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ABSTRACT
In large programs such as NASA Exploration, multiple sys-
tems that interact via safety-critical protocols are already
designed with different Statechart variants. To verify these
safety-critical systems, a unified framework is needed based
on a formal semantics that captures the variants of State-
charts. We describe Polyglot, a unified framework for the
analysis of models described using multiple Statechart for-
malisms. In this framework, Statechart models are trans-
lated into Java and analyzed using pluggable semantics for
different variants operating in a polymorphic execution en-
vironment. The framework has been built on the basis of
a parametric formal semantics that captures the common
core of Statecharts with extensions for different variants,
and addresses previous limitations. Polyglot has been in-
tegrated with the Java Pathfinder verification tool-set, pro-
viding analysis and test-case generation capabilities. We de-
scribe the application of this unified framework to the analy-
sis of NASA/JPL’s MER Arbiter whose interacting compo-
nents were modeled using multiple Statechart formalisms.
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1. INTRODUCTION
In many real-world domains, software systems are inte-

grated from components built in multiple development envi-
ronments and need to be verified against system and lower-
level requirements. Model-driven development is increas-
ingly used in the design and implementation of safety and
mission-critical systems. For example, NASA’s human space
program is transitioning to model-based software develop-
ment, with software subsystems designed, and often source
code directly generated from different UML models and other
modeling formalisms such as Matlab.

The transition to model-based development is motivated
both by lower costs for overall software development and by
the enhanced ability to find defects early in the design cycle.
Models provide better understanding than source code for
engineers in many disciplines, and are amenable to analy-
sis [5] that provides confidence and guarantees about sys-
tem behavior. Verification and validation techniques exist
for several individual modeling formalisms, and supporting
tools offer features such as test-input generation and model
checking. However, existing modeling languages and analy-
sis tools target only a single formalism and have limited use
for analyzing models from multiple formalisms.

This paper presents our work on Polyglot, an extensible
framework with supporting tools for the design-time analysis
of model-based flight and ground control software that is
developed with multiple modeling formalisms.

Polyglot provides a unified environment in which multi-
ple variants of Statecharts [14], a popular modeling formal-
ism for the dynamics of reactive systems, can be executed
and their models verified against properties. This approach
provides several useful benefits. First, it allows a user to
understand and analyze the behavior of models across dif-
ferent tools in a single framework. Second, this approach al-
lows users to verify whether model properties are preserved
across different variants of Statecharts. A model can be
created in one tool and then simulated using different se-
mantics, ensuring that there are no misunderstandings in
requirements and design development due to semantical dif-
ferences. Third, our unified environment provides the basis
for analyzing interacting models that operate under different
semantics. This is crucial to finding interoperability and in-



terface errors early in the design phase, since previous analy-
ses have found that the majority of errors in NASA’s Apollo
and Skylab software were interface errors [11].

We perform the analysis of the models by translating them
to a common representation. The key is that we translate
the structure of the models to the common representation
and define the behavior, thus the semantics, as a“pluggable”
component: an execution engine for the common represen-
tation. This allows each model to be simulated and analyzed
with multiple semantic variants. To provide confidence that
our semantics are faithful to those of the original tools, we
have also developed a formal description of the Statecharts
semantics written in the structural operational semantics
formalism (SOS) [26]. We note that discovering the formal
semantics of proprietary modeling tools has been a daunting
task, since the available documentation is usually informal,
often incomplete and sometimes ambiguous. Completing
our SOS formal descriptions required considerable experi-
mentation to discover the real semantics. We used the for-
mal description in two ways: to ensure that our framework
correctly describes the behavior of the Statechart variants
and to understand the corner cases of each notation. The
analysis of the translated models is performed using Java
Pathfinder [1]: a verification tool-set that incorporates soft-
ware model checking and test-case generation capabilities,
based on symbolic execution techniques [22].

This paper makes the following contributions. We provide
a unified framework for modeling and analysis using multiple
Statecharts formalisms. We describe a generic translation
from the Statecharts modeling formalisms into a common
Java representation. This translation captures the structure
of a Statechart model, but omits the translation of the be-
havior. The behavior is defined in separate Java modules,
which allows a model to be simulated and analyzed with
different semantic variants. The modules implementing the
various semantics were developed and tested in accordance
with a formal description, providing confidence that we are
faithful to the original tools. We give a formal description of
the semantics of Statecharts across several variants, namely
UML, Rhapsody, and Matlab’s Stateflow. This description
corrects several limitations present in previous attempts at
formalization. Finally we provide an implementation for our
framework and a case study – the modeling and analysis of
NASA/JPL’s MER Arbiter, whose interacting components
have been modeled using different Statechart formalisms.

The rest of the paper is structured as follows. Section 2
provides a brief background on Statecharts and on the Java
Pathfinder tool-set. Section 3 describes the Polyglot frame-
work and Section 4 describes our formalization of Statechart
semantics. We compare with related work in Section 6 and
conclude in Section 7.

2. BACKGROUND
The modeling formalism we target is Statecharts, a graph-

ical modeling language that allows the hierarchical and par-
allel composition of finite state machines. As described in
detail in Section 6, there is an abundance of tools for defin-
ing Statecharts, each of which has a distinct semantics. We
focus on three in particular due to their popularity: Rhap-
sody [15] from Rational/IBM, Simulink/Stateflow [19] from
the Mathworks and UML State Machine semantics [10].

2.1 Statecharts

S1 S2
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S4 S5
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e / a = false
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e

Figure 1: Example Statechart.

The main entity of a Statechart is a state, which can con-
tain hierarchically nested states, also called sub-states. A
state that contains other states can have either a sequential
or orthogonal decomposition. When a state has a sequen-
tial decomposition, it means that when it is active, exactly
one of its sub-states is active. An orthogonal decomposition
means that when a state is active, all of its sub-states are
also active.

A transition connects its source state to its target state. A
transition may have an associated trigger event, guard and
various actions. Events are signals that can be present or
absent and may have an associated value. The guard is a
predicate evaluated over the chart’s data and current set of
active states. A transition can be executed when an event
in its trigger is present and its guard evaluates to true. The
associated transition actions are also performed when the
transition is taken.

