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Abstract—Meeting the challenges of decreasing operational 
costs and increasing operational readiness for future aircraft 
will require a systemic approach to integrated vehicle health 

management (IVHM). Realizing such an approach will 
involve synergistic deployments of component health 

monitoring technologies, as well as integrated, model-based 
reasoning capabilities for the interpretation of these 
monitors’ outputs. Further, it will involve the introduction 

of learning technologies to support the continuous 
improvement of the knowledge enabling these reasoning 
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capabilities. Finally, it will involve organizing these 
elements into an architecture that governs integration and 
interoperation-within the VHM system, between its on-
board elements and their ground-based support functions, 
and between the VHM system and external maintenance and 
operations functions. In this paper we present and discuss 
architecture for an evolvable tri-reasoner integrated VHM 
system, its particular elements and their interrelationships. 
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1. INTRODUCTION 

The purpose of the on-board health management system is 
to alert those who need knowledge of the aircrafts health. 
Similarly, the purpose of an evolvable system for 
constructing the on-board health management software is to 
monitor and manage the health of the on-board maintenance 
software, itself. One of the constant challenges for 
commercial and military aircraft is to build on-board 
maintenance software that is effective and provides reliable 
information. Experience finds us with maintenance systems, 
themselves, in need of maintenance, and this is cost 
prohibitive. It must be assumed that we are not able to 
design the maintenance systems correctly the first time. As 
technology upgrades proceed in time, these changes in the 
air-vehicles architecture further confound the ability of the 
maintenance software to keep pace. The challenge is to 
design a software development framework that 
accommodates rapid and evolvable upgrades to the 
maintenance software.  
 

ACRONYM  MEANING 
VHM Vehicle Health Management 
IVHM Integrated VHM 

IM Integrated Model 
LRU Line Replaceable Unit 
SNR Signal to Noise Ratio 
HM Health Management 

A/D/P Anomaly/Diagnostics/Prognostics 
AR Anomaly Reasoner 

AVAR Air-Vehicle Anomaly Reasoner 
DR Diagnostic Reasoner 

AVDR Air-Vehicle Diagnostic Reasoner 

MTTF Mean Time To Failure 
RIM Reasoner Integration Manager 
API Application Interface 
FM Failure Mode 

BITE Built In Test Equipment 
LED Light Emitting Diode 

  
  
  

 
RIM Output Integrity 

The tri-reasoner integrated vehicle health management 
conceptual (IVHM) framework, depicted in Figure 1, is 
composed of a reasoner integration manager (RIM) (green 
box), and three independent views of the vehicle’s health. 
These views are created through the use of three system 
reasoners (anomaly, prognostic, and diagnostic) whose 
algorithms traverse the integrated model3. Health 
management reports are output from the RIM and their 
integrity depends upon the integrity of the tri-reasoner 
algorithms, the data they process and the integrity of the 
integrated model (IM), Figure 8.  The tri-reasoner 
algorithms are generic and decoupled from any domain 
knowledge to enable the use of algorithms that have 
withstood a wide variety of applications thus increasing 
their integrity.  The domain knowledge is captured in the 
integrated model (IM). It is paramount that the process used 
to capture this knowledge in the IM has high integrity.  
 
Fundamental to portraying the effects of failures accurately 
in the integrated model is a cross validation by the design 
engineers. Typically engineers use their domains favorite 
software tool to model and design their own niche of the 
aircraft. The task of maintenance software design involves 
all aspects of the aircraft; it is the penultimate cross-
disciplinary task. Aspects of the models that these design 
engineers’ use are re-usable within the integrated model. 
How does the maintenance software engineer populate the 
integrated model from models created by the primary 
functional design engineers? To enable this, a tool 
integration framework was developed, (see Figure 2). 
[1,2,3]. With this tool integration framework in place, as the 
designers’ upgrade their models, relevant aspects of these 
models flow into the integrated model; thus helping to 
evolve the on-board maintenance software and provide an 
integrity check simultaneously 
 
Finally, there is an untapped source of information that 
occurs naturally in modern complex commercial and 
military aircraft designs. A plethora of data and signals that 
are used for primary aircraft functionality are available for 
other purposes. The anomaly detection and reasoning 
system is designed to take advantage of the availability of 
this information to listening in on the aircraft health, like a 
stethoscope; to try to find anything unusual and related to 
events observed in the prognostic and diagnostic systems. It 

                                                 
3 To be discussed below. 
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is a fundamental component of our tri-reasoner IVHM 
system. 
 
This paper discusses the forgoing topics including: 1) the 
anomaly detection and reasoning system. 2) the prognostic 
reasoning system, 3) the diagnostic reasoning system, 4) the 
integrated model, and 5) the reasoner integration manager. 
 
2. BACKGROUND 

Anomaly Detection – Incipient Failures, Intermittent 

Failures, Active Failures, Novel Events, and Prognostics 

  
Any given air-vehicle has its unique characteristics due to 
unavoidable sources of variability. These sources include 
manufacturing, both across and within manufacturers. 
Variability appears in the onboard systems (e.g. mechanical, 
electrical, and hydraulic). An aircraft’s reaction to ambient 
environmental conditions, such as altitude, depends upon its 
age and it varies across the fleet. Part replacement and repair 
modifies these unique characteristics, as well. In the 
presence of this variability, on-board health management 
systems are challenged to manage incipient and intermittent 
failures as well as active faults. Acknowledging these 
copious sources of variability, we now provide an overview 
the following system behaviors: off-nominal, incipient 
failure, intermittent failure, active failures, an anomalous 

event, and a novel event.  An overview of the challenges of 
creating prognostic algorithms and reasoners is also 
provided. 
 
