
FORMS: Feature-Oriented Reverse
Engineering-based Middleware Specialization for

Product-Lines
Akshay Dabholkar

Dept. of Electrical Engineering & Computer Science
Vanderbilt University
Nashville, TN, USA

Email: aky@dre.vanderbilt.edu

Aniruddha Gokhale
Dept. of Electrical Engineering & Computer Science

Vanderbilt University
Nashville, TN, USA

Email: gokhale@dre.vanderbilt.edu

Abstract—Supporting the varied software feature requirements
of multiple variants of a software product-line while promoting
reuse, forces product line engineers to use general-purpose and
feature-rich middleware platforms. However, each product vari-
ant now incurs memory footprint and performance overhead due
to the feature-richness of the middleware along with the increased
cost of its testing and maintenance. To address this tension, this
paper presents FORMS (Feature-Oriented Reverse Engineering
for Middleware Specialization), which is a framework to au-
tomatically specialize general-purpose middleware for product-
line variants. FORMS provides a novel model-based approach
to map product-line variant-specific feature requirements to
middleware-specific features, which in turn are used to reverse
engineer middleware source code and transform it to specialized
forms resulting in vertical middleware decompositions. Empir-
ical results evaluating memory footprint reductions (40%) and
feature reductions (60-76%) are presented along with qualitative
assessment of discrepancies in modularization of contemporary
middleware.

Index Terms—Middleware; Specialization; Reverse Engi-
neering; Closure; Footprint; Feature Oriented Programming;
Product-line

I. INTRODUCTION

Product-line engineering (PLE) [1] has emerged to become
one of the most widely used paradigms for software devel-
opment in varied domains where commonality and variability
plays a crucial role in determining the reusability, flexibility,
adaptability, evolvability, maintainability and quality of service
(QoS) provided by the product variants to the end users. The
commonality is shared by different products of the product line
whereas variability distinguishes individual product variants.
The variability may manifest itself in terms of functionality or
configurability or both.

To support these commonalities and variabilities, and to
maximize reuse, middleware, such as CORBA, J2EE, and
.NET, provides abstraction of complexity and heterogeneity.
To be widely applicable across multiple domains, these mid-
dleware are designed to be general-purpose, highly flexible
and very feature-rich i.e., they provide rich set of capabilities
along with their configurability.

Despite the benefits of general-purpose middleware for a

product line as a whole, individual product variants, how-
ever, incur the penalty of excessive memory footprint and
potentially performance overhead due to the excessive set of
middleware features – many of which may not be required by
the product variant. Additionally, excess set of features results
in unwanted testing and maintenance costs per variant, which
is detrimental to a cost-effective PLE management.

A promising solution to address the above-mentioned chal-
lenge is to specialize general-purpose middleware for product
variants of the product line. Prior research on middleware
specialization has focused on forward engineering techniques,
such as Feature Oriented Programming (FOP) [2] and As-
pect Oriented Programming (AOP) [3], which are based on
composition and stepwise refinement. Some examples of these
approaches include FACET [4], Modelware [5], LOpenOrb [6],
and FOMDD [7].

Since middleware needs to cater to multiple domains (i.e.,
be general-purpose and flexible), they are designed and mod-
ularized with a focus on extensible class hierarchies alone.
Hence the middleware developer focuses more on horizon-
tal decomposition of middleware into layers. In contrast, to
support product variants, PLE requires the middleware code
to be modularized along domain concerns. We call such
a modularization as vertical middleware decomposition or
feature module specialization.

We observe that much of the contemporary middleware
available is still not developed using the top-down PLE
techniques of domain engineering and application engineering
but in fact built bottom-up based on a modularized design
template. However, the PLE domain concerns (which we call
features) are often tangled with each other, and are spread
beyond the module (i.e., class and package) boundaries across
multiple modules within the middleware source. Hence, even
if a middleware packager decides to compose a specialized
middleware version based on the intended design modularity,
the specialized version of the middleware still results in many
excessive features that are not necessary for the particular
domain concern being tackled by the target application. As
a consequence, prior research on middleware specialization



does not address PLE issues.
An approach to resolve this challenge relies on reverse

engineering techniques such as source code analysis since they
are not restricted to module or layer boundaries imposed by
traditional bottom-up composition techniques. Since reverse-
engineering techniques rely more on top-down approaches
using introspection and reflection, they address the PLE ”ap-
plication engineering” phase. Therefore, in this paper we
primarily focus on PLE application engineering whereas we
employ FOP-based reasoning that deduces domain engineering
concerns to drive the overall process. Thus, reverse engineer-
ing driven by domain concerns enables the implicit analysis
and decomposition along domain concerns.

