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Abstract

TRANSCEND, a system for monitoring and diagnosis of
abrupt faults in complex dynamic systems, relies on system
models to predict dynamic behavior in response to abrupt
faults. The use of qualitative predictions of this transient be-
havior mitigates complexity issues and convergence problems
that exist in numerical diagnosis approaches. In this frame-
work, it is important to model the system under diagnostic
scrutiny at a level of detail that relates to the bandwidth of the
measurement data. Too much detail results in a model that
captures very fast dynamics as continuous transients, whereas
they appear as discontinuous changes in the measured signals.
In many cases, abstracting away these small parameter values
may result in algebraic dependencies between variables, i.e.,
variables affect one another instantaneously without integrat-
ing effects. Because of the compensating effects inherent in
physical system behavior, a straightforward deviation propa-
gation results in predictions that are unknown in a qualitative
sense. A method is proposed that recognizes such dependen-
cies and propagates compensating effects without introducing
unnecessary conflicts by tracking the origins of compensating
influences in feedback loops.

Introduction
The application of functional redundancy techniques is the
key to recent advances in model based fault detection and
isolation (FDI). This FDI paradigm uses a functional model
of the system to relate measurements and detect any discrep-
ancies based on the model information. When such discrep-
ancies occur, model parameters that are part of the function-
al relations are implicated as possibly deviating from their
normal value. Continued monitoring of the system then pro-
vides additional measurement information that can be used
to find the true deviating parameter, or parameter set, and
relate this back to a physical component that embodies these
parameters.

Traditional FDI schemes, employ a quantitative approach,
which requires a sufficiently detailed model with precise
knowledge of system parameters to achieve good results (Is-
ermann 1989; Clark, Frank, & Patton 1989). In many situa-
tions this may be hard to achieve because the detailed model
may be of high order with complex nonlinearities. Further,
inaccuracies in the sensor data may make the analysis dif-
ficult. Qualitative approaches seek to overcome these prob-
lems by abstracting model relations and expressing them as

increasing and decreasing effects. A qualitative FDI scheme
can be designed to mitigate the problems of quantitative ap-
proaches for complex systems by quantizing measurements
as: (i) magnitude values below nominal (−), at nominal (0),
and above nominal (+), and (ii) rate of change as increas-
ing (↑) and decreasing(↓). A qualitative parameter estima-
tion framework can be designed to exploit the functional re-
lations between parameters and system variables, to arrive
at qualitative parameter value deviations, i.e., the parameter
value is determined to be above (+) or below (−) normal.

To illustrate, consider the functional relation for flow,f ,
through a pipe, given by

f =
p

R
, (1)

wherep is the pressure drop over the pipe andR is the pipe
resistance. In the case of a blockage in the pipe, the flow
is reduced, indicated byf−, and this correctly implicates
R as above normal (R+). R+ can be interpreted as a fault
hypothesis, and denotes an increase in the resistance of the
pipe. For a pipe connected to a tank (see Figure 1), the rate
of change in the pressure,ṗ, at the bottom of the tank is
given by

ṗ =
1
C

(fin − f), (2)

wherefin is the flow into the tank andC is the tank ca-
pacity. An observed decrease in flow,f−, again implicates
R+ as a fault hypothesis from Eq. (1), and also impliesṗ+

from Eq. (2), which meansp+ over time. However,p+ also
impliesf+ from Eq. (1), and, therefore, unless properly an-
alyzed, the set of equations generate conflicting predictions
for f , and the true future behavior cannot be determined.

R
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Figure 1: A tank with in and outflow.



This is solved by including the temporal delay as introduced
by the time derivative operator acting onp. Now, f− pre-
dictsp↑ from Eq. (2), i.e.,p will rise because it has a posi-
tive derivative value. Consequently,f−,↑, i.e.,f is initially
below nominal, and its value starts increasing. Therefore,
a careful analysis of the transient dynamics even in a qual-
itative framework reveals that the instantaneous effect of a
blockage in the pipe is a decrease in outflow,f . This in turn
causes the tank to accumulate more fluid andp increases,
which causes the flow rate to increase after its initial drop.

