
The Software Engineering of

Domain-Specific Modeling Languages:
A Survey Through Examples

Ethan K. Jackson
ejackson@isis.vanderbilt.edu

Technical Report ISIS-07-807

Institute For Software Integrated Systems

Vanderbilt University, Nashville, TN

March 2007

1

Abstract— This paper presents the fundamental con-
cepts of model-based design to the broader software
engineering community. We examine model-based design
from the perspective of domain-specific modeling languages
(DSMLs). DSMLs capture the structure, behavioral char-
acteristics, and abstractions of complex problem domains.
Model transformations defined between language syntaxes
serve as high-level specifications of domain-specific com-
pilers. Additionally, transformations are used to change
abstraction levels. This paper is example driven and
includes examples from a number of tools including ASML
[1], Ptolemy II [2], GME [3], and GReAT [4].

Index Terms— model-based design, domain-specific
modeling languages, structural semantics, model of com-
putation, model transformations

I. INTRODUCTION

TODAY’S software systems pose unique chal-
lenges to traditional software engineering

methodologies. First, the demands placed on soft-
ware systems continue to evolve in both the func-
tional and non-functional realms, and along many
interacting axes: architectural, temporal, and, phys-
ical. Second, the shear scale of software continues
to grow, both on a per node basis, and in number
of distributed nodes that compose a system. Third,
non-engineering disciplines, such as the legal field,
are impacting design choices in poorly understood
ways. For example, the recently enacted HIPAA
law will impact how medical records can be dig-
itally stored and accessed [5]. On one hand, this
trifecta validates exactly what software engineers
have always argued: Software must be designed
methodically; off-the-cuff implementations will al-
most surely fail. On the other hand, engineering
approaches that focus on sequential systems isolated
in a comfortable computational environment are not
sufficient for methodically designing today’s large-
scale and heterogeneous software systems.

The term model-based design encompasses a
spectrum of engineering approaches, all of which
address the complexity of modern system de-
sign. Most model-based approaches share a central
dogma: The application context must be defined
before architecting a solution. By application con-
text we mean a description of the world in which
the solution will operate. Typically the applica-
tion context includes the temporal properties of
computation, the concurrency and synchronization
properties of communication, and the conditions
under which deadlock or other malevolent behaviors

arise. These attributes are generic to the context,
and affect any solution placed in the application
context. Particular model-based tools metaphorize
the application context differently. The application
context may be viewed as a platform, actor class,
model of computation, or domain-specific modeling
language. The authors of [2] argue that all of these
perspectives are essentially the same. Nonetheless,
it is useful to think it terms of one (or more) of these
metaphors. In this paper we focus on the view that
an application context is a domain-specific modeling
language (DSML).

Embedded and heterogeneous systems were the
genesis for model-based design, but the approach
has wider applicability to software engineering as
a whole. The purpose of this paper is to present
model-based design to the software engineer from
the perspective of domain-specific modeling lan-
guages. We chose this perspective because the field
of programming languages is already familiar to
many software engineers. DSML design can be
viewed as extensions to traditional language design.
These extensions permit the application context to
be described as a sort of programming language;
programs that adhere to the language correspond to
systems that are well-behaved when immersed in the
application context. The engineer’s job is to select
or construct a DSML that captures the essential
characteristics of the application context. In the next
section we discuss the benefits of the language view
in more detail. Section 3 presents the formal foun-
dations of DSML semantics. Section 4 describes
how DSMLs programs can be executed (simulated)
on traditional machines. Section 5 examines syntax
and compiler construction. We conclude in Section
6. Finally, we emphasize concrete code examples,
providing the reader with tangible snapshots of a
number of model-based tools.

II. THE BENEFITS OF THE LANGUAGE VIEW

In the simplest sense, a software system is a list
of instructions and data executed on a machine.
Of course, a list of instructions is just a carefully
crafted list of data that adheres to the syntax of
the programming language in which it was written.
Thus, reiterating the observation that many have
made before, a program is just a list of data. A
program alone is meaningless without a machine
to execute it, but when coupled with such a ma-
chine, a complex dynamical system emerges. In this

2

view, programming languages allows us to represent
complex dynamical systems in a compact form as
syntactically correct data [6].

The traditional data/machine view is a useful one,
but in its unaltered form, it does not work well for
distributed, embedded, and heterogeneous systems.
Traditional programming languages are based on
Turing machines, and this has significant draw-
backs: First, Turing-like machines do not match
the actual dynamics that distributed and embedded
systems exhibit [7]. For example, the Turing ma-
chine must be extended to model the communication
delays or unreliable channels experienced by a dis-
tributed system. Additional extensions are needed
to capture the continuous dynamics experienced
by embedded systems that sense and manipulate
a physical environment [8]. Second, Turing-like
machines are so expressive that it may be impossible
to know if certain software requirements have been
met. For example, the Halting Problem is unde-
cidable for Turing machines. Deadlock-freedom is
closely related to the halting problem, and is often
undecidable. Thus, if a software system must be
deadlock-free, then it may be unsafe to design
such a system with the expressiveness of a Turing
machine, for which the problem is undecidable (or
intractable).

Model-based design addresses this problem by
supporting the data/machine paradigm for many
distinct types of machines. It also provides tools
for defining new machine types and programming
languages for those machines. In the model-based
community the machine types are called models of
computation (MoCs), and the programs are called
models. Thus, a model is a structural (syntactic) ar-
tifact that defines a dynamical system when coupled
with a particular MoC. The programming languages
for particular MoCs are called domain-specific mod-
eling languages (DSMLs) because they target only
some machine types. This approach offers software
engineers “methods and syntaxes that are closer to
their application domain” [9]. This encourages the
engineer to use the MoC that best reflects the reality
of the environment in which design must take place.

From the perspective of traditional software en-
gineering, many of the techniques for DSML con-
struction are similar to traditional programming lan-
guage construction. DSMLs are created according
to the following procedure: First, a mathematical
description of an abstract machine (MoC) is de-

veloped. Second, an implementation of the abstract
machine on a traditional Von Neumann architecture
is constructed. This is similar to implementations
of the Java Virtual Machine (JVM) on various
platforms [10]. Third, a modeling language with a
well-defined syntax is defined using tools similar
in spirit to BNF-based (Backus-Naur Form) parser
generators. Fourth, techniques, e.g. syntax-directed
translation [11], and patterns, e.g. the visitor pattern
[12], are used to translate a model into a set of
instructions for the abstract machine. Since the
machine has an implementation on existing archi-
tectures, the model can be simulated for the purpose
of analysis or converted into a final native-code
implementation.

Despite these similarities, there are some deep
theoretical differences between traditional language
design and today’s model-based DSML design
approaches. First, as we have already discussed,
DSMLs support many different notions of computa-
tion. Second, DSMLs extend the expressiveness of
syntax. Historically, syntaxes have been chosen for
their ease of use and ease of parsing. Resounding
figures, like Djikstra and Hoare, argued for both
these properties, and history bares their mark [13].
The model-based community uses syntaxes to filter
out behaviorally incorrect models, or as a first-
pass before verification [14]. The trade-off is often
made that syntaxes with high parsing complexity
parsing are tolerated in exchange for the ability
to detect badly designed systems early. We now
describe these issues in more detail, beginning with
extensions to formal notations of computation.

III. MODELS OF COMPUTATION

The traditional Turing machine, which contains a
finite state controller with an infinite tape, must be
rethought for today’s engineering landscape. This
is not because software systems run on drastically
different hardware architectures (there are some ex-
ceptions) where the Turing model is invalid; rather
software systems run in drastically new environ-
ments with drastically new requirements. For exam-
ple, the Object Management Group (OMG), which
maintains standards for the widely-used Univer-
sal Modeling Language (UML), defines a standard
for specifying distributed data-centric applications.
The following list enumerates some of the two-
dozen possible requirements that can be placed on

3

distributed applications (See the data distribution
service (DDS) specification [15]):

1) Deadlines - A reader in the network requires
a new piece of data within every T units of
time.

2) Reliability - A reader demands how much of
the known data must be delived to that reader;
impacts overall resource usage in the network.

3) Lifespan - A writer places an expiration date
on data; after this time, the data is no longer
valid.

Software with these requirement must be under-
stood as both temporal and concurrent. However,
providing a suitable formal definition of time and
concurrency is not easy. For the remainder of this
section we will explore various formal notions of
time and concurrency as extensions to the traditional
untimed Turing machine.

A. Representing Time

The concept of time is an integral component
of modern system requirements. In order to know
if the requirements have been met, we must first
get an idea of how a software system evolves
across time. Traditionally, the temporal properties
of software are measured with profilers like ATOM
[16]. However, profilers cannot decide if timing
requirements have been met without performing an
unbounded number of analyses. A more conserva-
tive approach is to estimate the worst-case execution
time (WCET), but WCET is highly correlated with
implementation choices [17]. For example, the pre-
cise cache replacement policy affects affects WCET.
We could fix all of these implementation details at
the beginning of the engineering process, but this
is contradictory to almost all modern engineering
approaches wherein a design evolves from a high-
level specification to a low-level implementation.

