,�

A
);

For All Mj � ListM
Add(List

candidates
,<M

j
,Time

i
+Time

increment
,F

i
,Level

i
+1>);

End For

End If

End If

End For 

// Increment time

Timeincrement= Timeincrement + Timestep
End While

Return Listcandidates;

END MODULE
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Algorithm 3:Hybrid Fault Observer

MODULE HYBRID_BACK_PROP(StackM, QualRi, BackHorizon)  

 // Generate candidates in each mode in the mode trajectory 

     <Mcurrent,Timecurrent> = Pop(StackM); 

     TCGcurrent = GET_TCG(HBG, Mcurrent); 

 // Back propagate in selected mode for candidates in the mode 

     Fcurrent = CONTINUOUS_BACK_PROP(TCGcurrent, QualRi); 

     Add(Listcandidates,<Mcurrent,Timecurrent,Fcurrent,1>); 

     Count = 0; 

 // Go back in the mode horizon upto BackHorizon number of nodes 

     While (Count < BackHorizon) 

 // Select next mode in mode trajectory and calculate TCG 

       <Mnext,Timenext> = Pop(StackM); 

            TCGnext = GET_TCG(HBG, Mnext); 

 // Propagate qualitative deviations across modes 

        QualRnext= 

         BACK_PROP_ACROSS_MODES(Mcurrent , Mnext , QualRi) 

 // Back propagate in selected mode for candidates in the mode 

        Fnext = CONTINUOUS_BACK_PROP (TCGnext, QualRnext); 

        Add(Listcandidates,<Mnext,Timenext,Fnext,1>); 

        Mcurrent = Mnext; 

     End While 

     Return(Listcandidates); 

END MODULE

Algorithm 2: Hybrid Back Propagation 
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rithm. In the algorithm, COUNT counts the number of ele-

ments in a list. �desired is the desired size of candidate set. If 

the number of candidates falls below �quant, we start the pa-

rameter estimation procedure. Fork starts another task in 
parallel. GET_TCG was described in the last section. 

CONTINUOUS_FOR_PROP generates the signatures of a 

fault in any single mode [8]. PROGRESSIVE_MONI- 

TORING checks if the signatures match the actual observa-

tions over time [8]. �consistency is the number of modes we 

continue progressive monitoring in case of a discrepancy. 

Remove removes an element from a list. CALCULA- 

TE_NEXT_MODES identifies all modes that the system 

may transition using the controller model and the possible 

autonomous events in the current mode. Discrepancies in 

progressive monitoring are justified by mode changes, and 

discrepancies in the new mode are justified by further mode 

changes. This nesting is done for fixed number of steps. 

  

The limited discriminative ability of the qualitative analysis 

[6] requires us to switch to quantitative parameter estimation 

to uniquely isolate the fault. This approach works within a 

single continuous mode. If there is a mode switch during the 

estimation process, we face two problems. (i) How we do 

know that a mode change has occurred, and if a mode 

change has occurred what is the new mode? It depends on 

the estimated parameter value. (ii) Even if we can identify 

the new mode of the system, how do we continue parameter 

estimation since the state space model for the new mode is 

different? In our work we perform parameter estimation in a 

single mode. When a mode change occurs we switch the 

mode and start the estimation afresh.  

Algorithm 4 presents the parameter estimation procedure. 

GET_STATE_EQUATIONS_WITH_FAULT returns the 

state equations in the current mode with all but the faulty 

parameter substituted with nominal parameter values [6]. 

SYSTEM_ID_ESTIMATION procedure tries to estimate 

the faulty parameter value from the state equations, U, and 

Y using system id techniques [6]. STAT_TEST is a statisti-

cal test to check if the PredictionError is statistically close to 

0. The Remove procedure removes an element from a list. 

5. Experiments 

We have studied the effectiveness of our hybrid algorithms 

by running extensive experiments on a three-tank system 

test-bed in our Modeling and Analysis of Complex Systems 

(MACS) laboratory. The controller model for the three-tank 

system (Fig. 3) is illustrated in Fig 2. Four fault scenarios 

are illustrated below. 

 

In all our experiments, system behavior is tracked with a 

sampling rate of 0.1 second. In the first experiment, our 

measurements are the height of liquid in tank 3, i.e., h3 and  

 Figure 6: Experiment 1 – fault C2- introduced in mode 

9, but detected in mode 10. h3 

and fR1 are measured. 

Mode changes in the system are shown by vertical lines. 