The notion of including temporal effects in the quali-
tative description of system behavior has been formalized
in an FDI theory based on a representation of system dy-
namics as a temporal causal graph (TCG) model. This
model representation captures functional relations (edges)
between system variables (vertices) in terms of model pa-
rameters and their temporal effect. TRANSCEND, a model
based diagnosis system for fault detection and isolation of
abrupt faults in engineered systems is based on this ap-
proach (Mosterman & Biswas 1999a). To avoid the tradi-
tional problems of a qualitative framework (Kuipers 1994),
the system model must be well constrained to avoid pre-
dicting spurious behaviors and prevent a combinatorial ex-
plosion of possible behaviors. Bond graph models have
proven to be well suited for this task (Mosterman 1997;
Mosterman & Biswas 1999a) and can be automatically con-
verted into a TCG representation by the hybrid bond graph
modeling and simulation tool HYBRSIM (Mosterman &
Biswas 1999b). The approach has been successfully applied
to a number of controlled physical systems (e.g., a secondary
sodium cooling loop (Mosterman & Biswas 1999a), an au-
tomobile engine cooling system (Manderset al. 2000), and
a three-tank fluid system (Manders & Barford 2000)).

A critical task in constructing the system model for FDI
is to determine the fastest dynamic behavior that can be ob-
served in the system. Dynamic behavior that is too fast to
be observed in the measurements should not be included
in the model as it leads to functional relations that cannot
be observed, and may lead to spurious failure hypotheses.
For example, small inertial effects of flow in a pipe may not
be visible with the available instrumentation system, and,
therefore, the model should not include parameters that cor-
respond to those inertial effects.

In lumped parameter models, neglecting small parame-
ters may cause recursive dependencies among system vari-
ables without temporal effects in the system model (van Di-
jk 1994).The model is said to contain algebraic loops. When
the model includes these parameters, the integrating effect-
s would temporally decouple signals, and add to the state
vector. However, if these parameters are abstracted away,
direct relations arise, and, because of the negative feedback
between passive model components, this leads to conflicting
influences when predicting system behavior. In a qualitative
framework, variables with such conflicting predictions are
unknown and cannot be used to refine the set of hypothe-
sized faults.

This paper presents a method is to correctly handle alge-
braic loops in physical system models for diagnosis appli-
cations. The TCG representation and the hypothesis gen-

eration algorithms of TRANSCEND are introduced, and fol-
lowed by a detailed analysis of the the algebraic loop prob-
lem and its implications for representing a model for FDI as
a TCG. A method for handling algebraic loops is then pro-
posed, and presented as an enhancement of the hypothesis
generation algorithm. A small example shows that the be-
havior prediction is richer with the enhanced algorithm.

Prediction of system behavior in TRANSCEND

TRANSCEND’s diagnosis model is a directed graph (TCG)
whose edges capture the dynamic relations that govern sys-
tem behavior. The TCG provides a rich and uniform frame-
work for representing magnitude and temporal constraints
among system variables. Component parameter values and
their temporal influences on system behavior are defined as
attributes of the TCG edges. System behavior variables, de-
fined in terms of the domain independent concepts ofeffort
andflow, correspond to TCG vertices. In addition, there may
besignalvertices that denote modulated variables and other
constraints that exist between system variables. The hypoth-
esis generation and behavior prediction components of the
fault isolation task in TRANSCEND are developed as graph
traversal algorithms. These algorithms are discussed in de-
tail in (Mosterman & Biswas 1999a). The problem space
is constrained by the assumption that faults do not cause
changes in system configuration, and that the system model
remains valid when faults occur in the system.