Consider the Statechart shown in Figure 1, which is de-
rived from the example in [7]. This seemingly simple chart is
enough to demonstrate some of the differences in Statechart
semantics. After the chart executes its initial transitions,
the chart will be in state S2 and the value of a is set to
true. Upon the occurrence of event e, each semantic vari-
ant will end in a different state. The Stateflow semantics
will terminate in state S6 because precedence is given to
the outermost enabled transition. The UML State Machine
semantics will terminate in state S4 because transition ac-
tions (which in this case set the value of a to false) are not
evaluated until the end of a reaction. The Rhapsody seman-
tics perform the transition actions as they are encountered
and will terminate in state S5.

2.2 Verification and test case generation
Java Pathfinder (JPF) is an open-source tool-set for ver-

ifying Java bytecode. It includes an explicit-state model-
checker (jpf-core) and several extensions such as Symbolic
PathFinder (jpf-symbc) [22] that we use in our work. The
model checker consists of an extensible custom Java Virtual
Machine (JVM), listener support for monitoring and influ-
encing JPF’s search, and a set of Java methods for instru-
menting Java programs, e.g. to introduce non-deterministic
choices in the execution of the program under test via Choice-
Generators. JPF’s default mode of execution, termed con-
crete execution, performs explicit-state model checking over
Java bytecode.

Symbolic Pathfinder (SPF) is an extension to JPF that
performs symbolic execution for generating test cases that
achieve high test coverage. Symbolic execution [17] is a well-
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Figure 2: The Polyglot framework.

known program analysis that uses symbolic values instead
of actual data as inputs and symbolic expressions to repre-
sent the values of program variables. The state of a sym-
bolically executed program includes the symbolic values of
program variables, a path condition (PC), and a program
counter. The path condition is a Boolean formula over the
symbolic inputs, encoding the constraints which the inputs
must satisfy in order for an execution to follow the particular
associated path. These conditions are solved using off-the-
shelf constraint solvers to generate test cases (test input and
expected output pairs) guaranteed to exercise the analyzed
code. Symbolic PathFinder generates both test vectors and
test sequences; the latter are necessary for testing looping,
reactive programs.

3. THE POLYGLOT FRAMEWORK
Figure 2 illustrates our framework. Polyglot is used with a

methodology that consists of the following steps: (1) trans-
late from the modeling tools into an intermediate represen-
tation (IR), (2) translate from the IR to Java code that rep-
resents the state structure of a hierarchical, parallel finite
state machine, (3) select the desired semantics from a set of
pluggable semantics implemented in Java, (4) combine the
structure code with the pluggable semantics code to execute
the chart, and (5) analyze using Java Pathfinder.

We chose Java as the common language to represent and
analyze Statecharts for several reasons. First, we needed an
executable representation for the models, to allow for quick
validation and debugging. We also wanted a modular and
extensible design for our framework, to allow for easy inte-
gration of new semantic variants. Java is an ideal language
for this purpose. Furthermore, we chose Java in order to
leverage the model checking and symbolic execution tech-
niques from the Java PathFinder tool-set (SPF). This allows
us to use a high-level language to express the semantics and
leverage existing verification and testing technology to do
the analysis.

In addition, the Statechart variants that we have stud-
ied have large action languages. Features like complex data
types and function states, along with transitions contain-
ing guards and actions that use these types and functions,
are difficult to represent in simpler modeling languages (e.g.
satisfiability modulo theories (SMT) formulas that can be
solved with off-the-shelf solvers). On the other hand, there
is a straightforward mapping from most features of the ac-
tion languages into a corresponding or similar concept in
Java. As it happens, we do use SMT technology in our
symbolic execution techniques, but instead of encoding the

semantics directly in terms of SMT formulas, we encode the
semantics in Java and let the SPF tool generate and solve
the symbolic formulas. This is much easier than defining an
SMT encoding of the semantics and properties manually.

The first step in our methodology translates from individ-
ual modeling tools into the IR. We have built translators
for IBM Rational Rhapsody [15], Simulink / Stateflow [19]
and UML variants. In addition to translating the syntac-
tic description of the models into IR, we use the extension
features of each tool to allow the user to insert custom an-
notations that are also passed to the IR and inserted into
the generated Java code. From the IR, Java code that rep-
resents the structure of the model is generated: when the
code is executed it builds an object structure similar to the
structure of the model. This “structure” code is combined
with the semantic modules to provide the execution of the
model.

We have designed the generated code and semantic mod-
ules so that they work together to provide a clean input-
output interface to the environment. This interface allows
us to simulate the models and also to connect them to
JPF, with JPF controlling the execution of the model non-
deterministically. It also allows us to perform symbolic ex-
ecution of our models using SPF. This means that in ad-
dition to property checking provided by SPF, we are also
able to perform test-vector generation for multiple semantic
versions of the same model.

3.1 Translation to Java
The first step in our framework translates models from

individual tools into an intermediate representation. The
IR is constructed in the context of the Generic Modeling
Environment (GME) [18], a tool for building and editing
domain-specific modeling languages (DSMLs). In GME, a
meta-model describes the domain concepts and their rela-
tionships. For example, our meta-model includes concepts
such as States, Transitions and Events, and relationships
such as States containing States to model the hierarchy that
can be found inside Statecharts. In addition to Statechart
specific features, our meta-model also defines concepts for
analysis that are used later in the toolchain. For instance,
annotations describing State attributes, like ‘error state’, are
added to the intermediate GME models, and are later trans-
lated into specific annotations for the model checker.

From the intermediate representation (which also has an
XML representation) we generate Java code that represents
the structure of a Statechart. The fact that we generate
only the structure of the machine is important: this allows
us to de-couple a syntactic representation of a Statechart
from the behavior of any particular definition of Statechart
semantics. This means that we can take a Statechart created
in one tool and simulate and analyze it using the execution
semantics of an entirely different tool.