We define the nominal behavior of a given air-vehicle to be 
that behavior that exists when all intended functionality is 
available and operating within the constraints of the 
intended design at a given point in time (or an averaged 
window of time). Note, the same aircraft can be considered 
functioning, as intended, at two different points in time even 
though the characteristics of individual component and 
sensor characteristics may have changed.  
 
Suppose we measure and characterize the aircraft at time 
intervals t1 and t2. Assume the aircraft is performing within 
specification and as desired from every possible perspective. 
Furthermore suppose there is a difference in the measured 
parameters even though ideally we would like them to be 
the same. Then we define the measurements at time interval 
t1 to characterize the nominal performance of the aircraft. 
And, at time interval t2 we construct a distance metric 
between the measured parameters at these two time 
intervals. We are now in a position to characterize the 
baseline behavior of the air-vehicle. This is the initial step 
towards: 1) anticipating future behavior and 2) providing a 
context for understanding current and undesirable behavior. 
The mechanism for characterizing baseline performance and 

- 
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identifying deviations from the baseline is defined as 
anomaly detection. 
 
If the observed behavior of the air-vehicle is deemed to have 
significantly departed from its baseline then we say that we 
have observed an anomalous event. An anomaly is any off-
nominal behavior including any failure described as 
incipient, intermittent, or active. A failure event is a 
subcategory of an anomalous event.  
 
An active failure is off-nominal behavior of the air-vehicle 
that also displays unintended functionality. Similarly, an 
intermittent fault is an active fault that does not persist. 
 
An incipient failure is a system or component that is still 
operational, but is observed to be transitioning towards a 
failed condition. 
 
Fault monitors within a physical piece of hardware exist to 
declare the health of the hardware to aid the maintainer. 
These monitors may be the victims of faulty signals being 
passed into them by upstream components. It is the role of 
the air-vehicle diagnostic system to construct the integrated 
perspective and isolate the fault source(s). The algorithms 
that perform these tasks are called diagnostic reasoners. 
Traditional diagnostic reasoners for air-vehicles rely on the 
health reports (discrete 1,0) emanating from the line 
replaceable units (LRU) as the primary source of 
information.  
 
A fault monitor detects a failed condition when it occurs or 
shortly thereafter. An anomaly detector responds prior to a 
fault as well as during a failed condition. The anomaly 
detector is used primarily to identify novel events not seen 
by the myriad of fault monitors already implemented. This 
will be discussed in detail, later. An anomaly detector, like a 
prognostic algorithm, responds to incipient faults; it does 
not have the task of predicting when the fault will actually 
occur. A prognostic is the ability to assess the 
current health of a part and predict into the 
future its health for a fixed time horizon or 
predict the time to failure. The ability to 
perform reliable prognostics is the key to 
condition based maintenance (CBM). 
Prognostics are critical for improving safety, 
planning missions, scheduling maintenance, 
and reducing maintenance costs and down 
time. 
 
There currently exist simple prognostics for 
component parts in the form of component 
life monitors. Life monitors are usually based 
on statistics gathered over a large population 
of components. Sometimes they do include 
physical models. However even these models 
are a measure of an average component’s 
health and are not tailored to the specific 
component being monitored. Component life 
monitors are coarse and conservative. And all 

are essentially based on measuring “time” in some fashion 
(for example “cycles”). The ideal goal is to develop 
algorithms that make decisions from current measurements 
of a component to develop a component-specific prognostic.  
 
Problem Anatomy – 100% Healthy to 100% Failed 

Figure 3 shows the different component health monitoring 
problems that need to be addressed. This figure shows the 
trajectory of a machine component’s health as a function of 
time. When the component is new, its health is considered 
100 percent. As time goes on and the component begins to 
wear out, it’s health, defined here somewhat arbitrarily, 
drops. This figure assumes the comp onent is following a 
known fault life degradation path. In the discussion 
following, an anomaly is any off nominal operating 
condition. Anomalies come in two types.  The first is a fault. 
A fault is a known off nominal condition. It is assumed that 
fault-specific algorithms have been developed to detect a 
fault. The second anomaly is a novel event. A novel event is 
an unknown off-nominal condition. That is, the novel event 
is not nominal nor is it classified in any of the known fault 
conditions. It’s something completely new. We do not know 
if the novel event is an active failure, an incipient failure, or 
an “I don’t care”. Prognostic algorithms are designed to 
respond to “known faults” with know failure modes (and 
not novel events). This is because an important part of the 
prognostics is the modeling for prediction of the component 
health trajectory shown in Figure 3. In order to develop that 
model, something about the trajectory of a component from 
nominal to a known fault condition is required.  
 
Component health monitoring determines where the 
component is on the curve shown in Figure 3. Is the part 
“nominal”? Does some “anomaly” condition exist? Or, is it 
some where between those two extremes? Note that a 
normal component health curve may encompass a variety of 
behaviors and thus this curve represents a single region or 
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single fault trajectory rather than a series of strictly defined 
points. Determining where we are on the component health 
curve is the first step in prognostics. 
 
Fault detection / diagnostic reasoning as discussed above, 
determines if a component has moved away (degraded) 
from 100% along a known path, as indicated in Figure 3, to 
a point where component performance may be 
compromised. Novelty detection determines if the 
component has moved away from what is considered 
acceptable nominal operations and away from all known 
fault health (diagnostics as defined above) propagation 
paths. 
 
Prognosis is the assessment of the component’s current 
health and a prediction of the component’s future health. 
There are two variations of the prediction problem. The first 
prediction type may have just a short horizon time—is the 
component good to fly the next mission? The second type is 
to predict how much time we have before a particular fault 
will occur and, by extension, how much time we have 
before we should replace it. Or it may be longer term—tell 
me when to schedule removal of an engine for overhaul. As 
mentioned above, accurate prognosis is a requirement for 
implementing CBM. 
 