The prediction algorithm computes the qualitative tran-
sient behavior of the observed variables under individual
fault hypotheses. Transient behavior is expressed as a tuple
of qualitative values for magnitude,1st order time deriva-
tive and higher order effects. The qualitative values are sim-
ilar to those of the measured values: ‘+’, ‘−’, ‘ 0’ or ‘ ·’.
The ‘·’ implies that the value is unknown, a result of op-
posite qualitative influences on a node. The tuple is called
the signaturefor the variable (Mosterman & Biswas 1997;
1999a). The algorithm propagates the effects of a hypothe-
sized fault through the graph to establish a signature for all
observations. Energy storage elements cause time integrat-
ing effects and introduce temporal edges in which case the
cause variable affects the derivative of the effect variable. In
the TCG, these edges are marked with adt attribute. Prop-
agation of a deviation starts with a0th order effect, i.e., a
magnitude change. When an integrating edge is traversed,
the magnitude change becomes a1st order change, i.e., the
first time derivative of the affected quantity changes. Simi-
larly, a first order change propagating across an integrating
edge produces a second order change, and so on. The high-
est predicted derivative order required is a design considera-
tion (Mosterman 1997).

To illustrate, consider again the tank system in Figure 1.
A TCG model for this system is shown in Figure 2, where
the model includes the combined effects described in Eq. (1)
and (2). The variablev is introduced to represent thefin−f
summation in Eq. (2). WhenR+ is a possible parameter de-
viation, hypothesized from a measurement deviation, future
behavior is predicted by propagating this value through the
graph. The inverse relation impliesR+ causesf−, which
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Figure 2: Temporal causal graph of the one-tank system.

causesv+, and the integrating relation ‘dt’ on the next edge
leads to a first derivative change inp, i.e., p↑ (the value
of p is increasing). Continuing the propagation results in
p↑ → f↑ → v↓ → p↓↓, i.e., the second time derivative ofp
is negative. This propagation continues until variable behav-
ior of the highest required order is predicted. Lower order
behavior that has no assigned deviation is considered to be
normal. In case of the one-tank example,p has a first order
behavior that is positive, and a second order behavior that is
negative, however, no deviation for the0th order behavior is
assigned which is therefore considered to be normal. This is
written asp0+−, where the subscripts indicate, from left to
right, increasing time derivative order of behavior. The im-
plication is that the fault has no effect onp at the time point
of failure, but the value ofp starts increasing after the time
point of failure. The negative value of the second derivative
implies that eventually the value ofp may reach a steady
state or even begin to decrease.

Analysis of the Algebraic Loop Problem
This section discusses the use of singular perturbation meth-
ods to reduce the complexity of a model for FDI by abstract-
ing away detailed behavior. The resulting model is then for-
mulated in a canonical TCG representation and the algebraic
loops that have emerged can then be easily recognized.

Model Abstractions for FDI
Finding the right level of abstraction in the model leads to a
crucial issue in the functional redundancy approach to FDI,
that involves the resolution of the correspondence between
model parameters and physical components. Consider the
detailed system behavior to be captured by the system of
equations〈f, g〉, defined as,{

ẋ = f(x, z, ε, t)
εż = g(x, z, ε, t) (3)

whereε is small, and, therefore,z captures fast dynamic be-
havior that may not be observable given the measurements.
To achieve a suitable model for diagnosis, a singular pertur-
bation (Kokotovíc, Khalil, & O’Reilly 1986) approach can
be employed. Lettingε→ 0, Eq. (3) becomes{

ẋ = f(x, z, 0, t)
0 = g(x, z, 0, t) (4)

that may in turn be be simplified to{
ẋ = f(x, z, t)
0 = g(x, z, t) (5)

Hereg becomes theimplicit part, or thealgebraic equations,
andz are the correspondingalgebraicvariables. If it is pos-
sible to manipulate the implicit part in an explicit form, i.e.,

z = gx(x, t) (6)

thenz can be substituted for in the differential equations to
get:

ẋ = f(x, gx(x, t), t), (7)

resulting in the relation,

ẋ = fx(x, t). (8)

The reduced order model has obvious computational advan-
tages, but the disadvantage of this model representation is
that the functionfx is no longer a direct map of the ini-
tial model,〈f, g〉, anymore, and may contain aggregate pa-
rameters, i.e., parameters that correspond to more than one
physical component. In an FDI application this is undesir-
able, because a single deviating parameter would implicate
more than one physical component. The functional redun-
dancy information that helped distinguish between compo-
nents has been removed from the model and replaced by al-
gebraic constraints. Handling the implicit equations directly
would result in more discriminating information at the phys-
ical component level. To achieve optimal FDI results, it is,
therefore, more appropriate to use the functional relations in
the implicit equations. However, this results in a more com-
plex model and leads to difficulties in the qualitative analysis
techniques for fault hypothesis generation and tracking that
was described in the Introduction.