We now describe the translation of individual Statechart
features into Java code. The entire generated code for a
Statechart consists of all of these individual pieces, but we
focus on one feature at a time for clarity.

States. States are the basic unit of a Statechart. Most
Statechart languages allow states to contain data and per-
form actions at various times, including when a state en-
tered, when it is exited, and while the system is in that
state. We represent each state as an instance of a gener-
ated Java class that extends a base class, State, found in the



Generated Code

class StateParent extends State {
class RegionA extends Region {
class StateA extends State {
public void entryAction() {
x++; }

}
}
class RegionB extends Region {
class StateB extends State {

…
}  }  }

Semantic Library

class State {
public void entryAction() {}
public void exitAction() {}
public void duringAction() {}

}
class Region {
int order;
public Region(int order) {
this.order = order;

}
}

A
en: x++

B

1 2

Parent

Figure 3: A parallel state and its generated code.

semantic library.
Figure 3 shows an example of how a state is translated

into Java code. At the top of the Figure, we see two states,
A and B. A contains an entry action (x++). On the left of
the figure, we see the base class, State, that is found in the
semantic library. The base class provides virtual methods,
used by the semantic modules, that are overridden in the
generated classes. The virtual methods for State - entryAc-
tion, exitAction and duringAction - allow each state to have
customized behavior for these actions.

The data contained by states is translated into the corre-
sponding data in the generated Java code. The next feature,
hierarchy and parallel states, shows how generating data in
this way can automatically take care of proper scoping.

Sequential and Parallel States. The top of Figure
3 shows a state Parent that has a parallel decomposition:
its children states are A and B. To handle parallel states,
we introduce the concept of a Region. A region is a direct
concept found in the description of the UML State Machine
semantics [10] that we use to represent parallel states across
all variants.

Regions work as follows: for each state contained inside a
given parallel state S, a class inheriting from the base Region
class in the semantic library is generated inside S. Thus,
in Figure 3, there are two classes, RegionA and RegionB,
contained inside Parent ’s generated State. The semantic
modules operate such that exactly one state from each region
is active at any given time.
Transitions. Transitions can have a triggering event, an

optional guard which is a predicate evaluated over data val-
ues and current state configuration, as well as actions. In
order for a transition to be enabled, at least one of its trig-
gering events must be present and its guard must evaluate
to true.

Figure 4 shows a transition from state A to state B. Its
trigger is the event e, its guard is the condition x == 2
and its action increments the value of x (x++). The base
class Transition in the semantic library contains four vir-
tual methods that are overridden in the generated code to
implement this functionality. Evaluation of the triggering
condition is done by string comparison. There is both an
action method and a conditionAction method. This is an
example of a feature contained in a base class inside the se-
mantic library that is not used by all Statechart variants.

Generated Code

class T extends Transition {
public boolean trigger(String event) {
return this.triggers.contains(event);

}
public boolean guard() {
return x == 2;

}
public void action() { x++; }

}
public T transition = new T();

Semantic Library

class Transition {
List<String> triggers;
public boolean guard ()  { 
return true; }

public boolean trigger(String event) { 
return true;

}
public void action() {}
public void conditionAction() {}

}

A Be [x == 2] / x++

Figure 4: A transition and its generated code.

In this case, transitions using Stateflow semantics can have
both types of actions while transitions using UML State Ma-
chine semantics contain only an action method.

Pseudostates. Pseudostates are additional syntax in
Statecharts to reduce and simplify transitions within charts.
Pseudostates represent transient locations within a state ma-
chine; a state machine cannot be resident in a pseudostate
at the end of a step. Pseudostates supported in statecharts
include choice for branching and initial pseudostates to de-
scribe the default value of a state upon entry (the clear and
filled circles in Figure 1, respectively). Because of pseu-
dostates, transitions may be composed of several transi-
tion segments, one segment for each destination (state or
pseudostate) visited during evaluation of a transition. Cus-
tomized classes are not used in the generated code for pseu-
dostates. Instead, an instance of the Pseudostate class, de-
fined in the semantic library, is created and its kind, such
as junction or choice, is given by an enumeration value. A
pseudostate’s kind is examined by the semantic library dur-
ing chart execution.

3.2 Input-Output Interface
We now describe the input-output interface to our gen-

erated code. This feature allows the generated Java code
representing a Statechart to be driven manually by the user,
non-deterministically by JPF, or symbolically by Symbolic
Pathfinder (SPF). For simplicity, we focus on the descrip-
tion of the input interface; the output interface is similar.
We also focus primarily on the interface to SPF to demon-
strate how our tool can be used to generate test vectors for
different semantic variants of Statecharts.

Figure 5 shows the overall structure and workflow of the
framework. We describe this Figure in detail to show how
the individual pieces fit together. The top of Figure 5 (la-
beled 1) shows a Statechart with two input variables and
two output variables. The inputs are an integer x and a
boolean b, and the outputs are an integer y and a boolean
c. There is a default transition to state A, along with two
additional transitions. One transition goes from state A to
state B and has a guard that is satisfied when the value
of the input variable x is greater than 0. If this transition
is taken, then it sets the value of the output variable y to
the value of x. The transition from state B to state A has
a guard that is satisfied when (1) the value of the output
variable y is greater than 2, and (2) the value of the input



Generated Structure Code

class Chart extends Statechart {
int x, y; // input and output variables
boolean b, c;
public void setInputs(int x, boolean b) {
this.x = x;
this.b = b;

}
// States, Transitions, Regions…

}

A Bint x

boolean b

Chart

int y

boolean c

Generated “Reader” Code

class ChartReader implements IDataReader {
private Chart chart;
private IDataProvider dataProvider;
public void setInputs() {
// read 2 String inputs from IDataProvider
// parse inputs to correct types
// call chart.setInputs(x,b)

}
…

}

Semantic Interpreter

class Interpreter {
Statechart chart; // Instance of our chart
IDataReader reader; // Instance of custom reader for chart
public void step() {
// 1. read inputs using custom reader
// 2. step machine