Prognostic Reasoner Challenges 

The creation of a prognostic algorithm is a challenging 
problem. There are several areas that need to be addressed 
in order to develop a prognostic that achieves a given level 
of statistical performance.  
 
What Curve are we on? & Where are we on the Curve? 

The first step in prognosis is determining “where” on the 
overall health curve the component resides. Along with 
“where” is “what” fault curve we are on. This is similar to 
the “fault detection” problem as already discussed above. 
However the equivalent signal-to-noise ratio (SNR) of the 

signatures that we are looking for to determine component 
health will be much lower then for the fully developed fault. 
 
This will have two effects.  First, because the health 
component signatures SNR are low, we are always 
operating in the “gray” area between nominal and a fully 
developed fault. Because we are in the gray area, even 
knowing what fault trajectory we are operating on is a 
challenge. Likely several different fault hypotheses will 
need to be carried along by the system until a clear-cut 
condition becomes apparent. Likely a large number of the 
hypotheses are false so that ultimately no maintenance 
operation will be required. 
 
Second when we are on the “flat” part of the overall health 
curve of the component as shown in Figure 4, it is hard to 
resolve in time where we are on the curve. Again the 
problem can be attributed because we are operating in the 
gray region between nominal and a fully developed fault. 
Suppose that the best we can do in resolving the “health” of 
a component is to determine that it is in a range of 60-80% 
of perfect. The component is still quite acceptable. However 
as indicated in by the green band in Figure 4, we cannot 
resolve where we are on the curve. Predictions for short 
time horizons will be reliable (i.e. in determining “good-to-
go” for the next mission decisions), but determining 
remaining life is not possible. The conservative approach 
would be to assume the worse; that we are at the end of the 
green part of the curve. Or, we can couple the prognostic 
with life usage models. The life usage model (assuming one 
exists) will form the basic estimate of the component health 
and the prognostic is just used to perturb that basic result. 
 
PROGNOSTICS 

Once we determine what the current health of the 
component is, we need to predict what the health of the 
component will be sometime in the future. As discussed this 
prediction can be for a short time horizon or an estimate of 

the time till the part needs to be replaced or a 
failure will occur. There are a variety of issues that 
need be considered. The models that we develop 
can be of several different forms [Reference: 
Roemer, et al 2000].  
 
The model will need to accurately predict into the 
future. Those predictions will be required to be 
unbiased and to have a small variance in order to 
be useful.  Figure 5 illustrates these problems. In 
this figure the red line is the prediction of the 
health of the component from the current state. It 
does not follow the actual trajectory very well so 
that it is not that it is a biased estimate of the actual 
trajectory. However, the model does accurately 
predict the health / time to replace the component. 
Is this sufficient? 
 
The green lines represent the error bars for the 
prediction. The true value of component health 
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curve should fall inside of these error bars as is does. Thus 
the model is sufficient since it always includes “truth”. How 
useful is it? 
The spreading of the error bars defines the time horizon and 
resolution that can be achieved with this  model for 
performing prognostics. If the error bars spread rapidly then 
only the predictions are reliable for only a short time 
horizon. If they are narrow and follow the true trajectory 
accurately, then the information from the predictions is 
useful for longer time horizons. 
 
PROGNOSTIC APPROACHES 

There are many different approaches for the development of 
prognostic algorithms to support the development of 
prognostic reasoners.  For practical purposes, these 
approaches can be generalized into three basic forms.  The 
first are physical models.  These are models that have been 
developed by experts in the component field and validated 
on large sets of data to show that they are indeed accurate. 
The second are systems that embody rules of thumb that 
have been developed and refined by human engineering and 
maintenance experts. Examples of these systems are rule-
based expert systems and fuzzy logic systems.  The third are 
statistical models that ‘learn’ from examination of real data 
that contain nominal and known fault conditions. Examples 
of these are neural net and data mining systems. 
 
Physical models and rule-based systems contain information 
for anticipated fault events that have yet to occur on the 
component that is being monitoring.  On the other hand 
‘learning’ systems are good because they can process a wide 
variety of data types and potentially have performance 
superior to rule-based system because they exploit the 
nuances in the data that are not covered by general rules. 
This is particularly true for new sources of data for which 
expert analysis, physical models, and rules have not been 
developed. Physical models and rule-based systems are only 
as good as the design engineer can anticipate the variety and 
nature of faults. Learning systems are only as good as the 
data from which they have been trained. Obviously with the 

fusion of these systems the best of all worlds can 
be achieved. [4] [5] [6] 
 
3.THE TRI-REASONER IVHM SYSTEM 

Next generation Health Management (HM) system 
architectures must allow for the integration of 
anomaly, diagnostic, and prognostic (A/D/P) 
technologies and associated reasoners from the 
component level all the way up through the aerospace 
vehicle level. In general, A/D/P technologies are only 
observers. They observe when a feature is  off nominal 
or damage is accumulating at an accelerating rate. In 
contrast, reasoners make intelligent decisions about 
the A/D/P results such as the root cause. Figures 1 and 
6 provide a generic illustration of how A/D/P 
reasoners at each level of a vehicle hierarchy are 
integrated together. This integration across 
components, subsystems and systems is vital to 

isolating the root-cause of failures and propagating 
up/downstream effects of the faults. While the newest 
prognostic technologies can sometimes exist without anomaly 
detection or diagnostics, these are generally essential precursory 
steps to having a robust prognostic capability in an integrated 
system. Integration of the individual subsystem health 
monitoring results can be accomplished with a Reasoner 
Integration Manager (RIM) that can assess the intra-system 
A/D/P results to prioritize the most probable fault and 
recommended maintenance action.  A RIM function represents 
the on-board or ground-based processing module where final 
decisions about air vehicle health are made. Of course, prudent 
choices of what processing is performed on-board versus what 
is transmitted to the ground for post processing must be made a-
priori. 
 