Methodologically, software should be designed
with certain timing characteristics, instead of just
measuring those characteristics a posteriori. How-
ever, as we have already discussed, traditional pro-
gramming languages do not support the program-
matic specification of timing properties, because the
underlying machine model does not include a notion
of time. A successful approach has been to change
the underlying machine model to include a precise
notion of time. Programs, which are just data inter-
preted by the machine, define a dynamical system

with precise temporal properties. One such widely-
adopted extension is timed automata, but before we
discuss this, let us recall some basic definitions.
Consider that all physical machines have finite state;
ignoring time, we can describe a machine as a finite
state automaton (FSA) AF = 〈Q, Q0, QF ,→, Π〉
over an input alphabet Σi and output alphabet Σo:

1) Q is a finite set of states
2) Q0 ⊆ Q is a set of initial states
3) QF ⊆ Q is a set of final states
4) →⊆ Q×Σi×Q is a transition relation where

s
α→ s′ indicates that the system transitions to

s′ when it is in state s and observes α.
5) Π : Q → Σo is a mapping from states to

observations.

In this case, we can imagine that the input alphabet
Σi contains the basic instructions and data recog-
nized by the machine. A program is fed, instruction-
by-instruction and datum-by-datum, to the automa-
ton AF . In response, the machine transitions through
a sequence of states s0 → s1 → . . . → sn and
we observe a dynamical system that looks like the
sequence Π(s0), Π(s1), . . . , Π(sn).

The timed-automaton extends this model, allow-
ing states to modulate clocks, which count the pas-
sage of time [18]. Clocks may also be reset, so that
they forget the elapsed amount of time. To be more
precise, a set of clocks is a set of variables X that
can be evaluated by a clock valuation v, assigning a
positive real value to each clock. A transition may
be taken if a certain input letter has been observed
and the current clock valuation satisfies the guard of
the transition, where a guard is conjunction of terms
of the form (c < q), (c ≤ q), (q < c), and (q ≤ c)
for c ∈ X, q ∈ Q+. The guard of a transition is
satisfied for a valuation v if each term (v(c) op q) is
valid in R, where op ∈ {<,≤, >,≥}. Let Φ(X) be
the set of all such guard terms. A timed-automaton
AT = 〈V, V 0, V F , X,E, Π〉 over an input alphabet
Σi and output alphabet Σo is given by:

1) V is a finite set of locations
2) V 0 ⊆ V is a set of initial locations
3) V F ⊆ V is a set of final locations
4) X is a finite set of clock variables
5) E ⊆ V ×Σε

i ×Φ(X)×P(X)× V is a set of
switches 〈s, a, g, λ, s′〉 where the system may
transition from s to s′ if it observes the input
letter a (or no input letter if a = ε) and the
clock valuation v satisfies g. If the transition

4

occurs, then the clocks λ ⊆ X are reset to the
value 0.

6) Π : V → Σo maps locations to observations.
Without delving too far into the theory of timed-

automata, we can build an intuition for how this
extension allows us to develop software in new
ways. Let us imagine that we have a machine that
supports several instructions:

1) add Ri, Rj, Rk causes Rk ← Ri + Rj

2) mul Ri, Rj, Rk causes Rk ← Ri ×Rj

3) load Ri, C causes Ri ← C, where C is a data
value

ε
FETCH1

x1 := 0

LOAD,
qmin
F ≤ x1 ≤ qmax

F

x1 := 0
LOAD1

R1, C1

qmin
L ≤ x1 ≤ qmax

L

x1 := 0

R1 = C1

Ri = 0

0

Fig. 1. An abstract machine with a precise notion of time.

Figure 1 shows a partial abstract machine, mod-
eled as a timed-automaton, that reads the above
assembly-language and modifies its state accord-
ingly. The machine initially begins in a state where
all registers have value 0 (Ri = 0). In the first round
of fetching (FETCH1) the machine can accept the
data LOAD, but this will take between qmin

F and
qmax
F units of time, as measured by the clock x1.

The range [qmin
F , qmax

F] captures the time it takes to
fetch an instruction; this can be viewed as tem-
poral non-determinism. After the load instruction
is accepted, the machine expects a pair of data
(Ri, Cj), indicating which register should receive
what data. Though a different state and transition
must exist for every possible pair, the figure shows
such a state and transition for the pair (R1, C1).
This transition is guarded by a range for the latch
time qL. After this time, the system goes to the state
R1 = C1, Ri6=1 = 0.

Given an abstract model such as this, a program
consists of sequence of timed events of the form
(di, ti) where di ∈ Σi and ti ∈ R+. A pair (di, ti)
denotes that the ith instruction and/or data is fed to

the machine at time ti. If the machine accepts this
sequence of timed events, then the untimed program
can be executed with the specified timing properties.
The set of all programs the machine M can accept is
the language L(M). Typically the programmer does
not specify timing information for every instruction.
Instead, the programmer may define a function
f using an untimed sequence of instructions/data
(f ≡ d0, d1, . . . , dn), and then augment the basic
CALL instruction with a requested timing range:
CALL f [tmin, tmax]. This augmentation means
that the call to function f is valid if there exists
an accepted sequence of timed events that have
the same instructions/data di, but execute within
the time interval [tmin, tmax]. In another words,
CALL succeeds if ∃(di, ti)i∈I ∈ L(M), tn − t0 ∈
[tmin, tmax]. Since the abstract machine model is
precise, it is possible to algorithmically decided if
such a timing property is satisfied. No performance
evaluation is necessary.

Though we have carried this example through
with timed-automata, the same process can be re-
peated for other abstract machines. For example,
this approach was applied to time-triggered archi-
tectures by defining a virtual machine, called the
E Machine, that executes an extended assembly
language [19]. The E machine includes assembly
instructions that start periodic tasks (schedule j,
for a task j) and suspend tasks for a specified
amount of time (future n, aj , for n a unit of time,
aj an address in j). The authors of this work also
developed a high-level language called Giotto that
is compiled into timed assembly code for the E
machine. Once in this form, schedulability of the
programs can be checked [20].

B. Representing Concurrency

The previous examples extended computing to
incorporate time, but not necessarily concurrency.
Notice that a timed-automaton can be completely
sequential, while still associating timing information
with the sequential steps. Mathematically, we can
explain how concurrently running automata interact
by defining a product operator that converts a set
of concurrent automata into a single monolithic
automaton. This single automaton contains enough
states and transitions to capture all the possible ways
that each concurrent automaton could evolve with
respect to the others. This is also a problem: The

5

product automaton generally contains a combinato-
rial number of states and transitions, which makes
it difficult to analyze and difficult for engineers to
understand.

Finding the ideal means to express concurrency
has been a research goal for decades. One approach
is to build software from data transformers that
consume and emit data through wire-like connec-
tions [21]. This approach is motivated by highly
current hardware systems, which process data this
way. For example, Figure 2 shows a simple one-bit
adder (without a carry-in). The sum of the two bits
(i1, i2) is just the exclusive-OR and the carry-out is
the logical AND of the bits. We imagine that bits

i1
o

c

i2

Fig. 2. Example of concurrency in hardware notations.

arrive on the inputs and then flow through the wires
to the XOR and AND gates. These gates read the
data, process it, and then pass data onto the output
wires. Notice that data can move simultaneously on
different wires, so that the XOR and AND gates can
produce outputs simultaneously. (The fan-out on the
wires duplicates data.) Systems like these are called
dataflow graphs, dataflow process networks, or pro-
cess networks, depending on the exact details of the
computation. The computational objects are often
referred to as processes, dataflow operators, actors,
or nodes. The communication wires between nodes
are similarly termed connections, channels, links,
or edges. The process network view is attractive for
several reasons:

1) States in an automaton are, by default mu-
tually exclusive, and hence sequential. Pro-
cesses in a network, by default run in parallel,
and are thus concurrent.

2) The communication mechanism uses pri-
vate point-to-point connections that cannot be
modified by other processes. This eliminates
the strange interactions that occur with shared
variables.

3) Only data passes between processes; not con-
trol. Each process encapsulates its own control
loop.

The behavioral properties of process networks
depend heavily upon the properties of the processes
and channels. For example, if we decide that pro-
cesses are connected by infinite FIFOs, block on
reads, and do not block on writes, then the system
will always calculate the same results regardless of
when individual processes read and write data. The
proof of this relies on some technical assumptions
about processes, and is due to G. Kahn [22]. Con-
sequently, such dataflow systems are called Kahn
Process Networks (KPNs). Amazingly, KPNs are
immune to most of the problems that plague con-
current programming.

Unfortunately, KPNs cannot be implemented be-
cause they require infinite memory. However, there
are many classes of process networks that can
be implemented. Most of these are obtained by
starting with the KPN model, and then bounding
the FIFOs while requiring all processes to consume
and produce data in some predictable fashion. For
example, processes might always consume n units
of data to produce m units of data, regardless of the
particular data. In general, once the communication
mechanism is bounded, the system becomes less
immune to concurrency, unless the processes are
restricted in a corresponding way.