}
public Interpreter(Statechart chart, IDataReader reader) {
this.chart = chart;
this.reader = reader;

}Generated Code

IDataReader
void setInputs();

IDataProvider
String readInput();

(1)

(2) (3)

Command line provider

Non-deterministic provider

Symbolic provider

Java Pathfinder

Data interfaces

JPF Core

Symbolic Pathfinder (SPF)

[x > 0] / y = x;

[y > 2 && b]

Figure 5: The interface to the Java code.

variable b is true.
The first part of our process translates the structure of this

Statechart into Java code. The translation for individual
elements such as states and transitions is described earlier
in Section 3 and is not shown here. The second part of
Figure 5 (labeled 2) shows the code that is generated for:
(1) the Statechart, and (2) functionality to provide inputs
to the Statechart in both a generic in specific manner. The
generated structure code for the Statechart contains four
variables corresponding to the inputs and outputs of the
original model. Additionally, it contains a specific method
for setting the values of the inputs: setInputs(int x, boolean
b). However, because this method is specific to a Statechart
that takes exactly two inputs of a specific type, it cannot
be used in a generic way. For this reason, we generate a
separate module that does two things: (1) exposes a generic
interface to read inputs from various sources, and (2) uses
the generated type-specific method of the chart to set its
inputs.

3.3 Sample Execution with SPF
We describe now how the whole execution environment

can be used with SPF to generate test-vectors for the chart
in Figure 5. The semantic interpreter (shown on the right
in Figure 5) contains an instance of our generated Chart
class and an instance of our generated ChartReader. At
each logical step in the chart execution, the interpreter (1)
sets the inputs of the machine using the IDataReader, and
(2) uses the current state configuration and data valuations,
along with the machine structure, to step the machine ac-
cording to a specific type of semantics (Stateflow, Rhapsody
or UML State Machine semantics). The semantics are de-
scribed briefly here and formally in Section 4.

Suppose we have a symbolic data provider, the Stateflow

execution semantics, and that we are currently in state A.
When the interpreter calls its step() method to advance
the chart, it first calls the setInputs() method on its data
reader object. Because the data reader is using a symbolic
data provider, input does not come from the user or non-
deterministically from JPF. Instead, SPF treats the inputs
to method setInputs(int x, boolean b), symbolically. When
control is returned to the interpreter to step the machine,
it checks if there are any enabled transitions. When the in-
terpreter calls the guard() method on the transition from
state A to state B (which returns true if x is greater than
0), SPF explores two possibilities for x : one that will cause
the method to return true, and another that will cause the
method to return false. For the true case, SPF will collect
x1 > 0 in the path condition PC, where x1 is the symbolic
value of input x. After the transition is taken, its action
(y=x) is performed.

The process will then repeat with current state B : the
interpreter will call the setInputs(int x, boolean b) method
which will again be executed symbolically. When the inter-
preter calls the guard() method on the transition from B to
A, condition y>2 && b is evaluated. In the true case, be-
cause y was set to x1 in the previous step, the PC becomes
x1 > 0 ∧ x1 > 2 ∧ b2, where b2 is the symbolic value of b

and time step 2. After determining that this constraint is
satisfiable, SPF has determined that the guard on the tran-
sition from B to A is satisfiable and that there is a binding
of values to the symbolic variables that allows the method to
return true. The interpreter then takes the transition from
B to A and updates the current state set.

In effect, we have used SPF to determine an input se-
quence of length 2 for the Statechart at the top of Figure 5
that will drive the chart from state A to state B and back
to state A:



First input: x > 2, b = true or false.
Second input: x = anything, b = true.

SPF invokes a constraint solver to check the satisfiabil-
ity of these constraints, and the solutions obtained are used
as test vectors. While there exist other test-vector genera-
tion tools for Stateflow (see Section 6), the difference is that
our tool can generate inputs for a given Statechart across
multiple semantic variants. We believe this is an impor-
tant feature needed by engineers to better understand their
models.

4. PARAMETRIC FORMAL SEMANTICS
Statecharts behaviors are quite complex. For example,

the user manual for Stateflow is 1400 pages and the tran-
sition semantics is described in 7 pages of pseudocode [19].
Because of this level of complexity, it is difficult to create a
correct interpreter for one variant, let alone multiple vari-
ants. To ensure that our interpreters correctly describe the
behavior of these variants, we have created a formal struc-
tural operational semantics (SOS) to illuminate the corner
cases in each notation. The formalization has informed the
interpreter implementations in Java and the selection of ‘dif-
ficult’ tests to check conformance with expected behaviors
for each notation.

We believe that our work provides a more complete for-
malization of each variant than has been previously at-
tempted, and have corrected errors that have been found
in previous formalizations (described in more detail in Sec-
tion 6). The formalization presented here is based on the
formalization used for Stateflow in the Rockwell Collins tool
suite described in [20]. We have identified the similarities
between the semantics, and have been able to provide most
of the semantics in common “core” rules. The semantic vari-
ations between the variants can be captured in a relatively
small number of additional rules for each variant. Due to
space limitations, it is not possible to present all the seman-
tics of the three variants. Instead we provide a representa-
tive slice of the semantics describing transitions and refer the
interested reader to an accompanying technical report [32]
that contains the full rule set.

Formally, a set of SOS inference rules inductively defines
the set of all computations (defined as relations) for the lan-
guage. The core rules are incomplete; certain rule signatures
have no definitions in the core semantics, so no complete
derivations are possible. Each variant extends the core with
additional inference rules that complete the semantics and
define all computations in that variant.

4.1 Abstract Syntax
The abstract syntax for the parametric semantics is the

union of the syntax used by each of the variants. The seman-
tics for each variant are restricted by only defining inference
rules for the syntax relevant to that variant. The abstract
syntax reflects the java classes describing the structure of
the chart from Section 3.1; the class definitions correspond
to the datatype definitions in Figure 6.