The entire aerospace vehicle architecture would actually 
include several layers of the integrated block diagram 
shown in Figure 6. For example, each system of the 
aerospace vehicle (i.e. propulsion, structures, subsystems, 
etc.) would include its individual subsystems as columns in 
the matrix architecture, which report up to an Integration 
Manager at that level. This same architecture can apply for 
critical subsystem components and many components can 
exist within a subsystem.  

 
Figure 6 - The Tri-Reasoner IVHM System 
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The functionality and information flow of the HM system 
architecture can be further represented in Figure 7.  When 
associated with a specific subsystem hierarchy, the 
information flow begins with the data acquired from the 
sensor array, which is then validated, potentially fused with 
other data and key features are extracted from it. The 
anomaly detection algorithms typically work from the raw 
data and the associated Anomaly Reasoner (AR) assesses 
this conditioned information within the integrated model. 
The concept of the integrated model will be discussed in the 
next section. The AR’s task is to evaluate the raw data and 
extracted features for correlation and measures of evidence 
for fault conditions. The correlation and “ripple” effect of 
anomalies across subsystems is then examined within the 
Air Vehicle Anomaly Reasoner (AVAR). The AVAR’s goal 
is to correlate anomalies that occur across subsystems and to 
separate the “upstream” causes from “downstream” effects. 

 
Figure 7 - Overview of Area Manager Information Flow 
 
The root cause of an anomaly can be examined further by 
utilizing the individual diagnostic algorithms and their 
associated Diagnostics Reasoner (DR).  In contrast to the 
AR, which relies primarily on generic signal processing and 
statistical techniques, the DR typically will rely on a-priori 
engineering knowledge and models of a component or 
subsystem (i.e. model-based diagnostics). Like the AVAR, 
the AVDR correlates the diagnostic Built In Test (BIT) 
information and dedicated algorithm results across 
subsystems.  
 
The individual prognostic algorithms and associated 
Prognostic Reasoner’s (PR) are focused on predicting the 
time to mechanical failure or conditional failure of a 
component or components within a subsystem given 
available HM information [7]. These predictions are given 
as distributions about a Mean Time To Failure (MTTF), 
thus resulting in different acceptable risk limits based on the 
consequences of the particular failure mode. Various levels 
of prognostic capability exist and this paper primarily 
discusses and demonstrates model-based prognostic 
approaches. A PR relies inherently on the individual 
prognostic algorithm results and an integrated model that is 
discussed in the next section.  Finally, the Reasoner 
Integration Manager’s (RIM) function will keep track of and 
evaluate the progression of anomalies, diagnoses and 
prognoses across all subsystems. The RIM will also make 

the final call on what system users (i.e. pilot, maintainers, 
engineers) see, do and have access to. 
 

4. THE EVOLVABLE ASPECT OF THE IVHM 

SYSTEM 

As the cornerstone of the IVHM architecture, the Integrated 
Model's accuracy and currency are critical attributes if the 
conclusions of on-board reasoners are to be relied upon by 
decision makers.  And yet it is impossible to have complete 
knowledge of all possible failures and their expressions 
from the beginning of an aircraft's service life. This is 
especially true since some the aircraft's normal and 
abnormal behavior will only be exhibited once it is 
integrated and in use.  It is this recognition that has led to 
the incorporation of embedded learning components within 
the IVHM architecture.  It is likewise impossible that the 
techniques and technologies used for observing the aircraft's 
behavior, and for reasoning about these observations, will 
remain static during an aircraft's operational life.  Learning 
and innovation will inevitably lead to changes in the extent 
of information and knowledge contained in the IM, the 
underlying representations, and the algorithms that use 
them.  Since we except that the IM will be matured 
throughout the aircraft's service life, more rapidly at first 
and then more gradually, we have considered the nature of 
appropriate types of technological support for maturation 
tasks.  In this section we present and briefly discuss some of 
these technologies. 
 
Many design and analysis tools are employed in the 
engineering of a modern aircraft, even within the specific 
focus area of maintenance and reliability.  Information and 
knowledge contained within these tools have potential roles 
to play in the creation and evolution of the IM.  Maximizing 
the usefulness of these resources has led to the creation of a 
tool integration infrastructure that permits the periodic 
incorporation of information contained in individual tools 
into the IM, as well as the interchange of information 
between tools.  The specific capabilities of this 
infrastructure are thoroughly described in [1][2][3].  Here 
we will only mention that this technology addresses an 
important issue that other integration capabilities offer defer 
to their users--semantic integration.  Understanding how 
information contained in multiple tools corresponds requires 
either pair-wise associations or else some unified context 
that provides this interrelation across the range of tools to be 
integrated.  The tool integration infrastructure employed to 
support the IVHM architecture uses a integrated schema, 
semantic translators, and tool adapters to move information 
from tool into this unified representation, and from this 
unified representation into other tools. 
 