To realize these goals, we present the Feature-Oriented
Reverse Engineering for Middleware Specialization (FORMS)
approach and the resulting framework for refactoring general-
purpose middleware along individual domain concerns that can
be combined with application-level product line engineering.
FORMS reverse-engineers existing middleware source code
and synthesizes custom versions of middleware that are com-
posed of only the features required by the individual product
variants.

FORMS provides a multi-step process as follows: (1) it
evaluates domain requirements using a wizard-driven rea-
soning that maps the platform-independent (PIM) domain
requirements to a PIM middleware feature model, (2) it sub-
sequently prunes the PIM middleware feature model into the
PLE or product variant-specific feature model using the wizard
interpreter tools, (3) it determines which platform-specific
(PSM) middleware features are to be directly and indirectly
included in the construction of the specialized middleware,
(4) it uses a sophisticated algorithm to synthesize independent
feature modules corresponding to the pruned middleware
feature model, and (5) it customizes the build system and
synthesizes libraries for the individual specialized middleware
variants corresponding to the individual product variants.

The rest of the paper is organized as follows: Section II
presents the FORMS approach to middleware specialization;
Section III evaluates the FORMS approach by checking cor-
rectness and calculating footprint reduction using a represen-
tative case study of networked logging server product line
variants. It also discusses the insights gained for potential
enhancements that can be incorporated within FORMS for
addressing fine-grained feature composition and discovering
further issues with respect to middleware modularity concerns;
Section IV discusses the related research efforts and classifies
middleware specialization techniques; and finally Section V
provides ‘concluding remarks alluding to future research is-
sues and lessons learned.

II. THE FORMS MIDDLEWARE (DE)COMPOSITION
PROCESS

This section presents the FORMS approach and the re-
sulting framework for middleware specialization for product
lines using feature-oriented reverse engineering. We assume

that middleware developers develop module code bottom-
up based on a design template and subsequently create the
corresponding build configurations for their modules through
mechanisms, such as Makefiles or Visual Studio Project files.

FORMS is based on reverse engineering and takes a top-
down approach where it identifies the feature modules within
the middleware code base, and their dependencies based on
the domain concerns that were identified in the PLE domain
engineering phase. Subsequently, based on the selected domain
concerns, it composes the corresponding implementation fea-
ture modules to synthesize the specialized middleware variant
thereby vertically decomposing the middleware.

In FORMS, we view domain concerns to represent platform-
independent feature models (PIM) whereas middleware plat-
form features represent platform-specific feature models
(PSM). FORMS provides a process to transform the PIM
domain concerns to PIM middleware concerns and subse-
quently to PSM middleware implementation concerns, which
finally drive the generation of specialized middleware for a
given set of domain concerns. FORMS is built as a feature-
oriented software development (FOSD) environment within
a bigger toolchain called GAMMA (Generators and Aspects
for Manipulating Middleware Architectures). GAMMA (http:
//www.dre.vanderbilt.edu/GAMMA/) has a host of associated
tools that help the interpretation of these PIM feature models,
their transformations from PIM to PSM, and profiling the
specialized middleware configurations for performance and
footprint metrics.

A. Overview of the FORM Process

Figure 1 illustrates the FORMS middleware specialization
process that PLE developers use for their product variants. We
briefly describe the steps of the FORMS process below:

1. Feature Mapping Wizard: The PLE application de-
veloper starts the middleware specialization wizard and
begins describing the characteristics of the product to be
developed specifying the PIM product-line, domain-level
concerns needed for the variant.
The Feature Mapping wizard maps the PIM product-line
domain-level concerns to PIM middleware features. The
wizard asks questions about the configuration require-
ments and options of the product for which middleware
is to be developed. These requirements include distribu-
tion features, such as client/server; concurrency features,
such as single/multi-threaded, in that order. The selected
features are also configured along the way as they are
selected for composition. The wizard can ask further fine-
grained questions within each individual coarse-grained
feature that is being selected to exactly configure that
feature. The PLE developer response determines the next
question that will be asked.
The wizard then creates initial build configuration files
that contain hints as to what source files to include in the
middleware build. These files identify the starting points
for creating the closure sets of source file dependencies
where no file within a closure has dependencies on



Fig. 1. FORMS Middleware Specialization Process

files outside the closure set. Note that the FORMS tool
understands the middleware code organization including
the organization of the source files.