A Statechart θ is defined as a root state named C, a set
src of the different locations within the chart, and input,
output, and local declarations (I, O, and L) of variables
and events. Charts contain destinations v which can be
states, pseudostates, and, in the case of Stateflow, graphical
functions. Destinations are referenced by paths (identifier
lists) p to create locations src.

Chart θ ::= (C, [src0, . . . , srcn], I, O, L)
Location src ::= p : v
Destination v ::= State(sd) | Pseudo(psd) |

Function(gfd)
StateDef sd ::= ((ae, ad, ax), L, T, [r0, . . . , rn])
Region r ::= (T, [s0, . . . , sn])

PseudoDef psd ::= (pty, T )
FunctionDef gfd ::= ((I,O, L), T )
PseudoType pty ::= JUNC |

CHOICE |
DYNAMIC CHOICE |
SHALLOW HISTORY |
DEEP HISTORY

Trans t ::= (e, c, (ac, at), d)
Dest d ::= p | LOOP

Figure 6: Statecharts abstract syntax.

States (StateDefs) consist of actions associated with
entering, staying within (during), and exiting the state
(ae, ad, ax); local variables and constants L; a transition list
T of outgoing transitions from the state; and a (possibly
empty) list of regions (parallel states) R. Regions contain a
sequential composition of states and a list of initial transi-
tions T (e.g., the transitions starting with a dot in Figure 1).

Pseudostates (PseudoDefs) such as history states, static
and dynamic choice points, have an associated type and a
list of outgoing transitions. We do not include a complete set
of UML/Rhapsody pseudostate types in our definition. The
types that are missing are: initial, join, fork, entryPoint,
exitPoint, and terminate. We handle join and fork via a
source-to-source translation for Rhapsody and UML State-
charts using a variation of the encoding used by Börger [4].
Initial pseudostates are encoded directly via the set of ini-
tial transitions for compositions. EntryPoint and exitPoint
pseudostates are currently unsupported in our semantics, as
they are syntactic sugar (see [4]); terminate pseudostates are
currently unsupported, as they require knowledge about the
object containing the statemachine that is not currently de-
fined in the semantics. FunctionDefs, defined in Stateflow,
allow graphical functions to be created from transitions.

A transition Trans contains a triggering event e (which is
the reserved symbol ⊥ in the case of an eventless transition
in Stateflow or a completion transition in UML Statecharts
or Rhapsody), guarding condition c, condition and transi-
tion actions (ac, at) and destination d. A destination is a
path to a state, junction or the special destination Loop
that is used for external loop transitions. Three list types
TransLst, path, and ActionLst describe lists of transition
segments, identifiers, and actions, respectively. φ is the para-
metric symbol for the empty list (nil).

4.2 Overview of Semantics
The semantics of each Statecharts variant focuses around

evaluation of an event. Given an event (which may be from
the external environment or internally generated) the system
finds the set of enabled transitions. A transition is enabled if
its triggering event matches the current event and its guard-
ing condition evaluates to true. A subset of these transitions
then fire, causing the system to change state and potentially
generate new events that further evolve the state machine.

In our view, the most complex part of the Statecharts se-
mantics is the evaluation of transitions containing multiple
segments, specifically: (1) how to exit and enter compound
states (that is, states with child states) when transitions



‘fire’, (2) how to evaluate inter-level transitions, that is, tran-
sitions that cross state boundaries, and (3) how to evaluate
compound transitions, that is, transitions containing multi-
ple segments that are joined by pseudostates. Fortunately,
this portion of the semantics is largely common between the
different semantics, and the core semantics is primarily con-
cerned with this aspect.

The differences between the variants involve (1) how and
when internal events generated by the evaluation of the state
machine are consumed, (2) how and when transitions with-
out an explicit triggering event (called completion transi-
tions in UML Statecharts and Rhapsody) are consumed, (3)
given conflicting transitions, which subset are chosen to fire,
and (4) whether the evaluation of the firing transitions is
performed atomically or incrementally as a sequence of sub-
steps. These aspects are dealt with in the parametric portion
of the rule sets, and are instantiated separately for each vari-
ant. These aspects are straightforward to formalize, leading
to relatively few variant rules between the different variants.

We create evaluation rules for the different pieces of syntax
within the abstract syntax tree. We use turnstiles ( )̀ anno-
tated with the kind of syntax being evaluated to structure
the semantics. For example, the semantic rules for transi-
tions and a subset of the pseudostates are shown in Table 1.
In this figure, we evaluate three different classes of syntax:
transition segments τ̀ , transition segment lists T̀ , and des-
tinations D̀. In the full semantics in [32], additional rules
for states `S and regions `R are added. We augment the
syntactic rules with helper rules and functions. Helper rules
are indicated by turnstiles followed by rule names. In Ta-
ble 1, the helper rules used are ‘trigger’, ‘choose’, ‘move’,
‘exit’, ‘lcp’, and ‘enter’.

A handful of conventions are assumed: first, we assume
the following operations on lists: cons is defined infix using ::,
appending lists is defined infix as _, and adding an element
to the end of the list is defined using a period ‘.’. Second, we
write rules that are specialized for each variant in boldface.
In Table 1, the two specialized rules are the list choice rule
(choose) and the trigger rule (trigger).

4.3 Actions and Conditions
Condition rules `B describe evaluation of Boolean ex-

pressions that are used for transition guards. Action rules

À describe updates to the environment that occur when a
transition fires or a state is entered / active / exited. The
signatures for the rules are as follows:

B̀ ⊆ Env × Condition×Bool
À ⊆ Chart× Env ×ActionList× Env

In this paper, these relations are left abstract; they are
not difficult to express but are verbose.

4.4 Transitions
Describing the behavior of transitions in full generality

is the most complex part of the semantics of Statecharts.
The rules associated with transitions are shown in Table 1.
Recall that transitions in Statecharts are composed of a list
of transition segments that connect a source and destination
state, possibly through one or more pseudostates. W will use
the word segment to describe a single arc within a chart and
transition to mean a complete path through a sequence of
segments. The `τ and `T rules describes the behavior
of a segment and list of segments, respectively. Elements

of T represent the list of outgoing segments from a state
or pseudostate. The D̀ rules describe the behavior of the
chart upon reaching the destination of the segment, which
can be either a state or a pseudostate.