The modeling environment [7] used to support the IM is one 
such tool.  It has many attributes and capabilities that are 
necessary to support the evolution of the IM.  The first is 
that the representation underlying the IM is described to the 
modeling environment by means of meta-modeling.  The 
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environment itself is merely an infrastructure that knows 
nothing about the particular models being created.  This is 
important because one aspect of the evolution of the IM is 
that the representation itself will need to evolve in response 
to improvements in monitoring and reasoning technology, 
for example.  Making the meta-model explicit and keeping 
it separated from the modeling environment facilitates its 
evolution without the need to change the supporting 
infrastructure. [8]   
 
The modeling environment for the IM supports a paradigm 
known as model-integrated computing. [9] In this paradigm, 
the integration between embedded information processing 
components, such as health monitoring and reasoning 
components of the IVHM architecture, are integrated with 
their physical environment by means of models.  The 
integration is performed by extensions to the modeling 
environment, called model interpreters that use the models 
as instructions to perform the integration and to package 
information to be used by embedded components.  In the 
IVHM architecture, model interpreters take the design-time 
representation of the IM and produce the embedded 
representation, as well as synthesizing the code required to 
support the application-programming interface (API). 
 
An important issue in creating and evolving the IM is 
validating the represented knowledge prior to its use on-
board the aircraft.  The aim of this validation is to ensure 
that the response of embedded monitoring and reasoning 
software is predictable with respect to anticipated stimuli.  
While the ultimate validation of the models may rely on 
more tradition methods, such as regression testing, we 
thought that it was essential to provide an interactive form 

of support for validating 
modeling decisions that was 
tightly integrated with the 
modeling task.  We have used 
the model interpretation 
interface of the modeling 
environment to create 
interactive tools that "wrap" 
the embedded reasoner 
implementations.  This enables 
the embedded reasoning 
algorithms to be invoked 
directly from the modeling 
environment to provide 
immediate feedback for 
modeling decisions.  The 
observations serving as input 
to these tools can be recorded, 
simulated or live.  They can be 
replayed as modelers make 
revisions to the models until 
there is confidence that 
changes create desired 
responses by the embedded 
reasoning software.  These 
tools have been produced in 
correspondence to the kinds of 

reasoners incorporated into the IVHM architecture.  They 
can be used individually or interconnected, as it would be in 
their embedded environment.  Our early experience has 
shown these tools to provide invaluable assistance to the 
modeling task. 
 
5. THE INTEGRATED MODEL 

 
The Integrated Model (IM) is an information/knowledge 
resource that supports all on-board reasoning activities as 
well as ground-based support functions in the IVHM 
architecture. It is a graphical associative object 
representation where nodes represent such things as failure 
modes, off-nominal conditions (called discrepancies), and 
the observations made by anomaly, prognostic, and 
diagnostic monitoring algorithms. Edges represent 
associations among the nodes, such as failure propagation or 
incipience. These nodes and edges have attributes that 
express a priori knowledge, for example the statistical 
incidence of a failure mode and the likelihood and 
temporality of failure propagation, or dynamic conditions, 
such as the status of a health monitor or a discrete diagnostic 
monitor.  Other nodes and edges in the IM can express 
additional knowledge such as mutual exclusion of failure 
modes and maintenance procedure references. Model 
elements can be conditionalized to account for such issues 
as flight phase or operating modes. 
 
The organization of the Integrated Model parallels that of 
the physical aircraft, with the hierarchy extending down (at 
least) to the line-replicable unit (LRU) level. 

Figure 8 – This Integrated Model Supplies Information for the Tri-Reasoners. 



 

 9

Interconnections between models, within the hierarchy and 
among models at a particular level, are expressed in terms of 
signal paths or physical flows (used to model physics -based 
interactions, such as a thermal transfer). Failure effects are 
carried along these interconnections. In effect, the IM is a 
structural representation, upon which vehicle health 
information is layered. 
 
The embedded representation of the IM is a subset of the 
complete IM, containing only that information necessary for 
embedded reasoners to perform their tasks. Such reasoners 
access the IM through an application-programming interface 
(API) that enables the mo del to be traversed in various ways 
and provide access to the attributes of nodes and edges 
along traversal paths. The embedded IM may be distributed 
among on-board computational resources, with the 
provision that higher-level reasoners in the IVHM 
architecture can access enough information to perform their 
tasks. Since the reasons and means for distribution will vary 
between implementations, a more complete discussion of 
distributed access to the IM is beyond the scope of this 
paper. 
 
The decision to incorporate an integrated model into the tri-
reasoner IVHM system has significant implications for the 
design of embedded reasoners, and it reflects a particular 
design philosophy for the IVHM System as a whole. 
Embedded reasoners are presumed not to incorporate into 
themselves any particular knowledge of the subjects of their 
reasoning; that is, reasoners are intended to be entirely 
generic, using only observations and the contents of the IM 
as the basis for their conclusions. It is possible that certain 
detection or monitoring algorithms can also be made 
generic, and the IM can be used to contain the criteria used 
by such algorithms in making observations. The advantage 
gained from this approach us clear and vital. If information 
and knowledge are embedded in the monitoring and 
reasoning algorithms themselves, then maintenance and 
evolution become issues dramatically affecting scalability. 
Keeping track of what information or knowledge is where 
and how it relates to other knowledge presents and 
information management problem that, when scaled to up to 
the needs of modern aircraft, will stress even the most 
sophisticated information management technology. 
 
This design strategy of model-based reasoning and 
monitoring algorithms represents a significant difference 
from the component health management technologies of the 
past. Realizing it will require a re-examination of techniques 
and technologies with an eye for issues beyond mere 
efficacy in a localized context. The IM is intended to 
represent primarily qualitative and discrete relationships, 
principally concerning mapping observations about the 
system to active or incipient failures. However, the 
attributes provided by nodes and edges in the IM enable the 
possibility for quantitative information, and it is through 
these attributes that the continuous behavior of the system 
and its components can be characterized. It must be 
recognized, however, that the possibility for generic 

monitoring and reasoning depends upon the ability to react 
to quantitative information in a uniform way, or in a way 
that is itself expressed in the model. Accordingly, the nature 
of the IM and that of generic monitoring and reasoning 
algorithms must co-evolve.  
 