2. Transformations: Once the pruned PIM middleware
feature set is obtained from the wizard, it is then mapped
to the actual PSM middleware features that implement the
individual PIM features using the PIM-PSM mappings
that are provided by the middleware developer.

3. Closure Computation: Once the hints are obtained,
they are used to create closure sets using an algorithm that
systematically composes the source code and files that are
associated with each feature into a feature module (FM).
The closure sets are essentially all the dependencies that
are gathered by the tool.

4. Feature Module Composition: The feature modules
are then composed into product variants which map to
domain concerns directly.

5. Specialized Middleware Synthesis: The build configu-
ration is specialized by adding source files from individ-
ual closure sets of feature modules to the build descriptor
thereby generating the build configuration file, such as
a Makefile. For our evaluations, FORMS generates the
Make Project Creator (MPC) [8] build configuration file.
This MPC file represents the part of the specialized
middleware that is to be built for the product variant.
The generated MPC file is then used to create platform-
specific make files by running the MPC-supplied perl-
based scripts. The platform-specific Makefiles are then
used to synthesize the specialized middleware for the
product line or product variant.

Notice that this process is entirely repeatable and reusable.
A repository of requirements for product variants can be
maintained. There is no need to maintain the customized
versions of the middleware since it can be synthesized through
this process. In the rest of the section we focus on some of

the important building blocks of FORMS.

B. The FORMS Stages

1) Feature Mapping Wizard: In the PLE development pro-
cess, FORMS is applicable in the packaging and assembly
phases where the PLE application and variant along with its
middleware is configured and packaged. The requirements rea-
soning wizard performs the difficult job of mapping the PIM
product-line domain concerns to PIM middleware features.

Domain concerns describe the characteristics of the product
being developed. These characteristics may include functional
concerns as well as non-functional (QoS) concerns. Functional
concerns describe the way a particular application/product
behaves, and its configuration. Non-functional concerns usu-
ally describe the way a product is supposed to perform
which includes dimensions of concurrency, event processing,
protocols, etc.

Normally, domain concerns and middleware features man-
ifest themselves into separate hierarchial representations.
Therefore, a mapping is required to transform domain concern
hierarchies to middleware feature hierarchial models. In order
to create a systematic mapping, this wizard makes use of
model transformations to navigate through the concern and
feature hierarchies. Interestingly, both the functional and non-
functional concerns can map within the same middleware
feature model. The features higher-level in the decision tree
represent the functional concerns and since the lower-level
features configure the higher-level features, they represent the
non-functional concerns.

Feature models of the general-purpose middleware as shown
in Figure 3 tend to be very complex and huge making it very
cumbersome to analyze for modularity. Fortunately, the feature
sets for product variants are limited, which makes the mapping
of concerns tangible within the middleware feature set. This
helps us map known domain concerns to the middleware



Fig. 3. Middleware PIM Feature Model

Fig. 2. Decision Tree used by the Feature Mapper Wizard

features in advance resulting in a m : n correspondence
between the concern model and middleware feature model.
Thus, based on the concern model the middleware feature
models needs to be pruned to remove the unwanted features
that do not map to the domain concerns. This is done through
the feature model interpreters provided by FORMS.

After performing this mapping, a pruned PIM-level mid-
dleware feature set is generated that is used to synthesize
the specialized middleware for the particular product variant.
We assume that the mapping of platform-specific middleware
features to source code is already performed beforehand by the
middleware developer at design time enabling us to directly
determine the source code that implements the middleware
feature set and hence the domain concerns. The wizard outputs
the source code hints that act as the starting point of the closure
computation algorithm.