It is possible to define the semantics of classes
of process networks using (concurrent) automata
theory, but this is not the most intuitive formalism.
It is more natural to imagine that processes map
sequences of data “tokens” to sequences of data
“tokens”. We make this more precise following the
notation presented in [23]. Let Σ be an alphabet
containing the possible data values that appear on
connections. The set Σ∗ contains all finite sequences
of data (Kleene closure of Σ), and the set ΣZ+ =
{f |f : Z+ → Σ} contains all infinite sequences of
data. Let S = Σ∗ ∪ ΣZ+ be the set of all finite
and infinite sequences of data tokens. A process
P : S → S maps sequences to sequences.

The internal state of a process can be completely
abstracted away by defining the mapping appropri-
ately. Consider the classic example of a system that
remembers if it has seen an even or odd number
of a particular input a. An automaton would do
this using at least two states. A process has access
to the entire input history, so it is not necessary
to model this state. For example, take Σ = {a, b}
and Peo such that the ith element in the sequence
Peo(S) is a if there are an even number of a tokens

6

in the input subsequence [s0, s1, . . . , si]. Otherwise,
the ith element is b. We must also consider the
empty sequence ⊥ that contains no data. Define
Peo(⊥) = ⊥. The process has access to the entire
to sequence, so we do not need to describe how Peo

remembers the number of a tokens seen.
Peo(⊥) = ⊥
Peo([a]) = [b]
Peo([a, b, b, a]) = [b, b, b, a]

The properties of process networks depend heav-
ily on the properties of individual processes. The
most important properties of processes relate similar
input sequences to similar output sequences. A
sequence S is a prefix of a sequence S ′, written
S v S ′, if si = s′i, 0 ≤ i < len(S). 1 The empty
sequence ⊥ is a prefix of every sequence. A process
P is monotonic if X v Y , then P (X) v P (Y).
The example process Peo is such a process. Without
a property like monotonicity, it may be impossible
to know the output of a process without feeding it
an arbitrarily large amount of data. It is often the
case that processes exhibit a stronger property called
continuity. A process P is continuous if for every
ascending chain of sequences C = {X0 v X1 v
. . .} then P (

∨
C) =

∨
P (C), where

∨
Y denotes

the least upper bound of a set of sequences Y with
respect to prefixes.

Processes, such as the AND gate, read from
more than one input channel. We handle this by
extending processes to map from an n-tuple of
sequences to an m-tuple of sequences, i.e. P :
Sn → Sm. It is also useful to define a projection
operator (or process) πi,n : Sn → S that extracts
the ith sequence from an n-tuple of sequences,
i.e. πi,n((S0, S1, . . . , Sn−1)) 7→ Si. With these def-
initions, we can view a network of interacting
processes as just a set of constraints over the se-
quences that the processes produce. The particu-
lar input sequences are fixed, and the solution to
the network is a set of internal/output sequences
{X0, X1, . . . , Xn−1} that satisfy the constraints.
Figure 3 shows an example of a process network and
its associated constraint system. Solving these con-
straints can be tricky. For example, by substitution
X2 = P3(X0, P2(I2, π1,2 ◦ P4(X2))) is a function of
itself. A solution to this constraint must be a fixed
point of the form X2 = f(X2; I1, I2), where f is

1By this definition, if S and S′ are both infinite, then si = s′
i, i ≥ 0

therefore S = S′.

P1

P2

P3 P4

I1

I2

X3

X4

X2
X0

X1

X0 = P1(I1)
X1 = P2(I2, X4)
X2 = P3(X0, X1)
X3 = π0,2 ◦ P4(X2)
X4 = π1,2 ◦ P4(X2)

Fig. 3. Example of a process network and its associated constraint
system

parameterized by I1, I2. In general, we can view an
entire network as a solution to a fixed point equation
of the form X = F (X, I), where I is a fixed set of
input sequences and X = {X0, X1, . . . , Xn−1}.

This mathematical model lends itself to con-
currency for several reasons. First, if the network
contains continuous processes, then the response to
a set of input sequences can be calculated iteratively
by first feeding the set I of external input sequences
into the network with all the internal sequences
initialized to the empty sequence Xi = ⊥. The
processes calculate a new set of sequences X1

i using
the initial value ⊥ for all of the internal inputs. This
procedure is iteratively repeated; in the next itera-
tion, each process uses the results from the previous
iteration as inputs, i.e. Xj+1 = F (I,Xj). The pro-
cedure terminates when two consecutive iterations
produce the same sequences, i.e. Xk

i = Xk+1
i , 0 ≤

i < n. In this case, Xk is the fixed point of the
equation X = F (I,X). Amazingly, this construc-
tive process can be implemented by concurrently
running processes that send data across the channels
until the entire network stabilizes [24]. Thus, we can
actually view a network of processes much like a
circuit that stabilizes after some transient period of
communication. (Analogously, some networks will
not stabilize in finite time.) Verifying properties
of process networks works in a similar manner.
For example deadlock (also called causality) can
be detected by an iterative procedure that analyzes
how individual process consume and produce data
tokens. An elegant exposition of causality analysis
can be found in [25].

7

Comparing process networks with automata
shows that there are some advantanges of express-
ing concurrency with processes. The behaviors ex-
pressed by concurrent automata include every possi-
ble interleaving modulo a particular synchronization
mechanism. The process network model allows us
to move away from this, by viewing the computa-
tional objects (processes) as inherently concurrent
instead of inherently mutually exclusive. This view
provides benefits at both the implementation and
verification levels. Automata typically communicate
via synchronous broadcast: When a state emits
an event, this even is instantaneously observed by
all other automata in the system. Implementing
synchronous broadcast requires sophisticated dis-
tributed algorithms [26]. Verification of deadlock in
concurrent automata may require analysis over all
the product states, while many classes of process
networks admit a simple analysis of token consump-
tion and production rates. This is not an argument
against automata. There also exist classes of process
networks where many properties are undecidable.
Additionally, automata are an intuitive imperative
style of specification that continues to prove useful.
Nevertheless, there are certainly situations where the
process network viewpoint is appropriate.

IV. SIMULATING MOCS

A purely mathematical description of an MoC
is necessary, but not sufficient for model-based de-
sign. In particular, engineers need something more
tangible, e.g. derived algorithms that check model
properties. At the very least, we expect to be able to
simulate models on conventional machines. This is
typically done by a program that manipulates MoC-
specific quantities, as represented in a traditional
machine. For example, a timed-automaton can be
simulated like a traditional FSM, except that the
simulator must manage the clocks and evaluate
guards. It is important to remember that the length
of time it takes to simulate a model may bare
little or no resemblance to the predicted temporal
properties of that model within the MoC. This is
not surprising, considering that a simulator does
not implement a MoC, but approximates it. With
this caveat in mind, there are several approaches to
MoC simulation, each of which leverages traditional
software engineering principles.

A. Simulating Transition Systems

The best approach to simulation depends on the
particular MoC. Automata-based MoCs can be read-
ily simulated, because they are already defined in
terms of execution steps (evaluate guards/change
state); i.e. they are operational definitions [27].
In fact, advances in automata-based specification
languages have made it possible to simultaneously
specify the operational semantics of an MoC and
simulate that specification. Two key insights make
this possible: First, most automata-like structures
can be reformulated into a very simple structure
called a transition system (TS). A transition system
is a structure T = 〈Γ,→〉, where

1) Γ is a set of configurations (or locations or
states)

2) →⊆ Γ× Γ is a binary relation on configura-
tions.

3) If (q, q′) ∈→, then the system can transition
from state q to state q′.

In Plotkin’s influential notes on structural opera-
tional semantics(SOS) [27], he enumerates a num-
ber of such reformulations. Interestingly, reformu-
lating an arbitrary structure into a transition system
requires generalizing the notation of state. For ex-
ample, Plotkin points out that an FSA can made
into a transition system if Γ = Q × Σ∗

i , where Σ∗
i

is the set of all finite strings over Σi. Squeezing an
FSA in a TS yields a TS with an infinite number
of configurations (|Γ| = |Q| + |ℵ0|), even though
Q is a finite set. Correctly defining the notion of
configuration is essential to applying the TS for-
malism. This simple example shows that producing
the correct reformulation is both practically and
theoretically non-trivial. Gurevich, in his work on
abstract state machines (ASM) [28], generalized the
notion of configuration so that it could encompass
many different structures. Specifically, he proposed
that configurations should be algebras over a fixed
signature Υ, and a system transitions from one
algebra to another.

An algebra A is a structure A = 〈U, Υ〉, where
U is called the universe of the algebra, and Υ
is called the signature of the algebra. A signa-
ture names a set of operations (function symbols)
f1, f2, . . . , fn, and defines the number of arguments
(arity) required by each operation. The expression
arity(fi) denotes the arity of function symbol fi;
clearly arity(fi) ≥ 0 must hold. An operation of

8

the algebra is a mapping from an arity(fi)-tuple
of U to U ; fi : Uarity(fi) → U . Let C(U, Υ) be
the class of all algebras defined over universe U
with signature Υ. An abstract state machine A over
(U, Υ) is a transition system with Γ ⊆ C(U, Υ). The
particular operations of the algebra form the state,
so two states s, s′ differ if there exists an operation
fi and a tuple t ∈ Uarity(fi) such that f s

i (t) 6= f s′
i (t).