6. THE REASONER INTEGRATION MANAGER 

The integration of the anomaly, diagnostic and prognostic 
area manager reasoner reports is performed with the 
Reasoner Integration Manager (RIM). The RIM provides a 

methodical algorithmic process that keeps track of and 
evaluates the progression of anomalies, diagnoses and 
prognoses that have occurred across the air vehicle.  
Through direct algorithm interaction with the Integrated 
Model and corroborating/conflicting evidence associated 
with the individual reasoner reports, the RIM prioritizes the 
most probable fault or failure modes at the air vehicle level.  
The RIM isolates the most probable failure modes. The RIM 
creates reports for the operators, maintenance personnel and 
engineering support staff.  
 
The most significant aspect of the RIM, as is the case for the 
Anomaly, Diagnostic and Prognostic Reasoners, is the 
strong relationship it has with the Integrated Model. The 
connection between the RIM and the Integrated Model 
stems from how the dedicated A/D/P algorithms developed 
for detecting and mitigating particular failure modes are 
linked into the model.  This integration can best be 
described utilizing a portion of an APGS Integrated Model 
shown in Figure 8. In this figure, the “yellow” Diagnostic 
Monitors represent the outputs from either dedicated 
diagnostic algorithms or a result from a diagnostic BIT. 
These diagnostic monitors are linked to particular failure 
modes in this Integrated Model based on their ability to 
either diagnose the failure mode once it has occurred or 
symptoms prior to it happening.  
 
The “green” Prognostic Monitors repres ent the outputs from 
dedicated prognostic algorithms specifically focused on the 

Figure 9 - Generic Representations of Failure Modes, 
Sensors and HM Technologies 
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prediction of a system failure mode. As in the case of the 
Diagnostic Monitors, the Prognostic Monitors are linked to 
specific failure modes based on their ability to predict it 
prior to happening.  If a diagnostic or prognostic monitor is 
triggered during system operation, the associated diagnostic 
and prognostic reasoners will assess the relevant 
information within the Integrated Model, which is then used 
by the RIM to correlate all of the A/D/P reasoner 
information coming from the system.  
 
A more generic example of how the RIM reasoner interacts 
with the Integrated Model is given in Figure 9.  In this 
generic Integrated Model representation, the S’s represent 
sensors, A’s anomaly detectors, D’s diagnostic BIT’s or 
algorithms, P’s prognostic algorithms, FM1-FM4 failure 
modes, and E’s effects of the failure modes.  In this figure, 
an anomaly detection algorithm (A) monitors four different 
sensors (S). If the anomaly algorithm detects an off nominal 
condition on one of the sensors, because of the Integrated 
Model connectivity, only Failure Modes FM1 and FM3 are 
“flagged” as potential failure modes within the Anomaly 
Reasoner. Failure mode FM2 is not considered a possibility 
because there is no connectivity within the Integrated 
Model. Next, if a diagnostic algorithm or BIT were 
triggered within the health management system that has 
connections to both FM2 and FM3, the diagnostic reasoner 
would rank both of these failure modes with equal 
confidence (with no other information available).  
 
If in addition to these anomaly and diagnostic monitors, a 
Prognostic Monitor (P) on FM3 revealed a prediction on its 
mean-time-to-failure (MTTF) that was much shorter than 
expected, this would allow the prognostic reasoner to 
highlight FM3 as a concern. The anomaly, diagnostic and 
prognostic reasoners by themselves would not be capable of 
seeing the obvious result that failure mode FM3 is called out 
in each individual reasoners and is therefore ranked highest 
by the RIM. In the end, the RIM is able to utilize the 
knowledge from each of these reasoners to make the most 
informed decision on the systems health.  This approach 
will undoubtedly result in more confident fault isolation and 
less false alarms.  
 
Finally, let’s imagine that Figure 9 represents the portion of 
an Integrated Model that includes the failure modes 
associated with a rolling element ball bearing. A physics-
based prognostic model of the bearing (P) could be used to 
calculate the current probability of a failure for a particular 
failure mode (FM3), and in addition project the future 
probability of failure based on speed and temperature 
measurements. However, in this example, let’s also imagine 
that a diagnostic algorithm (D) uses data from a vibration 
transducer (S) to determine that an unbalance or 
misalignment condition exists. In addition, this diagnostic 
monitor also analyzes the vibration features (spike energy or 
kurtosis) to detect when significant spalling (FM3) of the 
outer race has occurred.  
 

For the majority of the bearing’s life, the diagnostic 
algorithms do not produce any diagnostic reports and the 
physics-based prognostic model goes about evaluating 
remaining useful life based on its usage pattern. However, 
as the system ages, the diagnostic algorithms begin to detect 
higher than normal unbalance. With this information, the 
prognostic model determines that life is being accumulated 
at a faster than expected rate. The RIM would then be 
capable of putting together these pieces of evidence to alert 
the maintainers to examine the bearing at an appropriate 
time.  
 
7. The Integrated Model & Diagnostic Reasoning 
 
The generic diagnostic reasoning algorithm we are initially 
using is based on the discrete, model-based approach using 
timed failure propagation graphs (TFPG) described in [10].  
This algorithm uses a subset of information contained in the 
Integrated Model to perform failure isolation by traversing 
failure propagation paths to associate reported observations 
of off-nominal conditions (discrepancies) with potential 
failure causes.  The algorithm uses deductive reasoning, 
based on observation timing, propagation livelihoods, and 
other evidence to identify a set of candidate hypothesis.  
Heuristic reasoning is then used to identify and rank the 
simplest explanations for the reported observations.  While 
this reasoning approach is proven technology, there may be 
cases where the nature of phenomena, or the available 
means of attaining the requisite knowledge, within a 
particular area might suggest alternative approaches. [11] 
The IM is capable of adaptation to support alternative 
diagnostic knowledge representations, as well as of forming 
associations among differing representations. 
 