2) Discovering Closure Sets: Once the source code hints
that directly implement the domain concerns are determined,
their dependencies on other code within the middleware needs
to be determined. All such code that is interdependent on

each other is what implements the domain concern. We call
such a set of source files as a closure set in which there
are no source file dependencies going out of the closure set.
We differentiate between feature definition and feature imple-
mentation files. Feature definition makes it easier to identify
and annotate features whereas feature implementations which
capture the feature behavior may differ from one middleware
implementation to another depending upon the language of
implementation. Thus the closure computation identifies the
set of dependent features definitions and their definitions,
and composes them into a coherent and independent feature
module.

We have designed a recursive closure computation algorithm
that walks through the source code dependency tree and
identifies the source that is dependent on the feature. However,
opening each file on-the-fly and checking the dependencies is
inefficient since it requires numerous I/O operations. Instead
we run an external dependency walker tool like Doxygen [9]
or Redhat Source Navigator [10] to extract out the dependency
tree.

1. Lines (1-7): The middleware developer provides the
mapping from the PIM middleware features to the PSM
feature definition files in which the features are mapped.
Since this is a coarse-grained mapping it is simpler to
designate a set of files for a feature definition.

2. Lines (10-17): Once these source code hints are ob-
tained the algorithm computes the closure set for each
of the source code hints. This step produces even more
dependent feature definition files which automatically
form part of the closure set. Their closure need not be
recalculated.

3. Line (18): The previous step gives rise to potentially
more dependent feature sets that are not directly used
by the product-line variant. The algorithm identifies the
implementation files for the features in dependent feature
sets.

4. Line (19): Note that the closure for the corresponding
feature implementation files may need to be calculated.
These new files form the pending implementation set and
are added to the list of pending files whose closure needs
to be calculated.



Algorithm 1 Algorithm for Computing Closure Set for a
product variant
1: Ms : Mapping of PSM middleware features to PSM definitions
2: Fp : Feature Set for Product Variant p
3: Cp : Closure set for product p ∈ Fp

4: Cf : Closure set for feature f ∈ Fp

5: Cs : Closure set for source hint s ∈ Ms

6: Pi : Pending set of feature implementations whose closure set needs to be calculated
7: Input: Fp, Ms

8: Output: Cp (Initially empty)

9: begin
10: Cp := ∅
11: for each feature f ∈ Fp do
12: s := FIND feature definition from Ms for feature f
13: Cf := ∅
14: Cs := ∅
15: Cs := COMPUTE closure for feature definition s
16: Cf := Cf ∪ Cs

17: Pi := FIND new feature implementation files for each feature definition in Cs

18: while Piisnotempty do
19: Cs := ∅
20: Cs := COMPUTE closure for feature implementation file i ∈ Pi

21: Cf := Cf ∪ Cs

22: Pi := Pi∪ FIND new feature definition & implementation files that were
found in the closure computation

23: end while
24: Cp := Cp ∪ Cf

25: end for
26: return Cp

27: end

5. Lines (20-26): Now the algorithm iteratively calculates
closure sets for each feature implementation file until all
the pending implementation files are accounted for. The
closure computation will always give rise to more feature
implementation files as described in the 2nd step.

The closure sets corresponding to the product variants that
are discovered in Section II-B2 are different from cliques
or maximally independent sets in graph theory. Closure sets,
though transitive, are completely self-sufficient so they can
also be called independent transitive closures.

3) Middleware Composition Synthesis through Build Spe-
cialization: Different middleware use sophisticated techniques
to compile its source code into shared libraries. Some of
these techniques rely on straightforward scripting e.g., shell
script, batch files, perl scripts, or ANT scripts while some
of them rely on descriptor files such as make file system
or advanced cross-compiler build facilities like MPC (Make
Project Creator) [8]. We leverage the MPC cross-compiler
facility since it supports multiple compilers and IDEs and is
therefore more generic and widely applicable for synthesizing
middleware shared libraries written in different programming
languages.

The MPC projects of the general-purpose middleware do not
necessarily represent the feature modularization per se. The
closure sets are converted into MPC files for synthesis of the
specialized middleware represented by the closure sets through
the respective language tools. These MPC files are specialized
versions of the combination of the original MPC files of the
general-purpose middleware and are the real representation
of feature modularization in terms of product-line variant
requirements.