The signatures of the different rule types associated with
transitions is shown below:

τ̀ ⊆ Chart× Env × (Path list) ×
(Action list)× Trans× (Env, Status)

T̀ ⊆ Chart× Env × (Path list) ×
(Action list)× (Trans list)× (Env, Status)

D̀ ⊆ Chart× Env × (Path list) ×
(Action list)×Dest× (Env, Status)

The rules are evaluated in a context containing the chart
function (θ : Chart) the current environment (σ : Env), the
list of destinations (P : Path list) and transition actions
(At : Action list) encountered along the current transition
path. The chart θ is used to look up destinations within the
chart (states and pseudostates), and the environment σ con-
tains the current values of all elements in the chart (the oc-
cupied/unoccupied status of states and values of chart vari-
ables). The rules generate a new environment and a status
which can be either Fail if the current path does not reach
a destination state, Succeed(State) if the path completes a
transition to a destination state.1.

For example, the rule τ1 describes the case in which a
segment ‘fires’. The rule premises state that the trigger is
present, the condition evaluates to true, the condition ac-
tions associated with the transition modify the environment
to σ′, and the evaluation of the destination of the segment
d given new environment σ′ and the updated set of tran-
sition actions (At _ at) returns the result res. If these
premises are satisfied, then the evaluation of the segment
(et, c, (ac, at), d) will return res. Rules τ2 and τ3 describe
the situation when the trigger and the guarding condition
are false, respectively.

4.5 Transition Lists
There are three rules to evaluate transition lists

(T1, . . . T3). Rule T1 describes the case when the the list
of transitions is empty, so we return that this path failed to
yield a complete transition (Fail). In rule T2, we choose an
element from the transition list, and it completes a transi-
tion, so we return its result. In rule T3, we choose an element
from the list but it does not lead to a complete transition,
so we evalute the rest of the list recursively. Note that a
segment that does not succeed may still modify the environ-
ment σ.

The choose rule is an example of a variation point be-
tween the semantics: in Stateflow, the order of evaluation of
segments from a particular source is fixed, so the first ele-
ment of this list is always the first element chosen (rule cs1).
For Rhapsody and UML Statecharts, choose can choose an
arbitrary element from the list (rules cru1 and cru2).

4.6 Destinations
The destination rules D define the behavior of the chart

when a ‘fired’ transition reaches a destination. As we eval-
uate segments along a path, we build up a list of transition
actions At and visited destinations P in the transition. The

1Stateflow has an additional completion:
Succeed(Junction) if the path reaches a junction with
no outgoing transitions



τ1
θ, σ ` trigger et → true θ B̀ c→ true θ, σ À ac → σ′ θ, σ′, P, (At _ at) D̀ d→ res

θ, σ, P,At τ̀ (et, c, (ac, at), d) → res

τ2
θ, σ ` trigger et → false

θ, σ, P,At τ̀ (et, c, (ac, at), d) → (σ, Fail)
τ3

θ B̀ c→ false

θ, σ, P,At τ̀ (et, c, (ac, at), d) → (σ, Fail)

T1
θ, σ, P,At T̀ φ→ (σ, Fail) T2

choose(t :: L) → (τ, rest)
θ, σ, P,At τ̀ τ → (σ′, Succeed(dt))

θ, σ, P,At T̀ (t :: L) → (σ′, Succeed(dt))

T3
choose(t :: L) → (τ, rest) θ, σ, P,At τ̀ τ → (σ′, Fail) θ, σ′, P,At T̀ rest→ res

θ, σ, P,At T̀ φ→ res

Ds1

θ path = State(S)
θ, σ,At `move(P.path) → σ′

θ, σ, P,At D̀ path→ (σ′′, Succeed(State))

Ds2
θ, σ,At `move[p.s, p, p.s] → σ′

θ, σ, [p.s], At D̀ LOOP → (σ′′, Succeed(State))

Dp1
θ path = Pseudo(JUNC, φ)

θ, σ, P,At D̀ path→ (σ′′, Succeed(Junction)) Dp2

θ path = Pseudo(JUNC, h :: t)
θ, σ, P.path,At T̀ (h :: t) → res

θ, σ, P,At D̀ path→ res

Dp3
θ path = (Pseudo(CHOICE, h :: t)) θ, σ, P,At T̀ (h :: t) → res

θ, σ, P,At D̀ path→ res

move
lcp(src :: (P.dst)) = cp θ, σ ` exit(src, cp) → σ′ θ, σ′ À At → σ′′ θ, σ′′ ` enter(dst, cp) → σ′′′

θ, σ `move(src :: (P.dst)) → σ′′′

Stateflow:

cs1
choose(h :: t) → (h, t)

UML/Rhapsody:

cru1
choose(h :: t) → (h, t) cru2

choose t→ (e, r)

choose(h :: t) → (e, h :: r)

Table 1: Statecharts transition rules.

first rule Ds1 describes the behavior when the destination is
a state. In this case, we call the ‘move’ helper rule (near the
bottom of the figure) to change from the source to the desti-
nation state, and the rule returns Succeed(State) to denote
that the transition has reached a destination.

Rule Ds2 is used for external loop transitions. There are
two kinds of looping transitions allowed in Statecharts: in-
ternal loop and external loop transitions. Because they share
the same source and destination, but behave differently (in-
ternal loops do not cause the exit of the state, external loops
do), we must treat one of them specially. Our ‘move’ rule
extracts the common parent of the elements along the tran-
sition path to determine which states to be exited/entered.
Because a transition from a state to itself is entirely com-
mon, it causes exit / reentry of only child states (i.e., internal
loop). To describe external loops, we use a special ‘LOOP’
destination, and construct a path that goes from the state
containing the loop to its parent and back. This will cause
the correct entry/exit behavior.

Rules Dp1 through Dp3 describe the behavior of the rules
for JUNC and CHOICE pseudostates. In [32], we define
the behavior of the remaining pseudostate types in the ab-
stract syntax.