8. The Integrated Model & Prognostic Reasoning 

 
Specific prognostic algorithms are focused on predicting the 
time to mechanical or conditional failure of a component or 
system of components given available health monitoring 
information. These predictions are typically given as 
distributions about a mean-time-to-failure (MTTF), thus 
resulting in different acceptable risk limits based on the 
consequences of the particular failure mode. The job of the 
prognostic reasoner is to examine the attributes of all 
prognostic monitors developed across the air vehicle and to 
prioritize the most probable failure modes to be concerned 
with. To perform this task, the prognostic reasoner relies 
inherently on the individual prognostic algorithm results and 
the Integrated Model previously discussed.   
 
There is a direct relationship between the results generated 
by the individual prognostic algorithms and the associated 
attributes of the integrated model (IM).  As previously 
discussed, when the anomaly and diagnostic algorithms 
detect either anomalous or known fault conditions, their 
results are examined within the integrated model for 
relationship to specific failure modes as a part of the 
reasoning process.  In the case of the prognostic reasoner, 
the individual prognostic algorithms routinely examine the 
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difference between the expected MTTF (expected for 
“normal” operating behavior) and the actual MTTF (as 
calculated by the prognostic algorithm).   Once a 
predetermined difference between these MTTF’s is reached 
(based on engineering analysis), the prognostic reasoner 
“looks” within the Integrated Model to assess how a future 
failure will effect the overall system operation, as well as 
determine what it currently means within the RIM.    
 
The prognostic reasoner allows the VHM architecture to 
continually assess the potential effects of impending failures 
for critical components as well potential degradation 
associated with system inefficiencies.  Knowing this future 
risk, the resulting effects and their relationship within the 
entire air vehicle HM architecture allows the RIM to make 
informed decisions about future maintenance in a timely 
manner.  
 
 

9. The Anomaly System – The Key to Maturing 
the Diagnostic and Prognostic Systems 
 
The anomaly detector is designed to capture, in a buffer, 
those signals that have been indicted as having deviated 
from their typical envelope.  The anomaly reasoner takes the 
output from the anomaly detector and correlates this 
information to the integrated model to trace root cause and 
functional effects.  The reasoner integration manager takes 
its inputs from the tri-reasoners and answer questions such 
as:  Did the diagnostics system react in a similar fashion to 
the anomaly and prognostic systems.  Whenever the systems 
agree, there is strong confirmation for the event.  If, for 
example, there is a false alarm in the diagnostic system the 
anomaly reasoning system would not see anything to 
corroborate what is being reported to the RIM by the 
diagnostic reasoning system.  This additional information 
coming from the anomaly system makes these false alarms 
visible to the maintainer.  In similar manner, suppose the 
anomaly system reacts when the diagnostic reasoning 
system does not.  What does this mean?  Is there an 
impending failure that the diagnostic system will see in due 
time?  Is this an event that only the anomaly reasoning 
system is equipped to see?  If so, is it meaningful to the 
maintainer?  Should a fault monitor be added to the 
diagnostic system to cover this case?  Is there a trend that 
the prognostic system is not seeing?  Should the prognostics 
system take this into account? Is the control surface motion 
fundamentally changing?  Are the mechanical linkages 
degrading?  Is it a safety threat to the mission, the pilot, 
crew, and passengers?  These questions can be answered in 
a systematic way, given the evolvable tri-reasoner IVHM 
system. 
 
The assumptions underlying the tri-reasoner architecture 
are: 1) the three reasoners have independent outputs, 2) the 
three reasoners have independent algorithms both at the 
detection and reasoning levels pursing entirely different 
goals, 3) the anomaly detection system is highly accurate 
and robust against false alarms.  This last assumption is 

crucial and a difficult one to meet.  We accomplished this 
through a fusion of outputs from several anomaly detection 
algorithms.  Each algorithm extracts a different feature from 
the signals it processes.  Their fusion produced a robust 
detection algorithm, as is discussed below. 
 
Fusion technology can combine the results from different 
processing approaches (such as time-correlation statistics, 
neural networks, hidden Markov models, and physical 
models) resulting in superior results. Fusion of multiple 
approaches has been demonstrated to significantly reduce 
false alarms while at the same time substantially improving 
detection and classification performance [13,14,15]. Each 
group’s AD focuses on different aspects of real data signals 
when performing detection.  
 
Sometimes the detectors are ‘complimentary’ and support 
each other’s detections. In this case, fusion improves 
confidence of the detections and thus not only improves 
detection performance while reducing false alarms.  
However, sometimes a particular detector focuses on an 
aspect of the signals not considered by the other detectors. 
In this case it provides the only anomaly detection. This 
expands the class of signals that the fused AD is able to 
process. Fusion has the potential of approaching the goal of 
perfect detection with zero false alarms. 
 
Table 1 shows a summary of the expected response for the 
different detectors being developed for advanced military 
aircraft. The types of anomalies that can be expected are 
listed on the left. The columns indicate the expected 
response for each of the detectors; an ‘X’ indicating that the 
detector is expected to work well. A ‘?’ indicates the 
response is not clearly known and depends on the nuances 
of the data. A goal is to have at least one ‘X’ in each row. 
This ensures that no class of anomaly will be missed. 
However two or more X’s ensure increased probability of 
detection while significantly reducing false alarms. 
 