Singular Perturbation

The time derivative operator acting onz partitions the sys-
tem into a set of explicit equations. Any feedback effects
pass through a temporal delay, and, therefore, only affect
higher order temporal behavior and do not cause conflicts.
In a causal model, the right hand variables are input to com-
pute their temporal behavior.

If the ε parameter is removed from the model by sub-
stituting ε = 0, temporal delays are replaced by algebraic
couplings between variables, and that may cause conflicting
predictions. This is solved by noticing that the entry point
of such a set of functional relations may be compensated for
by the removed temporal effect, but it is not reversed.

To illustrate, consider the electrical circuit in Figure 3 and
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Figure 3: An electrical circuit with parasitic effects (C2,I2).



its model given by:
ṗ1 = 1

C1
q1 − 1

C2
q2

q̇1 = − 1
I1
p1 + 1

I2
p2

ṗ2 = − 1
C1
q1 + 1

C2
q2 − R2

I2
p2

q̇2 = 1
I1
p1 − 1

I2
p2 − 1

R1C2
q2.

(9)

If C2 andI2 represent parasitic effects, i.e. their values are
very small with respect to the measurement bandwidth, they
result in modeled time constants that cannot be observed in
the measured variables. For FDI purposes, they can be ab-
stracted away. However, for this system, settingC2 = 0
andI2 = 0 results in a system of equations that is singular,
with q2 = p2 = 0. To study the implications of this model
abstraction, the model must first be written as a system of
equations corresponding to the singular perturbation repre-
sentation form shown in Eq. (5). The model shows that for
I2 = C2 = 0, p2 = q2 = 0, and, therefore,̇p2 = q̇2 = 0.
To compute the reduced order system,q̇2 = ṗ2 = 0 can be
substituted in the original model in Eq (9) andC2 and I2
eliminated by introducing the algebraic variablesz1 = p2

I2
andz2 = q2

C2
. Along with x1 = p1

I1
andx2 = q1

C1
, this gives

the following system of equations in the singular perturba-
tion form 

ẋ1 = 1
I1
x2 − 1

I1
z2

ẋ2 = − 1
C1
x1 + 1

C1
z1

0 = −z1 − 1
R2
x2 + 1

R2
z2

0 = −z2 +R1x1 −R1z1

(10)

TCG Representation of a Model

The TCG representation corresponding to Eq. (10) is shown
in Figure 4. Because one system parameter occurs on multi-
ple edges, this graph may generate inconsistent predictions.
For example,R+

1 predictsz+
2 andz−2 .

To resolve inconsistencies in the predictions, the system
of equations must first be transformed into a canonical form,
i.e., each system model parameter is present as an edge at-
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dt1
I1

-     dt1
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Figure 4: Temporal causal graph representation of Eq.( 10).
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Figure 5: Temporal causal graph representation of Eq.( 11).

tribute only once. This results in
ẋ1 = 1

I1
(x2 − z2)

ẋ2 = 1
C1

(−x1 + z1)
z1 = 1

R2
(−x2 + z2)

z2 = R1(x1 − z1)

(11)

where the variable summations become intermediate vari-
ablesv1, v2, v3, and v4 in the TCG, shown in Figure 5.
In this TCG,R+

1 predictsz+
2 , which predictsv+

3 , z+
1 , v−4 ,

andz−2 , as a result of the algebraic loop. With the parasitic
phenomena included in the model, the prediction would be
z0+−

2 , i.e., the negative feedback effect would be temporally
delayed, and, therefore, consistent predictions are achieved.