The notation f s
i (t) indicates the operation fi applied

to t in algebra s.
Given this generalization, it is possible to im-

plicitly define complex ASMs in a programmatic
style. The language ASML [1] allows ASMs to be
characterized by a set of statements of the form:

1) “if conditional then update”, where
2) conditional is a term fi(x1, x2, . . . , xarity(fi))

that yields a boolean value when evaluated
against the current state s

3) update is a pair (fj(y1, y2, . . . , yarity(fj)), u)
such that u ∈ U .

If the current state is s, and f s
i (x1, x2, . . . , xarity(fi))

evaluates to true, then the system may transition to
a new state s′. In s′ all the operations are the same
as in s, except for operation fj that maps the tuple
(y1, y2, . . . , yarity(fj)) to u. A single update changes
exactly one operation at exactly one tuple, which is
the smallest possible change that makes two states
different. Let l = (y1, y2, . . . , yarity(fj)), then:

(f s
i (x1, x2, . . . , xarity(fi)) = true)⇒ (s, s′) ∈→,

where s′ =

f s′

k 6=j = f s
k

f s′
j (l′ 6= l) = f s

j (l′)

f s′
j (l) = u

, and s′ ∈ Γ

(1)
To illustrate this, we will specify the execution

rules of a timed-automaton as an implicitly de-
fined ASM using ASML. We begin by enumerat-
ing the members of the universe U . By default,
ASML adds many members to U including the real
numbers (Double2), the integers (Integer), and
{true, false} (Boolean). Specification 1 lists the
necessary ASML code that extends the universe U .
Lines 1-3 declare that U contains three new subuni-
verses, each of which contains a finite number of
(enumerated) elements. We do not need to actually
enumerate the distinguished elements at this point.
The LocationName subuniverse is a reservoir of
names for discrete states. The InputLetter subuni-
verse is a reservoir of letters for input alphabets Σi.

2Actually, the type Double is 64-bit floating point.

1: enum LocationName
2: enum InputLetter
3: enum Clocks
4:

5: class Transition
6: l as LocationName
7: lp as LocationName
8: i as InputLetter
9: r as Set of Clocks
10: var g as Map of (Map of Clocks to Double)
11: to Boolean

Spec 1. Extending the universe U for timed-automata

Finally, the Clocks subuniverse contains names for
clock variables. We call these reserviors, because a
single automaton does not need to use every element
in each subuniverse, just as it does not need to use
every integer in Z. However, we can rely on U to
contain the needed elements. Our usage of the term
reservior is similar in spirit to the usage of the term
reserve in [28]. A reserve contains names for objects
that may be dynamically introduced into a running
ASM.

Transitions are more complex structures, but we
can easily handle them with ASML. Line 5 declares
a new subuniverse called Transition. (Note that the
keyword class implies some additional technical-
ities.) Each member of this subuniverse is a 5-
tuple of the form (l, i, g, r, l′), with the obvious
relationship to transitions in timed-automata. One
important detail is the representation of the guard
g. Recall that a guard is evaluated against a clock
valuation v : X → R+, which maps clocks to
nonnegative reals. Mathematically, this means that
a guard maps clock evaluations to booleans. For
example, consider a guard x ≤ 12, where x is a
clock. This guard is really a mapping g : (X →
R+) → B, such that ∀v, g(v) 7→ (v(x) ≤ 12).
In ASML a (partial) function from set X to Y is
identified with the notation Map of X to Y. Thus,
lines 10-11 identify g as map from clock evaluations
to booleans. The reader may ignore the keyword
var. The purpose of this keyword is to allow us to
make g a partial function over the relevant valuation,
which changes as the automaton executes.

The actual state of the system is captured by
operations of the signature Υ. However, not every
operation contributes to state; ASML automatically
provides many non-state operations, e.g. addition
over integers. The keyword var identifies operations

9

that do contribute to state. Contrarily, we can use the
keyword const to denote an operation that does not
effect state. Specification 2 lists the key members
of Υ. The valuation v is a unary function that

12: var v = { clki → 0.0 | clki in clocks }
13: var crnt = any qi | qi in q0
14: const time = new Transition(empty,e,{→},{},empty)

Spec 2. Extending the signature Υ for timed-automata

maps each clock to a value, capturing the temporal
state of the system. Line 12 initializes v to map
every clock to zero. The notation m = { x → y }
specifies that m maps value x to value y. Similarly,
crnt is a nullary function that identifies the current
discrete state of the system. Line 13 initializes crnt
to some discrete state from the set of initial states
q0. The ASML keyword any implements a non-
deterministic choice, and picks some qi from the set
of initial states. Finally, time is a special transition in
every timed-automaton. At every choice point, the
system may take a “regular” enabled transition, or it
may take the time transition. If the system takes the
time transition, then all clocks are incremented by
a fixed amount ε. This discretization is an artifact
of simulating a continuous system on a discrete
machine. The time transition is a permanent part of
every timed-automaton, so it is marked as constant.

The kernel of the simulator examines the enabled
transitions available from the current state, and
then takes one. Taking a transition may cause a
change in state, which means that the functions v
and crnt change. The key is to specify the rules
for changing this state. Specification 3 shows the
rules for finding the enabled transitions, and taking
one of those transitions. Lines 16-19 collect up the

15: TakeATransition()
16: let takeTrans = any tj | tj in ({ tr | tr in transitions
17: where tr.l = crnt and (exists (ai,ti)
18: in input where (ai = tr.i and ti = v(t)))
19: and (tr.g(v) = true) } union {time})
20:

21: if (takeTrans.l = empty) then
22: v := { clki → v(clki)+epsilon | clki in clocks }
23: else crnt := takeTrans.lp
24: v := { clki → 0.0 | clki in takeTrans.r } union
25: { clki → v(clki) | clki in clocks − takeTrans.r }

Spec 3. Kernel of simulation engine

enabled transitions, and then non-deterministically
choose one. An enabled transition tr is one that
starts at the current state (tr.l = crnt), satisfies the
time guard (tr.g(v) = true), and for which there
exists an input pair (α, τ) that satisfies the trigger
of a transition. The set input contains all the input
pairs used during the simulation. A transition tr is
triggered by a pair (α, τ) if α = tr.i and τ = v(t),
where t is mapped to the current time. (t is a clock
that is never reset.) The time transition is unioned
with the enabled transitions, and then one is non-
deterministically chosen and placed in takeTrans.
Lines 21-25 update the state. If takeTrans is the time
transition, then the current valuation v is updated
to a new map v′(x) 7→ v(x) + ε, effectively incre-
menting every clock by ε units of time (Line 22).
The ASML notation := indicates a state update. If
takeTrans is not the time transition, then the current
discrete state is updated to takeTrans.lp (Line 23),
and the valuation v is updated by setting v(x) 7→ 0
for each clock x in the reset set takeTrans.r.

26: Main()
27: step while true
28: step TakeATransition()
29: step UpdateGuardMaps()
30: WriteLine(v + “: ” + crnt)

Spec 4. Main simulation loop

The final piece of the simulator indefinitely takes
transitions. A timed-automaton can always take the
time transition, so the simulator does not terminate
(except by the user’s request). Specification 4 shows
the main simulation loop. In ASML we can just
“call” the procedure TakeATransition; really this
procedure call represents the product of ASMs. The
keyword step causes all the of the updates of the
form expr1 := expr2 to be applied simultaneously.
ASML does not sequentialize updates, but performs
many updates of the form of Equation 1 at once.
Thus, the specification does not require discrete
state to change (Line 23) before clock resets occur
(Line 24). The last point that deserves explanation is
the UpdateGuardMaps of Line 29. This procedure
redefines the guard maps on each transition, so
that they are defined for the current valuation v.
This is necessary because maps must be explicitly
enumerated in ASML, and we cannot enumerate a
complete guard map, as it has an infinite domain.

10

Instead, we continually redefine each guard map g
with respect to the current valuation v.

Though some effort is required, the basic timed-
automata semantics can be described with a 30 line
specification. In order to actually simulate a specific
timed-automaton, we must add the necessary data
to the specification. ASML allows a specification
to be split across multiple lexical units, so we can
keep the simulator as a pure abstract unit, and
then add the model-specific data in a different file.
Following the terminology of [29], this file is called
the abstract data model. Data Model 1 lists the data
model for the simple automaton of Figure 4. Lines

loc1 loc2

 a1; true
 {z}

loc3

 a2; x < 12
 {x,y}

Fig. 4. Timed-automaton represented by data model 1.