III. EVALUATION

A. Logging Server Case Study

Fig. 4. Logging Product Line

In order to explain and evaluate the FORMS middleware
specialization process, we use a motivating example of a
product-line of networked logging servers as shown in Fig-
ure 4. We choose this particular product line since logging
various status and error messages is a very frequent and widely
used facility for monitoring the system performance as well as
system survivability in different domains such as enterprise,
or distributed real-time and embedded systems like shipboard
computing and mission critical aviation software.

A logging server has different performance requirements de-
pending upon the type of application that is using the logging
facility. Depending upon the application domain the need for
logging varies from sporadic to frequent logging. Enterprise
applications may require sporadic logging where logging is
restricted to mostly error and status messages whereas certain
high security mission critical application that are susceptible
to infiltrations may require more detailed logging traces of the
system behavior in order to detect indiscrepancies and errors
that may lead to discovering an impending or in-progress
security attack. Hence sporadic logging may require iterative
or reactive logging servers whereas frequent logging may
require multithreaded or multiprocess logging servers.

We evaluate FORMS by modeling a product-line of net-
worked logging applications based on contemporary, widely
used communication middleware such as ACE [11]. ACE
is a free, open-source, platform-independent, highly config-
urable, object-oriented (OO) framework that implements many
core patterns for concurrent communication in software. It
enables developing product variants using various types of



communication paradigms such as client-server, peer-to-peer,
event-based, publish-subscribe, etc. Within each paradigm it
supports various models of computation (MoC) which are
highly configurable for different QoS requirements. We have
designed the networked logging product-line servers based on
the client-server paradigm with individual models conform-
ing to various MoCs including iterative, reactive, thread-per-
connection (TPC), real-time thread-per-connection (RT-TPC)
and process-per-connection (PPC). Each product variant may
in turn have different QoS requirements for event demultiplex-
ing and event handler dispatching, signal handling, service
initialization, interprocess communication, shared memory
management, message routing, dynamic (re)configuration of
distributed services, concurrent execution and synchronization.

Figure 4 shows the representation of the logging server
product line in terms of commonality and variability of the
features. We have showcased only those features that are
required since we are not interested in how the individual
logging server variant is implemented but rather what PIM
features it desires from the underlying middleware platform.

B. Experimental Results of applying the FORMS process

By creating specialized variants of ACE middleware for
different types of logging servers, FORMS profiling tools
estimate the memory footprint savings, dependent middleware
features, source files that implement the features, and exercise
unit tests to determine whether the expected performance is
met. We showcase the compile-time metrics that result from
middleware specialization.

1) Footprint and Feature Reductions : Our experiments
provide interesting insights about the relationship between the
number of middleware features being used and the footprint of
the synthesized middleware. The ACE middleware is imple-
mented in 1,388 source files and 436 features with a resulting
footprint of 2,456 KB. Table I shows that FORMS has achieved
significant optimizations - a 64% reduction in the number of
source files used, a 60-76% reduction in the number of features
used, and a 41% reduction in memory footprint. The ACE
middleware was compiled on Windows using Visual Studio
8.0 compiler. Similar improvements with also observed with
GNU GCC compiler on Linux.

Table I also shows that the PLE variants share many
middleware PIM features as verified by the almost similar
footprint measurements (1,456 KB - 1,500 KB). This means
that the middleware forms a homogenous core that supports
the entire product line. In this case, a single version of
the ACE middleware could be synthesized for the entire
product-line instead of synthesizing individual variants for
each product. Thus, FORMS also provides guidelines as to
whether to synthesize individual variants or a single variant
for the product-line thereby eliminating the need to provide
and maintain multiple specialized middleware variants.

2) Modularization Discrepancies: On the other hand as
shown in Figure 5, there is a wide disparity between the
number of PSM middleware features required by the individual
product variants (107-178) variants and the PSM source files

Fig. 5. Modularization Disparities

implementing them. More specifically after inspecting the
individual product variant generated MPC build configuration,
there were some unused PSM features that percolated into the
feature modules of a product variant. This means that there
are several unused middleware features that find their way in
the specialized middleware for the Iterative, Reactive and PPC
product variants that originally required fewer features.