Table 1. Summary of expected AD detector response 
Failure Type NNAD BEAM HMM 

Linear transform (gain) X ? X 

Transient ? X X 

New ‘mode’ X X X 

Feedback ? X ? 

Sensor failure (in range) X X ? 

Sensor failure (noise) ? X ? 

Uncorrelated signals  X ? ? 

Other ? ? ? 

 
 
10. Appendix:  Historical Perspective of 
Diagnostic Systems for Jet Transports 
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Jet transports may be in service for over 30 years. There are 
air-vehicles still flying with health management 
architectures many technical generations old. The early 
generation aircraft relied on manual detection and isolation 
of problems on the ground. These systems were analog and 
independent of one another. A schematic and a voltmeter 
were all that was required to troubleshoot.  
 
As these systems became more complicated built in test 
equipment evolved to warn the pilots of safety critical 
situations. The maintainer did not use this built in test 
(BITE). The maintainer still relied on the voltmeter, 
schematics, and pilot reports. 
 
In time, aircraft design engineers realized that the output of 
the fault detection monitors could be made available to 
support mechanic troubleshooting (analog BITE). With 
these, the concept of “fault balls” was born, and was 
incorporated on some systems as early as the 1940s. Fault 
balls are indications, normally on the front of an line 
replaceable unit, that a fault has been detected - they were 
originally mechanical, but later were replaced with small 
light emitting diodes (LED’s). In many cases, the line 
replaceable unit (LRU) front panel contained a test switch to 
command the LRU to test itself, in a manner similar to how 
ground support equipment could test the LRU. This 
capability became known as built-in test equipment (BITE). 
This capability began to decrease the need for some of the 
ground support equipment previously used to test airplane 
equipment. Depending on the system, the fault balls could 
effectively point the mechanic in the right direction, but 
schematics and voltmeters were needed for most conditions. 
However, the BITE of this era was often confusing, not 
reliable, and difficult to use. Mechanics often distrusted it. 
Many systems on airplanes such as the Boeing 707, 727, 
early 737/747, McDonnell Douglas DC-8, DC-9, and DC-
10’s employed this type of maintenance design. 
 
In the 1970s, some of the increasingly complex systems 
began to use computers to perform their calculations. This 
was called digital BITE. With these computers came the 
ability to display fault detection and isolation information in 
digital form, normally via numeric codes, on the front panel 
of the LRU. The digital logic could produce codes that 
could better isolate the cause of the fault. The digital display 
offered the capability to display many different codes to 
identify each type of fault that was detected. These codes 
often pointed to some description in a manual that could be 
used to isolate and correct the fault. Many systems on the 
Boeing 757/767, Airbus A300/310, McDonnell Douglas 
DC-10, and Lockheed L-1011 employ this approach. 
As the number of systems grew, use of separate front panel 
displays to maintain the systems became less effective, 
particularly since each LRU often used a different technique 
to display its fault data. In addition, some of the systems had 
become increasingly integrated with each other. Digital data 
buses, such as ARINC 429, began to be used during this 
time period. Autopilot systems, as they were among the first 
to use these digital data buses and depend on sensor data 

provided by many other systems, have been a driving force 
in definition of more sophisticated maintenance systems. 
The more sophisticated monitoring was necessary to meet 
the integrity and certification requirements of its automatic 
landing function. For example, the 767 Maintenance Control 
and Display Panel brought together the maintenance 
functions of many related systems. As the next step, ARINC 
604 defined, in 1986, a Central Fault Display System that 
brings to one display the maintenance indications for 
potentially all of the systems on the airplane. This approach 
enabled more consistent access to maintenance data across 
systems, a larger display than each of the systems could 
contain individually, and saved the cost of implementing 
front panel displays on many of the associated system 
LRUs. In this approach, the CFDS is used to select the 
system for which maintenance data is desired, and then it 
routes the maintenance text from that system to the display. 
This approach was some of the systems on later Boeing 
737s, and most systems on the Airbus A320/330/340, and 
McDonnell Douglas MD11. 
 
Systems continued to become more complex and integrated. 
A single fault on the airplane could cause fault indications 
for many systems, even when displayed using the CFDS. 
The mechanic had little help in determining which 
indication identified the source fault, and which were 
merely effects. To solve this and related issues the ARINC 
624 was developed in the early 1990’s. It defines a more 
integrated maintenance system that can consolidate the fault 
indications from multiple systems, and provide additional 
functionality to support maintenance. Minimal ground 
support equipment is needed to test airplane systems, as 
most of this capability is included in the maintenance 
system. For example, most factory functional tests of 
airplane systems on the Boeing 747-400 and 777 airplanes 
consist of little more than execution of selected tests, 
monitoring fault displays, and monitoring certain bus data 
using the integrated maintenance system. 
 
The goal in fault isolation on the airplane has always been to 
identify the single LRU that is the source of the fault. This 
allows the mechanic to confidently remove the failed 
component and correct the fault condition. Although in 
many cases this is possible; there are many others where it is 
not possible without the addition of sensors or wiring. 
Addition of these sensors increases the number of 
components that can fail, and thus sometimes can worsen 
the maintenance effort. In addition, they add cost and weight 
to the airplane. There are clearly cases where the addition of 
such hardware can be beneficial, but the benefits of 
improved fault isolation must be weighed against the 
potential reduced reliability, and increased cost and weight 
of the additional components. 
 
As a result, fault isolation on the airplane cannot practically 
produce the perfect answer (the single faulty LRU) in all 
cases. It can point the mechanic to a small group of LRUs in 
almost all cases. If it is reliable in doing this, it is a very 
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necessary and effective tool to aid in mechanic correction of 
airplane problems.. 
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