1: const epsilon = 0.1
2: q = {loc1,loc2,loc3}
3: q0 = { loc1 }
4: input = { (a1,0.3), (a1,0.4) (a1,0.5), (a2,5.0), (a2,12.1) }
5: clocks = { x,y,z,t }
6: transitions = [
7: new Transition(loc1,a1,{ v → true }, {z},loc2),
8: new Transition(loc2,a2,{ v → (v(x) < 12.0)}, {x,y},loc3)]
9:

10: UpdateGuardMaps()
11: transitions(0).g := { v → true }
12: transitions(1).g := { v → v(x) < 12.0 }

Model 1. The data model for a simple timed-automaton

9-11 define the UpdateGuardMaps for this specific
data model. Otherwise, the data model3 is quite
close to the original mathematical definition of a
timed-automaton in Section II.B. After a data model
and simulator have been combined, the model can
be immediately simulated. Figure 3 shows a single
partial simulation trace.

{ t→0.0, z→0.0, y→0.0, x→0.0}: loc1
{ t→0.1, z→0.1, y→0.1, x→0.1}: loc1
{ t→0.2, z→0.2, y→0.2, x→0.2}: loc1
{ t→0.3, z→0.3, y→0.3, x→0.3}: loc1
{ t→0.4, z→0.4, y→0.4, x→0.4}: loc1
{ t→0.4, z→0.0, y→0.4, x→0.4}: loc2
{ t→0.5, z→0.1, y→0.5, x→0.5}: loc2

Fig. 5. Simulating Data Model 1 with ASML specification

3To save space, we have left out the elements of the enumerations
in Lines 1-3 of Spec 1. These are also included in the data model.

B. Simulating Process Networks

Specifying the simulation semantics of process
networks can be a challenging task. (This can
also be true for automata-based MoCs, e.g. hybrid
automata.) There are two challenges to simulator
development: First, the simulator must be able to
determine how processes will respond to a partial
sequence of data tokens. Second, the simulator must
contain a constructive procedure that correctly cal-
culates the fixed point of a given process network. A
typical simulation engine does not provide a control
loop to every process, but uses a single thread of
control that processes may borrow for short inter-
vals. This permits the simulator to micromanage the
evolution of each process, which is often necessary
to efficiently direct the network towards a correct
fixed point. The order and duration that processes
gain control is called a schedule. A correct schedule
effectively sequentializes a process network and is
also the iterative procedure that leads a particular
network to its fixed point. Thus, a simulator is an
algorithm that generates the appropriate iterative
procedure (schedule) for the arbitrary network it
simulates.

Process networks are categorized by the diffi-
culty of producing a schedule. Some classes can
be statically scheduled, meaning a correct schedule
can be calculated using only the topology of the
network and the rules governing how processes con-
sume and produce data [30]. Statically schedulable
networks correspond to networks where the actual
data values do not significantly impact how much
data the processes consume and produce. Contrarily,
dynamically schedulable networks may adjust how
many tokens they consume and produce based on
the exact data values carried by the tokens. These
networks cannot be scheduled without knowing the
exact values of the data sequences. As a result, a
simulator must continually adjust the schedule as
external stimulus arrives [31].

Besides calculating the schedule for the entire
network, the simulator must also calculate the in-
dividual (partial) responses of each process to a
(partial) input stream. This too can be challenging
because process behaviors can be idiosyncratic. For
example, [23] gives an example of a monotonic
process that produces different outputs depending
on whether it is presented with a finite or infinite
sequence. Mathematically, this process is easy to

11

specify, but programmatically it is not easily spec-
ified. The heterogeneous modeling and simulation
framework Ptolemy II addresses these issues by
providing an abstract semantics for process network
simulation [2]4. An abstract semantics is a struc-
tured set of rules governing how process networks
are described to the simulation framework. These
rules allow the simulator to generate schedules
for process networks with minimal additional work
from the software engineer. Additionally, the frame-
work restricts process behaviors to those that can be
described programmatically.

Ptolemy II’s abstract semantics addresses this by
requiring processes (called actors in Ptolemy II)
to be specified by a set of firing rules. An actor
fires by consuming input data and/or producing out-
put data. A firing rule characterizes the conditions
necessary for an actor to fire. A firing rule R is
an m-tuple of sequences, (r0, r1, . . . , rm) where m
is the number of inputs exposed by an actor. A
rule is satisfied by an m-tuple of input sequences
(I0, I1, . . . , Im) if each sequence ri is a prefix of the
corresponding input sequence, ri v Ii, 0 ≤ i < m.
The sequences ri are usually expressed as patterns
where the pattern [∗] is a prefix of any sequence
with one token. For example, an actor with three
inputs may have a firing rule R = ([∗, ∗],⊥, [1]).
Such an actor would fire only if the first input had
at least two tokens, the second input had zero or
more tokens, and the third input had the data value
1 as its first token. An actor may have a set of firing
rules {R1,R2, . . . ,Rk} and fires if at least one rule
is satisfied. The number of tokens produced by an
actor can be similarly described. Process networks
with these types of firing rules are called dataflow
process networks.

Ptolemy II is implemented in Java, and basic
actors are implemented by subclassing the Atomic-
Actor class [32]. This class introduces a number of
important methods that a simulator can use to gather
information about the actor. The initialize method is
called once per simulation, and initializes the actor’s
internal state. It can also provide the simulator with
an outline of the firing rules. We should mention that
interfaces of actors are more complex than simple
channel readers/writers; they have typed and named
ports. Consider a SimpleActor with two inputs a, b

4Ptolemy II also supports the simulation of discrete and hybrid
automata.

and one output c. We can specify that SimpleActor
initially requires two tokens on a, one token on
b, and produces three tokens on c by adding the
following code to the initialize method:

a_tokenConsumptionRate.setToken(new
IntToken(2));

b_tokenConsumptionRate.setToken(new
IntToken(1));

c_tokenProductionRate.setToken(new
IntToken(3));

The Token object encapsulates basic data values,
hence IntToken(3) contains the integer value 3.
By setting the appropriate token consumption and
production members, the simulator can estimate
the firing rule. This is an estimation because the
consumption parameters do not indicate whether
specific data values are required. To provide this
functionality, each actor has a prefire member that
returns true if the actor can fire, and false otherwise.
The prefire member can test the values of the data
tokens.

public boolean prefire() throws ... {
return b.hasToken(0) &&

(((IntToken)b.get(0)).intValue() == 1);
... }

This code in the prefire method requires the port
b to have the integer value 1. As a simplification,
the reader may ignore the argument 0 passed to the
get and hasToken functions.

The Ptolemy II abstract semantics separates
actor functionality between three methods:
prefire, fire, postfire. The prefire method
determines if the actor can fire. The fire method
gets and sends tokens, but should not modify the
internal state of the actor. Finally, the postfire
method modifies internal state and may present a
new firing rule to the simulator. As the simulator
proceeds it will call the prefire method exactly
once, the fire method zero or more times, and
the postfire method exactly once. There is good
reason for this: Sometimes finding a fixed point
requires the simulator to test how an actor responds
to different input values, necessitating many calls
to the fire method per simulation step. If the
fire method changes the internal state, then the
actor is irrevocably advanced many times. By
removing state changes from the fire method,
the simulator can test how the actor responds
to different data without the actor remembering
these tests. Unfortunately, not all actors can be

12

implemented this way. Actors that do not follow
this rule cannot be used in classes of process
networks that require this rule.

Each dataflow class may put restrictions on the
firing rules, the data that passes between actors,
the channel properties, and the separation of state.
Ptolemy II encapsulates these rules within a direc-
tor. This permits a “plug-and-play” approach to sim-
ulation: The user models a network independently of
the class, and then plugs in a director that simulates
the network with respect to some class. Of course,
some actors may break the rules of a class, and
cannot be simulated by the corresponding director.
Actors that can be simulated under many classes
are called behaviorally-polymorphic actors. It was
shown in [33] that dataflow classes can be modeled
as a type system (lattice), such that if an actor can be
correctly simulated in one type (class) of dataflow,
then it can be correctly simulated in all subtypes
of that dataflow class. These software engineering
techniques allow simulators and actors to be reused
correctly and with minimal effort from the engineer.

Figure 6 shows how all of these tools have been
put together to effectively simulate a classic problem
in software engineering, the Elevator Problem [34].
Even simple versions of the elevator problem are
wrought with details concerning when and how
buttons, indicators, and elevators respond. In this
simplified version of the problem we focus on
how process networks can effectively model the
concurrency in the system. Our simplified view of
the elevator problem is as follows:

1) A building has n floors with one elevator,
2) The elevator repeats the procedure:

a) If the elevator’s direction is up, then it
moves up until it reaches the top floor,
at which point it moves down.

b) If the elevator’s direction is down, then it
moves down until it reaches the bottom
floor, at which point is moves up.

3) The elevator starts at the bottom floor and so
it has the direction up.

4) Each floor has an up/down panel. The elevator
stops at floor i if the ith up/down panel has
been pressed in the direction the elevator is
going and the elevator is at the ith floor.