The reason for such disparity is due to the implementation
dependencies intentionally/unintentionally designed by the
middleware developer. This results from the conflicts between
the design goals envisioned by the middleware architects and
the implementation goals of the middleware developers. Thus
even though general-purpose middleware is designed in a mod-
ular way, the modularity does not manifest exactly in the same
way in their implementations of the middleware layers. Thus,
FORMS can provide a guideline to the middleware developers
to detect and break unnecessary dependencies within their
source code.

C. Additional Insights provided by FORMS

FORMS can be enhanced to give additional insights to
middleware developers about the middleware modularization,
ease of testing and maintenance overheads.

1) Discovering Modularization Discrepancies: FORMS
can help in figuring out whether the logical PIM feature
independence translates to their actual PSM implemen-
tation independence. This happens if a single PSM
implementation source file implements more than one
PIM feature or vice versa. This can be figured out by
discovering out the PSM dependencies between the indi-
vidual PIM features during the middleware development
process. This will also be useful to figure out modularity
of the software and point out any potential flaws in
the implementation of the original design. This will
also aid maintainability and evolvability of the software
by enabling the detection of dependencies between so
called independent features.

2) Automated Test Case Selection: Since FORMS reduces
the amount of features, in turn the functionalities that are
required from the middleware, it can enable automatic



Networked Logging Applications Product Line Outcome of Closure Computations Synthesized Middleware
Product Variant # of Middleware # of Middleware Size of Closure Static Footprint

(described in Domain Concerns) PIM Features PSM Features Set (PSM files) (KB)
Simple (Iterative) Logging 9 107 502 1,456

Reactive Logging 12 109 502 1,456
Thread Per Connection Logging 11 176 502 1,456

Real-Time Thread Per 12 178 502 1,456
Connection Logging

Process Per Connection Logging 12 120 508 1,500

TABLE I
Outcome of applying FORMS to a Product-line of Networked Logging Applications

test case selection of functional unit tests in order to
alleviate the testing and maintenance overhead for the
middleware developers

3) FORMS can advise middleware developers to correct
their implementation mistakes by breaking unwanted de-
pendencies with the middleware modules. This will help
reduce the tight coupling between the modules within
the middleware layers and minimize the presence of
unused features in feature modules. However it will not
automatically decompose the middleware along domain
concerns. FORMS will be required to perform vertical
decomposition of the middleware.

4) FORMS helps in identifying the core middleware fea-
tures needed by the product-line. FORMS can take a
multiset intersection of all the closure sets that are
generated for the different product-line variants. This
intersection represents the commonality whereas the rest
of the features represent the variability.

5) FORMS can potentially figure out the differences be-
tween the logical middleware core as designed and
envisioned by the middleware architect and physical
middleware core estimated by the closure computation.

6) The different feature modules corresponding to individ-
ual product variants share a set of common features and
thus are not independent of each other. This forms the
commonality dimension of the product-line engineer-
ing methodology. FORMS can discover the common
intersection set of the product variant’s closure sets
and then try to compute the maximal closure set from
the intersection set. This maximal closure set can form
logical middleware core that is used by the entire product
line.

7) Looking at the individual closure sets of the features
FORMS can also possible to find related, dependent fea-
ture(s) that are physically similar even though logically
distinct.

IV. RELATED WORK

We survey and organize related work along two different
dimensions: forward engineering and reverse engineering, and
the techniques they use to realize these processes.

A. Forward Engineering Approaches

1) Feature-oriented programming (FOP) for feature module
construction: Current PLE research is supported primarily

through feature-oriented programming (FOP) techniques as
advocated by AHEAD [12], CIDE [13], and FOMDD [7].
These approaches are based on processes that annotate fea-
tures in source code and compose feature modules that are
essentially fragments of classes and their collaborations that
belong to a feature. Being forward engineering techniques that
they rely on clear identification of features, their dependencies
and their interactions right from the requirements gathering
stage of the PLE software lifecycle. Some efforts in this
direction stem from the identification of feature interactions,
their dependencies, granularity and their scope [14].