 

out flow from pipe 1, i.e., fR1. Fig. 6 displays the results of 

tracking the level of fluid in tank 3 using the observer algo-

rithm. We introduced a fault in the system at time 20 (mode 

9) but the fault detection unit detects the fault only at time 

21 (mode 10). At this point the mode trajectory seen so far 

(1,2,3,4,5,6,7,8,9,10) is saved and the fault isolation algo-

rithms are invoked. The hybrid back propagation algorithm 

is executed to identify the initial candidates. Hypothesis 

generation using the hybrid backprop algorithm in mode 10 

MODULE PARAMETER_ESTIMATION(ListCandidates)
LevelOfConfidence= 99;
// Start an estimator for each candidate
For All <Mi,Timei,Fi,Leveli> � Listcandidates
//  Generate the symbolic state equations

StateEquationsMi= 

GET_STATE_EQUATIONS_WITH_FAULT(HBG, Mi,Fi);

// Calculate error while estimating parameter

PredictionError= 

SYSTEM_ID_ESTIMATION(Mi,StateEquationsMi,Timei,U,Y);

// Check if Prediction error is statistically close to 0

If (STAT_TEST(PredictionError,LevelOfConfidence) = TRUE)
Remove(Listcandidates, <Mi,Timei,Fi,Leveli>);

End If

End For

END MODULE
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// Calculate error while estimating parameter
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// Check if Prediction error is statistically close to 0
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End If

End For

END MODULE

Algorithm 4: Parameter Estimation 
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generation using the backprop algorithm in mode 10 on dis-

crepancy h3+ yields the candidates <10, C3- R6+ R4+ C2- 

R2- C1- R1+ > (10 indicates the mode number). However, 

since the fault could have occurred earlier, the extended 

backprop algorithm generates faults from past modes in the 

mode trajectory. In order to reduce the complexity we re-
strict ourselves to only two previous modes (8 and 9). Per-

forming back propagation in each of these two modes yields 

more candidates <9, C3- R6+ R4+ C2- > and <8, C2- R4+>.  

 

After initial candidate generation, the next step is hypothesis 

refinement by generating fault signatures and then tracking 

individual fault candidates by progressive monitoring.  For 

this experiment, the 2
nd
 order signatures for the fault hy-

potheses are listed in Table 1. 

 

 

 

For faults C3- and R6+, the signatures imply a discontinu-

ous change for the height in tank 3. Since this is not ob-

served, these candidates are dropped. Similarly, C1- and R1- 

are dropped, since they predict a discontinuous change for 
the outflow from tank 1. The outflow measurement signa-

ture for R2- (0 - +) does not match the actual outflow. For a 

purely continuous system, this fault hypothesis would be 

eliminated at this stage. However, when tracking hybrid 

behavior this cannot be done. Instead the algorithm assumes 

a mode change could have occurred, and it generates all 

possible transitions that are feasible, given the direction of 

change of variables, the autonomous transition definitions, 

and the predictions of the supervisory controller model Pro-

gressive monitoring is continued, but in each of the new 

hypothesized modes the outflow retains the same signature 
for fault R2-. Hypothesizing more autonomous changes 

would result in the same signature and hence R2- is dropped 

when we reach the predefined level of recursion for hy-

pothesizing additional mode changes. The remaining candi-

dates <10, C2- R4+>, <9, C2- R4+> and <8, C2- R4+>, 

cannot be distinguished further by qualitative analysis, 

therefore, the quantitative parameter estimation algorithm is 

invoked. A fault observer is initiated for each of the remain-

ing candidates. Estimation and a statistical check for con-

vergence shows that that <8,C2-> is the true fault (see Fig. 

6). For all other fault candidates the parameter estimation 

diverges. 
 

 

 

Figure 7:  <8, C2-> identified as the true candidate by 

parameter estimation and statistical convergence 

 

The second experiment illustrates the importance of parame-

ter estimation. The measure variable is the height of tank 3. 

In this case, the hypothesis generation procedure generates 

the same candidate, C2- in mode 5 and mode 6. The fault is 

detected in mode 6 (11.2s). The qualitative signatures for 

the two faults are identical (similar to table 1), and Fig. 7 

illustrates the measured height in tank 3 for the two faults. 

The solid curve represents the behavior of the system under 

nominal conditions. The dotted and dashed curves repre-

sents the two faulty behaviors Parameter estimation, how-
ever, establishes <5, C2-> as the true fault. 