5) The elevator has a request panel with buttons
{floormin, . . . , f loormax}. The elevator stops
at the ith floor if it is at the ith floor and the

Fig. 6. The Elevator problem in Ptolemy II

ith request button has been pressed.
Concurrency appears in a number of places. Each

floor has an up/down button that can be pressed
independently of the elevator’s request panel. Mean-
while, the elevator moves between floors. With
process networks we can naturally describe the
movement of the elevator as a data token that moves
between floor actors. The center column of actors in
Figure 6 shows three Floor actors, each connected
to the other. The floors pass the elevator around,
which is a list of the form [dir, f1, f2, . . . , fm]. The
first element in the list specifies the direction of the
elevator, and the remaining elements in the list are
the unsatisfied floor requests.

Each floor actor must remember if the elevator
is stopped at that floor, and in which direction the
elevator last went. Thus, the Floor class has the
following private members:

private boolean hasElevator = false;
private boolean sawGoingUp = false;

The ith floor actor has two elevator input ports
inFromAbovei, inFromBelowi and two eleva-
tor output ports outToAbovei, outToBelowi. Each
inFromAbovei can receive the elevator from
outToBelowi+1, and each inFromBelowi can re-
ceive the elevator from outToAbovei−1. (This holds,
except for the top and bottom floors, which have
some inputs unconnected.) Given the specification

13

of the elevator, we can write the firing rules for the
floors. If the elevator was not seen going up, then it
most come from below. The firing rule for this state
is (⊥, [∗]). If the elevator was seeing going up, then
the next time it will come from about, so the firing
rule is ([∗],⊥). If the floor has the elevator, then
it will send it out with no inputs, i.e. (⊥,⊥). The
elevator starts at the bottom floor, so initially the
first firing rule will always apply. We subclass the
intialize member to contain:

inFromAbove_tokenConsumptionRate
.setToken(new IntToken(0));

inFromBelow_tokenConsumptionRate
.setToken(new IntToken(1));

Similary, the postfire method presents the correct
firing rule to the simulator.

if (hasElevator) {
inFromAbove_tokenConsumptionRate

.setToken(new IntToken(0));
inFromBelow_tokenConsumptionRate

.setToken(new IntToken(0));
}
else if (sawGoingUp) {

inFromAbove_tokenConsumptionRate
.setToken(new IntToken(1));

inFromBelow_tokenConsumptionRate
.setToken(new IntToken(0));

}
else {

inFromAbove_tokenConsumptionRate
.setToken(new IntToken(0));

inFromBelow_tokenConsumptionRate
.setToken(new IntToken(1));

}

Each floor has its own up/down panel, as shown
by the left-hand column of UpDown actors. The
panels can be pressed independently from each
other. The ith UpDown actor has one output port
upDownControli, which sends out the state of the
panel. The panel state can be “no buttons presssed”,
“only down”, “only up”, or “both buttons”. The ith

panel has one input port requesti, however we do
not require this port to have any tokens for the panel
to fire. When the port does have tokens, the panel
sends its state through the upDownControli port.
In this way, the panel is always active, but it only
sends its state when explicitly requested. Thus, the
fire method contains the code:

if (request.hasTokens(0)) {
request.get(0);
upDownControl.send(0,

new IntToken(panelState));
}

The button panel inside the elevator is represented
by the FloorSelector actor, which works the same
way as the up/down panels. We connect a single
floor selector actor the every floor, because it is
shared across all the floors. When the elevator first
arrives at a floor it sends a request for the status
of the corresponding up/down panel and the floor
selector. It then waits for the requests to arrive. The
floor selector sends a (possibly empty) list of all the
current floors selected. The request phase requires
an additional state variable in the floor actor that
records if the fire method should send the elevator
out or send requests to the panels. Before the ith

floor sends the elevator, it appends any new request
to the elevator token and deletes any requests that
were satisfied by arriving at the ith floor.

Using the process network approach, we model
concurrency by creating actors for each entity in
the system, and channels between communicating
entities. We set the firing rules to capture when
entities are active with respect to the state of the
system. By using the Ptolemy II abstract semantics,
we can easily extend the framework and correctly
simulate the system. The rectangle in the upper-left
hand corner represents the particular director5 that
we have chosen for simulation. Figure 7 shows some
simulation results. This approach to the elevator
problem has been studied in detail using Petri Nets

5This is the dynamic data flow (DDF) director.

Initially at floor 1 going up
Floors requested: {1, 2}

Reached floor 1 going up
Floors requested: {1, 2}
Picked up passengers going up
Dropped off passengers at this floor
Outstanding requests at floor 2

Reached floor 2 going up
Floors requested: {3}
Skipped passengers going down
Dropped off passengers at this floor
Outstanding requests at floor 3

Reached floor 3 going down
Floors requested: {}
Picked up passengers going down
Dropped off passengers at this floor
No outstanding requests

Reached floor 2 going down
Floors requested: {1, 2, 3}
Skipped passengers going up
Dropped off passengers at this floor
Outstanding requests at floors 1, and 3

Fig. 7. Simulating the elevator problem in Ptolemy II

14

[35], which can be considered to be a class of
process networks with a particular firing rule.

V. DOMAIN-SPECIFIC COMPILERS

We began this discussion by noting that programs
are just syntactic constructs that can be executed
by machines. We then extended the fundamental
notion of a computing machine to include time and
concurrency, and we showed how these machine
classes can be simulated on traditional machines.
We complete the circle of ideas by describing how
programming languages are designed for extended
computational classes. The key ingredients of a
programming language for arbitrary MoCs are the
same as those of traditional languages [36].

1) a syntax describing well-formed programs
2) an editor for constructing programs
3) a compiler that translates programs into sim-

ulator instructions
As we have seen before, these ingredients will
be extended in various ways to suit the increased
complexity imposed by today’s design problems.
As a matter of terminology, the model-based com-
munity uses the term model for the object that
is traditionally called a program. This terminology
emphasizes that models may execute on totally
different machines from a traditional program, even
though we may be able to (approximately) simulate
models on traditional machines. In another words,
models are intended to model phenomena beyond
the scope of Von Nuemann-like architectures, while
programs are targeted for this class of architectures.

A. Describing Syntax
Traditional programming languages evolved un-

der pressures to move from assembly-based pro-
gramming towards higher-level and methodologi-
cally sound languages. This evolution took two
forms: syntactic and semantic. Syntactically, pro-
gramming languages evolved to provide more com-
plex notational mechanisms beyond lists of assem-
bly instructions. Semantically, the language primi-
tives evolved to represent many possible sets of as-
sembly instructions, instead of a single instruction.

Pioneers in language design emphasized two
properties of language syntax: (1) Syntax should
be specified precisely. (2) Algorithms should exist
that easily parse the syntax [13]. Foundational work
on regular expressions and grammars showed that

syntax can be defined precisely, and parsers can
be automatically generated from these definitions.
Modern programming languages are usually spec-
ified as BNF grammars, and these correspond to
context-free languages. Beyond a handful of con-
structs (e.g. declaration of variables before their
use) context-free languages support most of the
syntactic flexibility used by mainstream languages.
Furthermore, restrictions on the BNF grammars
lead to efficient parser implementations (e.g. LALR,
shift-reduce parsers) [36]. These technologies have
solidified themselves as the de facto approach for
syntax design. Consequently, most language evolu-
tion occurs on the semantic side. For example, even
Djikstra’s famous argument against goto state-
ments is an argument on the semantics of goto;
not its syntactic representation [37].

Model-based design continues to evolve syntax,
because many models are naturally represented
as graphs and well-formed models correspond to
graphs with complex structural constraints. Figure
8 shows a typical embedded system model using

In2

In1

Imag

Real

Imag

Real

FFT

Imag

Real

Imag2

Real2

Imag1

Real1

Splitter

Imag

Real

Phase

Abs

AbsPhase

Imag

Real

Phase

Abs

AbsPhase

Ab1

Ph1

Ab2

Ph2

Fig. 8. Example of a model represented as a directed graph

a process network-like notation. Assume that a
process fires when every input has a token, and a
process produces a token on every output when it
fires. In this case, the connections in the model also
indicate data dependency; a process p depends on q
(written q → p) if there is a directed path from q to
p in the model. Under these assumptions, a network
deadlocks if a process depends on itself (p → p).
Thus, models should be constrained so that cycles
are disallowed.