Algebraic Loops
When the small time constants are abstracted away,z1 and
z2 can be solved for algebraically to find their actual sensi-
tivity to changes inR1. This yields{

z1 = 1
R1+R2

(R1x1 − x2)
z2 = 1

R1+R2
(R2R1x1 +R1x2) (12)

Therefore, ∂z2∂R1
> 0 for R1 > 0, and, consequently,R+

1

should predictz+
2 .1

This sensitivity analysis can be generalized by assum-
ing a linear system in the canonical form with negative
loop gain. The general form of a variablezi then iszi =
f(p)zi + g(p)x, wherex are input variables to the causal
loop andp represents the unique occurrence of a system pa-
rameter. This can be written as(1 − f(p))zi = g(p)x, or
zi = g(p)

1−f(p)x. Because the loop gain,f(p), is negative, this
function is monotonic with respect top for p > 0.

In terms of the algebraic loop prediction, this implies that
an initial deviation that enters a set of algebraic equations
may be compensated for by a negative feedback effect, but
it cannot reverse the initial deviation. A predictionz+

2 that
leads toz−2 along a negative feedback path results in a partial
compensation, and, therefore, does not cause an ambiguity
in the analysis of the change inz2. The actual deviation
remainsz+

2 , but in a quantitative sense less+ than what it
1All variables are assumed to be positive.



would have been without the negative feedback. With this
understanding it is now possible to design an algorithm that
predicts deviations of variables in algebraic loops that would
otherwise be unknown.

A Method for Handling Algebraic Loops
For physical systems, the system of equations of a model
may contain negative feedback effects that would prohibit
the use of a qualitative prediction scheme. However, the
compensating effect does not reverse the initial deviation
that enters the system of algebraic equations. Therefore,
the prediction is not unknown, but the compensating effect
should be recognized, and not affect the initial deviation in
the qualitative framework.

Tracking the Origin of Compensating Effects
The solution algorithm is illustrated on the electrical circuit
example from Figure 3. Figure 6(b), derived from the bond
graph model of the circuit in Figure 6(a). The TCG is gener-
ated from the bond graph with the bond graph modeling tool
HYBRSIM . Note that a TCG that is derived from a bond
graph model by use of the Sequential Causality Assignment
Procedure (van Dijk 1994) is automatically in its canonical
form.

In Figure 6 verticese3, e4, e5, f3, f4, andf5 are part of
an algebraic loop. Note that this loop has a negative gain,
but no temporal, ‘dt’, edges. Therefore, any straightforward
propagation of a deviating value eventually causes all values
along the loop to become unknown, which in turn affects
predicted deviations in the rest of the model.

The solution consists of a special treatment of the vertices
in an algebraic loop in the TCG. It is assumed here that those
vertices have already been identified. HYBRSIM automati-
cally identifies and tags vertices that are part of an algebraic
loop in the generated TCG, but this information can also be
obtained by analyzing the equations. This algorithm is based
on the observation that compensating effects in an algebra-
ic loop in the physical model affect the rate of change of a
root deviation, but not its sign. Therefore, in a qualitative
sense, an initial ‘+’ deviation is still ‘+’ if the correspond-
ing vertex is part of an algebraic loop. The compensating
‘−’ effect generated by the algebraic loop only decreases the
‘+’ magnitude. Conversely, an initial ‘−’ deviation is stil-
l ‘−’, though not as much when a compensating ‘+’ value
is propagated along the algebraic loop. This does not mean
that an algebraic loop vertex can never become unknown. In
the situation where a vertex in an algebraic loop is assigned
a ‘+’ value and a ‘−’ deviation is propagated along a path
other than the algebraic loop, the predicted deviation for the
vertex still becomes unknown.

The algorithm must keep track of which vertex is the en-
try point to the algebraic loop of the initial deviation. If a
deviation with opposing sign is assigned to a vertex, it is
checked to determine whether the present deviation has the
same algebraic loop entry point. If so, the present deviation
is maintained and propagation along this branch is terminat-
ed. However, if the entry point differs, the vertex is assigned
an unknown value and propagation of the unknown devia-

(a) Bond graph model with parasitic elements shown in shaded
area (without causality).
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(b) Temporal causal graph representation of the bond graph
model with parasitic elements removed. Vertices that are in
an algebraic loop are marked with an ‘∗’.