The ‘move’ rule describes the updates to the state per-
formed during a move from a source to a destination state.
The list of locations involved is (src :: (P.dst)), that is, the
source state, followed by a (possibly empty) list of pseu-
dostates P followed by the destination state dst. We find
the least common parent (cp) of the list to determine the
scope of the transition (the set of states to be entered and
exited). We then (1) exit the source component, (2) perform
the transition actions At from the path, and (3) enter the
destination state.
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Figure 7: Model of MER arbiter with two users

4.7 State and Composition Rules
Given the definition of transition behavior, we can define

the rules for states and regions. Because of space consider-
ations, we do not present the rules here, but refer the in-
terested reader to the tech report [32]. The rules for states
and compositions are simpler than those for transitions. The
main point of interest is the variation between the semantics
in transition prioritization: UML Statecharts and Rhapsody
prioritize transitions “inside out”, giving priority to transi-
tions from nested states, whereas Stateflow prioritizes tran-
sitions in the opposite “outside in” order.

5. EXPERIENCE
The framework and tools described in this paper have

been applied to an example modeling a component of the
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Figure 8: Statemachine for user 1

flight software for NASA/JPL’s Mars Exploration Rovers
(MER). The MER software consists of a Resource Arbiter
and several user threads. Each user serves one specific ap-
plication, such as imaging, controlling the robot arm, com-
municating with earth, and driving. The arbiter module
moderates access to several shared resources. It prevents
potential conflicts between resource requests coming from
different users and it enforces priorities. For example, it
does not make sense to start a communication session with
Earth while the rover is driving.

We present here the results of modeling and analyzing the
system using multiple Statechart formalisms; the system has
been analyzed before, but using only one formalism (namely
Promela) [23]. The configuration for our analysis involved
two users and five resources. The high-level architecture
of the analyzed system is given in Figure 7. The system
was first modeled in Simulink, with the two users and the
arbiter being modeled as Stateflow machines. The inputs to
the system are the two resources and the two resets that go
to the two users. The communication between the Arbiter
and the users is modeled using Simulink signals. A user may
request or cancel a resource; the arbiter may grant or deny
the resource, and it can also rescind the resource after it has
been granted. Figure 8 shows the Statemachine for one user.

This Simulink/Stateflow model was translated automati-
cally into Java and analyzed with SPF. The individual State-
flow models were translated as described in Section 3. We
used the tool described in [24, 3] to automatically trans-
late the Simulink part that connects the individual State-
flow components. For now, this is the mechanism that we
use to assemble components. NASA Exploration engineers
are still defining how components should be assembled. We
are working on a library of “connectors” that provides a Java
representation of various types of communications between
components (see also discussion in Section 7).

We have experimented with checking safety properties and
generating test cases for this model, where we changed the
semantics of User 1 from Stateflow into UML and Rhapsody
(while User 2 and the Arbiter where kept with the Stateflow
semantics). As mentioned, changing the semantics can be
easily achieved in our framework (all one needs to do is to
change the Interpreter for that machine). We inserted as-

sert(r1.User1.reset==false) on the transition from state
Pending to Granted in User 1 and we checked for assertion
violations in the over-all system. This encodes the expecta-

tion that once a reset is received, a component should not
be able to start using the resource. To study the behav-
ior of the models with increased number of time steps, we
have analyzed three versions of the models, corresponding
to sequences of sizes 4, 5 and 6.

The results of our analysis are summarized in Table 2.
We observe that the property holds for the Stateflow mod-

els, but it fails when we change the semantics of one user to
UML or Rhapsody. In this latter case, SPF generates the
following 2-step test case that exposes the error.

setUser1Input(1,0),
setUser2Input(2,1),

setUser1Input(3,1),
setUser2Input(2,0),
##EXCEPTION## "java.lang.AssertionError..."]

The reason why this property fails in the UML and Rhap-
sody cases while it holds in the Stateflow case is that outer
transitions (e.g. see the transition enabled on reset==true

from Busy back to Idle) have higher priority over inner tran-
sitions in Stateflow, but have lower priority in UML Rhap-
sody. The semantic difference between Stateflow on one side
and UML and Rhapsody on the other side is also reflected
in the different number of test cases generated for one se-
mantic variant over the other. We also note that the results
for UML and Rhapsody are practically identical. This is
expected, since the main difference between Rhapsody and
UML is that the result of an action is immediately visible in
Rhapsody, but that doesn’t affect our particular example.

This example demonstrates how we can use Polyglot to
model components using multiple Statechart formalisms and
to analyze their inter-operation. It also shows how proper-
ties can be checked with our techniques and how we can
generate test cases that expose semantic difference across
models. We note that the generated test cases can be used
for testing the code that is generated (automatically or man-
ually) from the models.

6. RELATED WORK
There are at least dozens and perhaps hundreds of dif-

ferent Statecharts variants [30]. A handful of these vari-
ants were created with a formal semantics, including Esterel
SyncCharts [2], RSML [16], and RSML-e [31], but for the
most part they are defined informally; semantics have been
ascribed to these notations after the fact. The three variants
considered here, Stateflow, UML State Machines and Rhap-
sody, all fit in the category of informally defined semantics
but are amongst the most widely used in practice.

There are several formalizations of UML Statecharts using
Abstract State Machines (ASM). The most complete formal-
ization for the single chart case is [4]. Börger provides a nice,
modular description of the UML semantics. The treatment
in Börger does not match the stated semantics of [10] in
an important way, however, involving the interleaving of ac-
tions and conditions. In [10] the set of all transitions to be
executed is considered prior to any actions on any of those
transitions. However, in Börger, the sequence of evaluation
is interleaved. For example, when evaluating the model in
Figure 1 using the semantics in [4] the interpretation will
match the Rhapsody semantics rather than the UML seman-
tics. This interleaving is also present in Börger’s proposal
for boundary crossing transitions into AND-states.