Handling these sorts of constraints requires an
expressiveness of syntax not found in traditional
approaches. In the interest of space, we will show
that this constraint does not correspond to a regular
language. The reader may continue the analysis
for context-free languages. The first step in the
analysis is to provide an encoding of a directed
acyclic graph as strings from an alphabet. In order to

15

simplify the problem, we will throw out all syntactic
adornments, an consider strings that list the edges
of a graph in an arbitrary order. Figure 9 shows

III. Disjoint Paths

II. Long path

I. Simple cycle

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4

w1
w2

w3

Fig. 9. Several digraphs; graph I is not in the language, but II and
III are in LDAG.

several example graphs. A digraph is encoded as
a string by arbitrarily ordering the edge relation,
and then listing the vertices incident on each edge.
For example, the simple cycle of 9.I could be
encoded as w1w2 w2w3 w3w1; another possibility
is w1w2 w3w1 w2w3. For simplicity, we will ignore
graphs with orphans, i.e. vertices with no edges. A
permutation of the vertex labels v1v2 v3v4 . . . vn−1vn

corresponds so a set of disjoint 2-paths; 9.III is an
example of such a graph. Let V be a set of vertices,
a define LDAG(V) to be the language of directed
acyclic graphs on V vertices:

1) LDAG(V) ⊆ Σ∗, where Σ = V
2) ∀u ∈ LDAG(V), 2

∣∣ |u|
3) ∀u ∈ LDAG(V), G(u) = (V (u), E(u)) is

acyclic, where V (u) =
⋃|u|

i=1 ui and E(u) =⋃ |u|
2

i=1(u2i−1, u2i).
Property 1 states that the alphabet of the language
is exactly the vertex labels. Property 2 requires each
string to have even length, because there are always
two vertices per edge. The most important property
is 3, which associates a graph with a string u and
requires this associated graph to be acyclic.

The next task is to check if the language is
regular. Already, we have some intuition that the
language is not regular, so the first plan of attack is
to check if it fails the well-known Pumping Lemma,
which states the following: If L is a regular language
then ∃n > 0 such that ∀u ∈ L where |u| ≥ n, u
can be written as the concatenation of substrings
x, y, z ∈ Σ∗, (u = xyz) such that:

1) ∀i ≥ 0, xyiz ∈ L, (i ∈ Z+)
2) |y| > 0

3) |xy| ≤ n.
It is easy to see that this language will not fail the
Pumping Lemma, or extensions thereof [38]. If a
graph is acyclic, then deleting an edge, i.e. setting
i = 0, will not make the graph cyclic. We can
always decompose the string representation of an
acylic graph with more than 3 edges (n = 6) into
three parts: x = u1u2, y = u3u4, z = u5 . . . u|u|.
In this case, duplicating the edge u3u4 an arbitrary
number of times will not make the graph cyclic.
Thus, the Pumping Lemma is not helpful for rea-
soning about LDAG(V).

In order to show that LDAG(V) is not regular,
we must make the more difficult argument that
there does not exist any deterministic finite state
automaton (DFA) that accepts the language. There
are several ways this can be done. This can be
done with the Myhill-Nerode Theorem that uses
an equivalence relation ≡L over the strings of an
arbitrary language L:

1) ≡L ⊆ L2 is reflexive, symmetric, and transi-
tive

2) x ≡L y if ∀z ∈ Σ∗, (xz ∈ L)⇔ (yz ∈ L)

The theorem states that there exists a DFA that
recognizes L iff ≡L contains a finite number of
equivalence classes; a review and some extensions
of this theorem can be found in [39]. In order to
capture the language of all finite directed acyclic
graphs, we choose the vertex set to be a countably
infinite set ∆ (|∆| = |ℵ0|). Let G be any acyclic
digraph without orphans, and let s(G) be any string
u ∈ LDAG(∆) such that G(u) = G. Consider any
two graphs G and H where G contains two vertices
v1, v2 such that:

1) v1 6= v2 ∈ VG

2) v1, v2 /∈ VH

3) (v1, v2) ∈ EG

We notice that s(G) 6≡L s(H) because s(G)v2v1 /∈
LDAG(∆) but s(H)v2v1 ∈ LDAG(∆). We can al-
ways find an infinite number of distinct finite labeled
digraphs G and H that satisfy (1)-(3), therefore
≡L has an infinite number of equivalence classes
and LDAG(∆) is not a regular language. Another
approach the proof is to analyze a particular equiv-
alence class; the set of all strings u such that G(u)
is isomorphic to a graph of disjoint 2-paths. These
strings are just permutations of |u| vertices, and
it can be shown that no DFA with |u| states can
correctly distinguish the language of disjoint paths

16

from graphs with cycles. Thus, for any DFA with
n states, it will not correctly identify finite DAGs
with at least n vertices. In the interest of space, we
do not present this alternative proof here.

It is possible to extend syntax to capture complex
structural constraints. We accomplish this by noting
that traditional syntax is defined over a particular
algebraic structure called the free monoid. The free
monoid MF over Σ is an algebra with universe
U whose elements are generated by Σ, and has a
binary operator ◦ that concatenates elements of the
alphabet into strings. In another words the “string”
σ1σ2σ3 can be viewed as repeated applications of
the concatenation operator, e.g. (σ1 ◦σ2)◦σ3. Addi-
tionally, MF has a distinguished element ε called the
identity element, and satisfies the following axioms:

1) Associativity: ∀σ1,2,3 ∈ Σ, (σ1 ◦ σ2) ◦ σ3 =
σ1 ◦ (σ2 ◦ σ3)

2) Identity: ∀σ ∈ Σ, ε ◦ σ = σ = σ ◦ ε
In this case, ε is the empty string. A natural exten-
sion is to construct syntax from a general algebra,
and not just this particular class of algebras. We
have explored this by generalizing syntax to sets
of terms over the term algebra [40] of an arbitrary
signature Υ. Without delving into the technical
details, we associate a set of operators with the
concepts of the language [41]. For example, directed
graphs utilize vertices and an edges. Associate a
unary function symbol v for the concept of vertex,
and a binary function symbol e for the concept
of edge. The term algebra TΣ({v, e}) contains all
terms, i.e. all possible ways to apply v, e to each
other and members of Σ. A model is just a subset
of these terms. A language of modelsM is a subset
of the powerset of terms:M⊆ P(TΣ(Υ)). Thus, we
might describe the graph in Figure 9.I as the set of
terms {v(w1), v(w2), v(w3), e(w1, w2), e(w2, w3),
e(w3, w1)} from TΣ({v, e}). Notice that this encod-
ing removes the artifact that edges had to be ordered
as a string.

Just as in regular and context free languages,
we need algorithms that decide if models (sets of
terms) are well-formed. Deductive logic provides
a natural framework for reasoning about sets of
terms, because it allows us to derive new terms
from old ones. A particular model m ∈M is well-
formed, if well-formedness can be derived using
some predetermined consequence operator ` (in-
ference procedure) with axioms that characterize
well-formed models. This replaces the DFA or push-

src

0..*

dst 0..*

0..*
0..*

StartState

fieldAction :

fieldTrigger :

Transition

boolIsAndState :

State

Fig. 10. Example metamodel for hierarchical finite state machines.

down automata (PDA) of regular and context free
languages with a tunable inference procedure and
axioms that characterize the well-formed structures
of the language. We can adjust the expressiveness
of language syntax by selecting the appropriate
consequence operator. We use the term structural
semantics instead of syntax, because the formal
foundations may be arbitrarily expressive.

These extensions provide a formal underpinning
for the syntax of models, but they do not suggest
a particular syntactic notation for describing syntax
(e.g. BNF grammars). The model-based community
has employed a notation for defining syntax based
on a subset of the Unified Modeling Language
(UML) called class diagrams [42]. A class diagram
that defines the syntax of a language is called a
metamodel. UML-based metamodeling can be for-
malized using the extensions just described, though
it has long been used without a formal characteriza-
tion of the associated structural semantics. With this
in mind, we informally summarize metamodeling
with UML class diagrams. As the name suggests,
a class diagram enumerates a set of classes. Each
class encapsulates named members that are also
typed. For example, Figure 10 shows a metamodel
that describes the syntax of a hierarchical state
machine language using the particular notation of
Meta-GME [43]. The boxes in the model are class
definitions, and class members are listed under the
class names. For example, the Transition class
has Trigger and Action members, both of type
field (or string). The metamodel also encodes a
family of graphs by associating some classes with
vertices and other classes with edges. The State
and StartState classes correspond to vertices;
instances of the Transition class are edges.
The diagram also declares which vertex types can
be connected together, and gives the edge types
that can make these connections. The solid lines
passing through the connector symbol (•) indicate

17

that edges can be created between vertices, and the
dashed line from the connector to the Transition
class indicates that these edges are instances of
type Transition. The diagram encodes yet more
rules: Lines that end with a solid diamond (♦)
indicate hierarchical containment, e.g. State in-
stances can contain other states and transitions.
Lines that pass through a triangle (4) identify inher-
itance relationships, e.g. a StartState inherits
the properties of State.