FORMS encompasses the AHEAD and CIDE FOP method-
ologies by leveraging reverse engineering to enable automatic
identification of features and their dependencies and compos-
ing only the features that directly serve the domain concerns
of the product line application. However both approaches rely
on manual identification of features in legacy source code
and manual definition of composition rules. FORMS can be
potentially extended by integrating both AHEAD and CIDE
based FOP approaches to support fine-grained composition of
feature modules.

2) Aspect-oriented programming (AOP) for modularizing
crosscutting concerns: AOP provides a novel mechanism to
reduce footprint by enabling crosscutting concerns between
software modules to be encapsulated into user selectable
aspects. FACET [4] identifies the core functionality of a
middleware framework and then codifies all additional func-
tionality into separate aspects. To support functionality not
found in the base code, FACET provides a set of features that
can be enabled and combined subject to some dependency
constraints. By using AOP techniques, the code for each of
these features can be weaved at the appropriate place in the
base code. However FACET requires manual refactoring of
the middleware code into fine grained aspects for compo-
sition. FORMS does not require manual refactoring of the
middleware code necessitated by the AOP techniques through
its automated detection of features and feature dependencies
within middleware source code.

3) Combining modeling and aspects for refinement: The
Modelware [5] methodology adopts both the model-driven
architecture (MDA) [15] and AOP. Borrowing terms from
subject-oriented programming [16], the authors use the term
intrinsic to characterize middleware architectural elements
that are essential, invariant, and repeatedly used despite the



variations in the application domains. They use the term
extrinsic to denote elements that are vulnerable to refinements
or can become optional when the application domains change.

Modelware advocates the use of models and views to sepa-
rate intrinsic functionalities of middleware from extrinsic ones.
Modelware considerably reduces coding efforts in supporting
the functional evolution of middleware along different appli-
cation domains. These are mainly forward engineering ap-
proaches that are dependent upon an efficient design process.
However, most of the existing general purpose middleware
has already been developed and there is a need to facilitate
its specialization for domain-specific use through top-down
reverse engineering approaches like FORMS.

Moreover, both FACET and Modelware being forward engi-
neering approaches there is no automatic solution to manually
annotating features and identification of cross-cutting concerns
and modularizing them.

B. Reverse Engineering Approaches

1) Design Pattern Mining from source: Substantial research
has been conducted on discovering design and architectural
patterns from source code [17]. However, most such tech-
niques are informal and therefore lead to ambiguity, impreci-
sion and misunderstanding, and can yield substandard results
due to the variations in pattern implementations. In order
to specialize middleware such design pattern mining tech-
niques need to be well supported by round-tripping techniques
provided by FORMS that will enable any specializations at
design level to reflect back into the source code. We are
investigating the application of such techniques to automate
feature annotation in source code.

Since forward engineering techniques focus on feature
identification, static, and dynamic composition, they rely
on strong modular boundaries. However, reverse engineering
approaches like source code analysis which is the base of
FORMS can prove to be beneficial to identifying features that
span module boundaries and identifying discrepancies in the
intended logical design of the middleware and their physical
implementations.

V. CONCLUDING REMARKS

Although forward engineering provides systematic and el-
egant techniques for synthesizing specialized middleware, it
does not modularize middleware implementations along do-
main concerns that are often entangled and crosscut conven-
tional horizontal modularization boundaries in middleware. In
this paper we present FORMS which is a reverse engineering
techniques based on source code analysis that offers a promis-
ing and viable alternative to modularize domain concerns
within middleware code. Source code analysis techniques tend
to be coarse grained at best but can provide crucial pointers
to the lack of proper implementation methods by showcasing
the difference between the intended PIM module designs and
their PSM code implementations.

Future Work and Open Issues: Following are the open
issues not handled by FORMS that impede fine-grained mod-
ularization of middleware:

• How do we handle feature interactions? Features are
often known to interact [18] with each other. For example,
when performance and resource constraints are also to
be addressed across the lifecycle, it is conceivable that
specializations that satisfy one requirement may interact
in unforeseen ways with other kinds of specializations.
Naturally, any ad hoc process will not produce the correct
results nor will it work across different domains.
• How to efficiently annotate middleware source code

for feature identification and management? There is
not only a need to systematically design middleware
ground-up but also a need to refactor contemporary
middleware for feature pruning/augmentation. However
refactoring can be a monumental task for middleware de-
velopers. This can only be achieved by devising efficient
advanced annotations that identify middleware features,
their dependencies and interactions, which can then be
leveraged by tools like FORMS.
• How to tackle fine-grained modularization? lack of

fine granularity of modularization in their design make
general-purpose middleware heavyweight solutions and a
performance overhead. FORMS needs to tackle the fine-
grained modularity by automatically annotating code and
generating the middleware specialization directives. We
intend to investigate such issues in our future work by
further improving the FORMS tools based on the anoma-
lies and discrepancies that FORMS can discover and by
integrating contemporary tools like CIDE, AHEAD, and
FOCUS [19] to support fine-grained feature composition.

REFERENCES

[1] D. M. Weiss and C. T. R. Lai, Software product-line engineering:
a family-based software development process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] D. Batory, “Feature-oriented programming and the AHEAD tool suite,”
in Proceedings of the 26th International Conference on Software En-
gineering. IEEE Computer Society Washington, DC, USA, 2004, pp.
702–703.

[3] G. T. Sullivan, “Aspect-oriented programming using reflection and
metaobject protocols,” Commun. ACM, vol. 44, no. 10, pp. 95–97, 2001.

[4] F. Hunleth and R. K. Cytron, “Footprint and Feature Management Using
Aspect-oriented Programming Techniques,” in Proceedings of the Joint
Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES 02). Berlin, Germany: ACM Press, 2002, pp. 38–45.

[5] C. Zhang, D. Gao, and H.-A. Jacobsen, “Generic Middleware Substrate
Through Modelware,” in Proceedings of the 6th International ACM/I-
FIP/USENIX Middleware Conference, Grenoble, France, 2005, pp. 314–
333.

[6] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An Archi-
tecture for Next Generation Middleware,” in Proceedings of the IFIP
International Conference on Distributed Systems Platforms and Open
Distributed Processing. London: Springer-Verlag, 1998, pp. 191–206.

[7] S. Trujillo, D. Batory, and O. Diaz, “Feature oriented model driven
development: A case study for portlets,” in ICSE ’07: Proceedings of the
29th international conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 44–53.

[8] C. Elliott, “The makefile, project, and workspace creator (mpc),” www.
ociweb.com/products/mpc, Sep 2007.

[9] Dimitri van Heesch, “Doxygen,” www.doxygen.org, 2001.



[10] B. Developer, “The source-navigatorTM ide,” http://sourcenav.
sourceforge.net/.

[11] Institute for Software Integrated Systems, “The ADAPTIVE Communi-
cation Environment (ACE),” www.dre.vanderbilt.edu/ACE/, Vanderbilt
University.

[12] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,
pp. 355–371, 2004.

[13] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Software
Product Lines,” in Proceedings of the 30th international conference on
Software engineering, ICSE ’08. New York, NY, USA: ACM, 2008,
pp. 311–320.

[14] S. Apel, T. Leich, and G. Saake, “Aspectual feature modules,” Software
Engineering, IEEE Transactions on, vol. 34, no. 2, pp. 162–180, March-
April 2008.

[15] Model Driven Architecture (MDA), OMG Document ormsc/2001-07-
01 ed., Object Management Group, Jul. 2001.

[16] W. Harrison and H. Ossher, “Subject-oriented Programming: A Critique
of Pure Objects,” in OOPSLA ’93: Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications. New York, NY, USA: ACM, 1993, pp. 411–428.

[17] J. Dong, Y. Zhao, and T. Peng, “Architecture and design pattern
discovery techniques - a review,” in Software Engineering Research and
Practice, H. R. Arabnia and H. Reza, Eds. CSREA Press, 2007, pp.
621–627.

[18] J. Liu, D. Batory, and C. Lengauer, “Feature Oriented Refactoring of
Legacy Applications,” in Proceedings of the International Conference
on Software Engineering. ACM Press New York, NY, USA, 2006, pp.
112–121.

[19] A. Krishna, A. Gokhale, D. C. Schmidt, J. Hatcliff, and V. Ranganath,
“Context-Specific Middleware Specialization Techniques for Optimizing
Software Product-line Architectures,” in Proceedings of EuroSys 2006,
Leuven, Belgium, Apr. 2006, pp. 205–218.