 

 

 

Figure 8: Experiment 2: Measurement is the height of 

liquid in tank 3 

 

The third experiment shows that the fault isolation proce-

dure works even if the observer predicts an incorrect mode 

F a u lt Ta nk  3  H e igh t Ta nk  1  O u tflo w

C1 - 00 - + -+

C2 - 0 -+ 0+ -

C 3 - -+ - 00+

R1+ 000 + -+

R2 - 00 - 0 -+

R4 - 0 -+ 00 -

R 6+ -+ - 000
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trajectory after the fault occurs. For the case in which the 

abrupt fault, C1- occurs in mode 2 (t=4s), and the outflow 

from tank 1, h1 is the only measured variable, the fault is not 

detected until mode 8 (t=20.5s), when the deviation in out 

flow from tank 3 becomes significant (see Fig. 9). Fig. 9 

also shows the height in tank 1 (not measured) to illustrate 
that the fault occurred earlier. An autonomous event corre-

sponding to flow in the upper connecting pipe occurs after 

t=4s, but the observer is unable to predict this event since 

the height is estimated assuming nominal conditions. The 

observer predicts the opening of the pipe connecting tanks 1 

and 2 as the next controlled event. Therefore, the actual 

mode sequence to the point when the failure is detected is 1, 

2, 3, 4, … 8 (see Fig. 2), whereas the predicted mode se-

quence is 1, 2, 4, …, 8, i.e., the observed mode sequence is 

different from the actual mode sequence. Since the mode in 

which the fault occurs is part of the predicted observer tra-

jectory, BACK_PROP adds the <2,C1-> fault candidate to 
the hypothesis list. Fault candidates from modes 4 through 8 

are also generated, but they are all eliminated very early in 

the hypothesis refinement process described in the first ex-

periment When the parameter estimation procedure is in-

voked, the system succeeds in isolating the true fault. 

 

Figure 9: Experiment 3 – The true fault is isolated even 

though the observer misses a mode transition  

In the fourth experiment (Fig. 10), we illustrate that even if 

the fault cause our observer to go through modes that system 

does not actually go through, the hypothesized faults in 

these modes are eventually dropped in the fault isolation 

phase. We introduce a fault (C1 +) in the system at time 4 

(mode 2). Again we measure only the outflow from tank 1. 
Fig.10 also shows the height in tank 1 to indicate that trajec-

tory is affected significantly even though the difference be-

tween actual and observed mode sequences is one mode (3).  

Figure 10: Experiment 4 -- Correct fault isolation occurs 

even though the observer predicts additional modes after 

the fault occurrence 

 

The actual system goes through the mode sequence 

(1,2,4,5,6,7,8,9,10) but the observer predicts the mode se-
quence (1,2,3,4,5,6,7,8,9,10). The sudden increase in the 

capacity of the tank 1 causes the height in tank 1 to drop and 

due to this mode 3 (corresponding to the height in tank 1 

crossing the upper connecting pipe) never occurs. Since the 

observer is not aware of the fault, it uses the nominal value 

of the height and predicts the occurrence of the autonomous 

events and hence goes through mode 3. At the time of fault 

detection, back propagation selects candidates from mode 3 

also but these candidates get eliminated either in the hybrid 

forward propagation or parameter estimation steps. 
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6. Conclusions 

In this paper, we extend previous work in FDI of hybrid 

systems [10,11], which assume the mode sequence in behav-

ior evolution is known even after faults occur in the system. 

Relaxing this assumption could create an exponential blow 

up in the number of mode transitions that need to be consid-

ered after fault occurrences (Number of trajectories that 

have to be considered is the number of modes in the system 

x the number of potential faults). In previous work (e.g., 

[15,16]) this is avoided by assuming the fault is detected in 

the mode in which it occurs, or it is known when exactly the 

effect of a fault will be observed. In either case the control-

ler model is then used to pre-compile the fault trajectories of 

the system. In this work, since we are dealing with a mostly 

continuous system, pre-enumerating fault trajectories is 

computationally intractable for the reasons mentioned 

above. To avoid the intractability problem, like [15,16] and 

other work we assume that have a correct model of the su-

pervisory controller. We do not pre-enumerate fault trajecto-

ries, but by incorporating the supervisory controller model 

into our approach, we significantly cuts down on the search 

space that we explore during the back propagation (hypothe-

sis generation) step of our FDI algorithm. This is based on 

the observation that the mode in which the fault occurred 

must lie in the trajectory hypothesized by the hybrid ob-

server. Similarly, the controller model helps cut down 

search during forward propagation to generate predicted 

behaviors.  

 

A significant component of our hybrid diagnosis system 

involved the design of the hybrid observer for tracking con-

tinuous behaviors across mode changes. An efficient scheme 

that compiles our hybrid bond graphs [7] into hybrid auto-

mata [1] was described in [12]. Future work will involve 

building observers that can perform mode identification 

based only on measurements, under nominal and faulty con-

ditions. This will permit us to identify actuator, sensor and 

plant faults. We also need to extend our work to derive more 

robust online parameter estimation techniques. The observer 

will then be integrated with our qualitative and quantitative 

diagnosis algorithms for fault detection and isolation in hy-

brid systems, and also for fault-adaptive control of complex 

systems. 
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