Figure 6: Model representations for the electrical circuit in
Figure 3.

tion continues. This is illustrated by analysis of a hypothe-
sized candidateC−1 and observed variablee3 in Figure 6. In
caseC−1 , the deviatione+

1 is propagated. Alonge2 it pre-
dicts a deviatione−3 (e3), wheree3 in parentheses indicates
this was the algebraic loop entry point for the vertex devia-
tion. This value is propagated along the algebraic loopf3,
f4, f5, e5, e4, e3, and because of the negative gain, predicts
e+

3 (e3). This prediction conflicts with the already assigned
deviation, and because both predictions have the same entry
point,e3, the initially assigned deviation is kept, i.e.,e−3 (e3),
and propagation terminates.

It can also be seen that the algorithm must keep track of
the entry point foreach orderof the propagated deviation
from Figure 6 by analysis of hypothesized candidateC−1 and
observed variablef5. Along e2, e3, f3, andf4 the deviation
C−1 predicts a deviationf+

5 (e3). Along e8, e7, f7, f6 the
algorithm predictsf↑5 (f5). Now, when thef+

5 deviation is
propagated alonge5, e4, e3, f3, f2, f1, e1, e2, e3, f3, f4 a
deviationf↓5 (e3) is predicted, and so an opposing effect is
found. In this case, because the entry points forf↓5 (e3) is
not the same as the entry point forf↑5 (f5) a conflict arises
and the first order derivative off5 is unknown, i.e.,f+·

5 .



step 0
actual e1: + ·
C1− e1: + · ·
R1+ e1: 0 · ·
R2+ e1: 0 · ·
I1− e1: 0 · ·

(a) Normal algorithm.

step 0
actual e1: + ·
C1− e1: + − ·
R1+ e1: 0 + ·
R2+ e1: 0 + ·
I1− e1: 0 · ·

(b) Enhanced algorithm.

Figure 7: Comparison of signature generation with and
without algebraic loop handling, for a positive deviation ob-
served on vertexe1.

Algorithm
The algorithm is described in terms of graph propagation in
the TCG, which must be given in its canonical form. The
pseudo code for the algorithm is given in Algorithm 1. This
algorithm is the behavior prediction phase of the fault iso-
lation stage in TRANSCEND, and as such it supersedes Al-
gorithm 2 in (Mosterman & Biswas 1999a). The algorithm
handles the algebraic loop entry points by first determining
of a successor vertex to the current vertex is in an algebraic
loop and then determining if this is a new entry point or a
continuation of a propagation through a loop. The enhanced
prediction result is obtained in the conditional statements on
lines 28 and 35 where it is determined whether an encoun-
tered opposing relation should be interpreted as a compen-
sating effect within the same algebraic loop, or as an actual
conflict.

As an example of the improved result a deviation on ver-
texe1 is input to the prediction algorithm in TRANSCEND. A
comparison of the prediction with and without special treat-
ment of the algebraic loop shows that the prediction is im-
proved, and that the signatures contain fewer unknown val-
ues. For an initially positive deviation on vertexe1 in Fig-
ure 6, four fault candidates are hypothesized. Results are
shown in Figure Note that ‘·’ indicates an unknown value.
Also note that in general ‘0’ predictions are not used for fault
refutation, and, therefore, have less discriminative power.
For three out of four hypothesized candidates, the first or-
der prediction is known when algebraic loops are handled
with the enhanced algorithm. First order predictions are un-
known for all four candidates when the enhanced algorithm
is not applied. Thus this provides richer information, and,
therefore, more functional redundancy and improves the ac-
curacy of fault isolation.

Conclusions
Our system for monitoring, prediction, and fault isola-
tion of abrupt faults in dynamic physical systems, TRAN-
SCEND(Mosterman & Biswas 1999a), relies on a qualitative
diagnosis model of the system under scrutiny. The level of
detail of this model needs to be well balanced and adapted
to the bandwidth of the measurement system. Behaviors that
cannot be measured should not be included in the model as
they complicate the diagnosis process.