Table 2: Experimental results
Semantics, Seq. size Total # Test Cases Property Memory, Time

U1 Stateflow, 4 125 true 20 M, 43 s
U1 Stateflow, 5 412 true 22 M, 2 m 04 s
U1 Stateflow, 6 1343 true 24 M, 6 m 46 s

U1 UML, 4 57 false 21 MB, 21 s
U1 UML, 5 155 false 21 MB, 53 s
U1 UML, 6 579 false 23 MB, 2 m 50 s

U1 Rhapsody, 4 57 false 21 MB, 21 s
U1 Rhapsody, 5 155 false 21 MB, 55 s
U1 Rhapsody, 6 579 false 23 MB, 2 m 45 s

Semantics for smaller subsets of UML Statecharts are pro-
vided using several different formal frameworks by several
groups. Compton et al [6] uses ASMs, Von der Beek [29]
uses SOS rules somewhat similar to ours, Gogolla et al. [9]
uses translation to an abstract machine using graph rewrit-
ing and Reggio et al. [27] uses translation to the algebraic
specification language CASL. There is no work that we are
aware of that specifically formalizes Rhapsody semantics.

Stateflow semantics have been formalized by Hamon
twice: once as an operational semantics [13] and later as
a denotational semantics [12]. As mentioned earlier, we
base our operational semantics on the denotational rather
than the operational semantics. The reason for this choice
is both that the denotational semantics is more complete and
more modular, and there was little difficulty in moving from
Hamon’s continuations to an alternate backtracking form
that explicitly returned success or failure. Moreover, we
have fixed several small errors in Hamon’s semantics regard-
ing (1) Transition action sequencing, (2) correct state entry
on AND-state boundary-crossing transitions, (3) scoping on
multi-segment boundary crossing transitions, (4) flowcharts
in states with no substates, (5) border-crossing initial tran-
sitions, (6) ’during’ actions with internal transitions, and (7)
entry/exit actions associated with external loop transitions.

Additionally there is a body of work that ascribes seman-
tics to multiple Statecharts variants. Perhaps the most am-
bitious is the template-based semantics of Jianwei Niu et.
al [21] that provides a generic template semantics for many
Statecharts variants as well as process algebras. Although
the template mechanism in [21] is quite flexible, it is not
sufficient to describe the behavior of any of the three no-
tations considered here. In particular, there is no distinc-
tion between states and pseudostates, so it is not possible to
describe the different behaviors (such as backtracking and
looping in Stateflow junctions and dynamic vs static choices
in UML) that distinguish states from pseudostates. Also,
there is no mechanism to distinguish condition actions from
transition actions (as in Stateflow), so it is not possible to
correctly model (one of) condition or transition actions.

There are many tools for analyzing Stateflow models due
to the widespread use of Simulink/Stateflow, including com-
mercial tools such as Mathworks’ Design Verifier which can
be used for model checking and test case generation, and
Reactive System’s Reactis and T-VEC’s tester that perform
test generation and measurement. Similarly, for UML Stat-
echarts, there are a wide variety of research tools. However,
we believe that the ability to analyze multiple semantics in
one environment is a major benefit to our approach.

One idea similar to our unified environment is found in
[25], which describes an approach to heterogeneous model

analysis that is based on a common “inframodel” that cap-
tures only the aspects of a notation essential to state space
exploration and it provides a set of rules that capture the se-
mantics and interactions between multiple formalisms. The
work is concerned with high-level descriptions of the models
and it would take considerable effort to make that environ-
ment capture the semantic details for the Statechart nota-
tions that are the focus of our work. Therefore, using that
work one can not generate detailed test cases, that are useful
for testing the low-level code that was generated from the
models. Furthermore that work does not address checking
that a model preserves the same properties when run with
different semantics.

The Ptolemy environment [8] is a laboratory for experi-
menting with different models of computation for component
based systems, focusing on the concurrency and temporal is-
sues. The tool implements the concept of polymorphic com-
ponents whose behavioral semantics depends on what ’exe-
cution engine’ (’director’ in Ptolemy) it is executed by. This
is similar to our concept of ’pluggable semantics’. Note that
our work addresses different Statechart variants and for-
mal semantics with particular focus on model checking and
systematic test case generation, while Ptolemy addresses a
broader set of models of computation but with the goal of
simulation.

In previous work [24] we have developed a model based
analysis framework that translates Simulink/Stateflow mod-
els into Java and analyzes them using Java PathFinder; that
work was recently extended with Specification Patterns for
writing and checking temporal logic formulas [3]. In that
work we use model transformation techniques to translate
Simulink/Stateflow into Java; the translation follows very
much the structure of the Mathworks’ Real-Time Workshop
code generation. Here we have developed a completely new
translator for the Stateflow parts together with new transla-
tors for UML and Rhapsody. The obtained translated Java
code is very different, to allow for pluggable-semantics de-
scribed in this paper.

7. CONCLUSION
We have presented Polyglot, a framework for the analy-

sis and test case generation of model-based fight software
described using multiple Statechart formalisms. In Poly-
glot, multiple variants of Statecharts are translated into a
common Java representation with “pluggable” semantics for
different Statechart variants.

To provide confidence in our framework, we developed a
parameterized description of the semantics of Statecharts
across several of the most popular variants in structural op-
erational semantics. We have indicated improvements over



previous formalizations. We have also discussed the applica-
tion of Polyglot to the analysis of the MER Arbiter system.

In the future, we plan to extend the communication in-
frastructure of our component-based framework to facilitate
component interactions. We plan to provide an extensible
library of connectors that capture different types of commu-
nication policies. For example, connectors may model pro-
cedure calls with call-backs, event-based synchronization, as
well as domain-specific protocols and standards such as the
ARINC 653, an RTOS API specification with support for
space and time partitioning in an integrated modular avion-
ics architecture.

We are also working on modeling the semantics of the
Plexil robot execution system [28] using a variant of State-
charts and on integrating it in the Polyglot framework. The
goal is to expand Polyglot into a heterogeneous modeling
and analysis environment useful for NASA engineers.
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