Therefore, small time constants that are present in the
physical system are abstracted away and this may result

in models that containalgebraic loops, i.e., instantaneous
causal feedback paths. If such a loop has a negative gain,
straightforward propagation of deviations in qualitative, ‘+’
and ‘−’, terms results in conflicting predictions, and, there-
fore, observed future behavior cannot be compared with pre-
dicted future behavior and much discriminating power is
lost.

This paper evaluates the effect of such instantaneous
negative feedback effects and shows that because of the
monotonous behavior of the loop transfer, qualitative pre-
dictions are not changed by a negative feedback effect. This
feedback may affect the behavior quantitatively but not qual-
itatively, e.g., a ‘+’ deviation is still ‘+’, though less ‘+’
than without the negative feedback.

This notion forms the basis of an algorithm to generate
qualitative predictions based on a qualitative model with in-
stantaneous negative feedback. It requires the edges of the
feedback paths to be marked as being part of an algebra-
ic loop. Keeping track of the entry point into the algebraic
loop is crucial to correctly generate unknown future behav-
iors. In addition, this entry point needs to be kept separately
for the order of each propagated deviation. The algorithm
generates richer sets of predictions, and, therefore, results in
better diagnosable systems.

Acknowledgments
This work has been supported in part by a grant from Ag-
ilent Laboratories, Palo Alto, California. Gautam Biswas
has been partially supported by DARPA SEC grant number
F33615-99-C-3611.

References
Clark, R.; Frank, P.; and Patton, R. 1989. Introduction. In
Patton, R.; Frank, P.; and Clark, R., eds.,Fault Diagnosis in
Dynamic Systems: Theory and Applications. Prentice-Hall,
UK. chapter 1, 1–19.
Isermann, R. 1989. A review on detection and diagnosis
illustrate that process faults can be detected when based
on the estimation of unmeasurable process parameters and
state variables.Automatica20(4):387–404.
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1: initialize ����������	�
��� �������� no mark
2: add initial vertex, i.e., immediate consequence of the fault to list ��� 	����
3: mark vertex � ��� order derivative with qualitative value
4: mark � ��������	�
� accordingly
5: while ��� 	���� is not empty do
6: � 
�� �!���#"�� � the first vertex in �$� 	����
7: while � 
�� �!���#"�� has successors not determined to sufficient order do
8: if successor relation includes a time integral effect then
9: increase current derivative order
10: if derivative order % maximum order and successor derivative is not conflict then
11: if successor derivative is no mark then
12: successor derivative value � new value(current value, relation)
13: if successor in algebraic loop then
14: if ��
�� �!���#"�� in algebraic loop then
15: add ��
�� �&�&�#"$� loop entry point to set of successor loop entry points
16: else
17: add � 
�� �&�&�#"$� to set of successor loop entry points
18: else if successor derivative value is opposite of current value then
19: if relation is inverse then
20: if successor in algebraic loop then
21: if current loop entry point not in set of successor loop entry points then
22: if ��
�� �!���#"�� in algebraic loop then
23: add current loop entry point to set of successor loop entry points
24: else
25: add ��
�� �&�&��"�� to set of successor loop entry points
26: else
27: if successor in algebraic loop then
28: if current loop entry point not in set of successor loop entry points then
29: successor derivative value � conflict
30: else
31: successor derivative value � conflict
32: else
33: if relation is inverse then
34: if successor in algebraic loop then
35: if current loop entry not in set of successor loop entry points then
36: successor derivative value � conflict
37: else
38: successor derivative value � conflict
39: else
40: if successor in algebraic loop then
41: if current loop entry point not in set of successor loop entry points then
42: if � 
�� �!���#"�� in algebraic loop then
43: add current loop entry point to set of successor loop entry points
44: else
45: add � 
�� �&�&��"�� to set of successor loop entry points
46: if attributes of successor changed then
47: add the successor to end of �$� 	'���
48: for all vertex derivatives do
49: if value ( no mark and any higher order derivative )( no mark then
50: replace no mark with normal
51: if value ( conflict then
52: replace conflict with no mark

Algorithm 1: Predict future behavior for a fault
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