Metamodels may also include more complicated
constraints. For example, multiplicity constraints
specify that vertices of type tv must have between
nmin and nmax incident edges of type te. In Figure
10 all multiplicity constraints contain the entire in-
terval [0,∞), denoted 0..∗. More complicated con-
straints, e.g. graphs must be acyclic, can be denoted
via a constraint language. The Object Constraint
Language (OCL) is commonly paired with UML
class diagrams to denote complex constraints. OCL
is a strongly-typed first-order calculus without side
effects [44]. For example, the following side-effect
free helper method can be used to check for cycles:

Descendants(children : ocl::Bag) : ocl::Bag
if(children.count(self) < 2) then

Bag{self} + self.connectedFCOs("dst") ->
iterate(c ; accu = Bag{} | accu +
c.Descendants(children + Bag{self}))

else(children) endif

The Descendants method can be called on any
vertex of any type in the model. The special
identifier self refers to the object on which the
method was invoked. Cycles are collected by pass-
ing a multiset (called a Bag in OCL) of previ-
ously seen vertices through recursive invocations
of Descendants. Initially, a vertex v is passed an
empty bag: v.Descendants(Bag{}). If v has been
seen only zero or one times, then all of its im-
mediate children are iterated over using the expres-
sion self.connectedFCOs(“dst”)→iterate; the place-
holder c is the iterator “variable”. Each immediate
child is passed the current bag of visited vertices
unioned with the current vertex. In this case, the
method returns a multiset union of all vertices
reachable from the current vertex and its immediate
children. If the current vertex is already in the bag
two or more times, then it may be in a cycle, so
the passed in bag is immediately passed out, ending
the recursion. Using the helper method, we require
every vertex in the graph to satisfy the following

invariant:

self.Descendants(Bag{}).count(self) < 2

This invariant only checks if the initiating vertex is
contained twice in its descendants, but the invariant
is checked for every vertex. This correctly detects
cycles even in multigraphs.

Traditional language design employs parser gen-
erators or compiler compilers to automatically gen-
erate software that parses a particular syntax. These
tools have been generalized by the model-based
community to support metamodels and complex
constraints on metamodels. The adjective metapro-
grammable is used to describe tools that can con-
form themselves to a particular metamodel. For
example, the metaprogrammable model editor called
GME (Generic Modeling Environment) can recon-
figure itself to construct models that adhere to a
particular metamodel [3]. Figure 11.I shows the

Fig. 11. Example models in the metaprogrammable modeling
environment GME: I. FSA model II. Assembly code model III.
Access control model IV. Synchronous dataflow model

result of reconfiguring GME with the hierarchical
automata metamodel of Figure 10. Several mod-
els from other DSMLs are also shown. Double-
clicking on a state (blue circle) causes GME to
open a window that contains the internal states and
transitions of a state. The full GME metamodeling
language supports many more features including
ports, which are the structural representation of
interfaces, and multiple aspects, which partition a
modeling language into multiple dependent views.

18

B. Semantic Analysis
The final component of an MoC-specific compiler

is the code generator. In traditional language design
the parsing phase of the compiler produces an ab-
stract syntax tree, and the semantic analysis phase of
the compiler walks this tree and emits code. (Some
consider code emitting as a separate phase.) Most of
the software engineering effort occurs in this later
phase, because the many intricacies of the language
prevent automatic generation of this component.
The same problem occurs for MoC-specific compil-
ers/interpreter. Additionally, the semantic analysis
phase walks a generalized graph, not just a tree.
The earliest methodological approaches to semantic
analysis emphasized generic well-structured APIs
(application programming interfaces) that simplified
traversal of arbitrary model structure. For example,
GME provides such a C++ API called BON (Builder
Object Network) that projects model elements onto
instances of three classes: Atom, Model, and Con-
nection. (BON also provides classes for additional
structural features, but these are beyond the scope of
this paper.) Instances of Atom correspond to vertex-
like elements that do not have any further sub-
structure, while instances of Model correspond to
elements with substructure. Instances of Connection
correspond to edge-type modeling elements. The
API provides a suite of methods to traverse the BON
representation of a model. For example, we can get
all of the outgoing edges from an Atom a.
std::set<BON::Connection>

connections = a->getOutConnLinks();

Similarly, we may collect all the elements in the
substructure of a Model m.
std::set<BON::FCO>

subelements = m->getChildFCOs();

Note that the class BON::FCO is an abstract super-
class of the basic model elements. Using this API,
we can easily traverse the containment hierarchy of
an arbitrary model.
void GetHierarchy (BON::Model m,
std::set<BON::FCO>& substructs) {

//Add the current model
substructs.insert(m);
//Iterate over each child
std::set<BON::FCO> subs = m->getChildFCOs();
for (std::set<BON::FCO>::iterator i =

subs.begin(); i != subs.end(); ++i) {
substructs.insert(*i);
if (BON::Model(*i))

GetHierarchy (BON::Model(*i),

substructs);
}

}

Common traversal methods, like the one above,
can be generalized into well-known software engi-
neering patterns, e.g. the Visitor Pattern. The BON
API supports a number of these patterns, thereby
improving the reusability and maintainability of
code, while decreasing the time to produce a work-
ing compiler. A significant evolution of the API
approach occurred through the development of the
Unified Data Model (UDM) [45]. UDM generates
a custom API from a metamodel by converting
elements of the class diagram into C++ classes.
Attributes become typed members in the generated
classes, and methods for accessing/mutating at-
tributes and traversing model connections/hierarchy
are automatically generated. This allows the soft-
ware engineer to leverage the C++ type system
when developing a domain-specific compiler.

The API approaches are effective for implemen-
tation, but less useful for high-level specification of
the semantic analysis phase. Ideally we would like
to specify the compiler backend without appealing
to the implementation details of the underlying API.
This goal has been pursued for traditional compiler
construction, where it can be assumed that the
parser produces an abstract syntax tree (AST). The
authors of [46] view the semantic analysis phase
as a set of patterns that are matched against an
input AST. They provide a language for abstractly
describing subtree patterns along with actions that
should be executed in response to those patterns.
In this way, the compiler backend can be generated
from the pattern/action descriptions. This not only
reduces coding effort, but also provides a high-level
specification of the compiler backend.

Clear specification of the compiler backend is es-
sential for domain-specific languages. In this setting
the compiler output is often used as input to formal
verification tools. If the compiler produces incorrect
output, then the results of downstream verification
tools may be inaccurate. For example, behavioral
properties of timed-automata can be checked with
verification tools such as IF [47] or Uppaal [48]. The
verification results faithfully capture the properties
of an input model only if the compiler produced
an accurate timed-automaton representation of that
model. Thus, it is important to provide some notion
of compiler correctness. Admittedly, this correctness

19

problem is still open; in fact Hoare identifies it as
a grand challenge for computing [49]. Nevertheless,
approaches based on high-level compiler specifica-
tion seem the most feasible.

The model-based community views compiler
specification as a model transformation problem.
Let M and M′ be two sets of models (syntax). A
model transformation is a mapping τ : M →M′.
Notice that a compiler S can be viewed as a model
transformation τS . If the compiler S generates C
code, then the codomain of τS is just MC , the set
of all syntactically well-formed C programs. Model
transformations are typically specified using graph
rewriting rules, which are a generalizations of the
subtree matching patterns used in [46]. Abstractly,
a graph rewriting rule or production is a pair of
graphs (L, R). A rule can be applied if the input
graph (host graph) G contains a subgraph S(G)
that is isomorphic to L. In this case, S(G) is
removed from G and a subgraph S ′ isomorphic to
R is put in its place. By “replacing” S(G) with
S ′, we implicitly mean that S ′ is reconnected into
G in some manner. This mechanism is called the
embedding, and the flexibility of the embedding
mechanism affects the expressiveness of the graph
rewriting system [50]. Despite this, most practical
graph rewriting systems opt for simpler and more
intuitive embedding mechanisms. A comparison of
existing graph rewriting tools can be found in [51].

A model transformation may be viewed as a set
of graph rewriting rules. A mapping τ converts
an input model to an output model by repeatedly
applying rewriting rules until no more rules can be
applied. This procedure encounters problems similar
to those of process networks. Is the transformation
determinate, i.e. does it produce the same result
regardless of the order in which the rules are
tested? Does it have a finite fixed-point, i.e. does
the transformation terminate? These questions are
difficult to answer because, in general, rewriting
rules are neither commutative nor associative. Some
approaches to analysis of graph rewriting systems
can be found in [52] [53].

Model transformations have been successfully
applied to a number of DSMLs. A particularly
relevant example was presented in [54] where the
authors developed a domain-specific compiler from
the well-established Stateflow/Simulink paradigm to
C using model transformations. We will present a
scaled-down version of this work that generates C

FSA

Event Transition

guard: field
State

InitialAcceptor

0..*
0..*

0..* dst 0..*

src
0..*

Fig. 12. Metamodel of the input language; a finite state acceptor
(FSA) languge.

code from a finite state acceptor (FSA) language,
also using model transformations to implement the
compiler. In particular, we will use the Graph
Rewriting and Transformation (GReAT) language
[4], which was used by the authors of [54]. GReAT
is integrated with the GME tool-suite, and permits
simple descriptions of rewriting rules in terms of
input and output metamodels. Figure 12 shows the
“input” metamodel of the transformation. (We can
expect that all models fed to the compiler will
conform to this metamodel.) Input models consist of
finite state acceptors. An instance of FSA contains
all the elements of a particular FSA. These elements
are instances of the State and Transition
classes. In order to simplify the rewriting rules, we
have separated the initial states and acceptor states
into two subclasses: Initial and Acceptor.
This simplification does not permit acceptor states
that are also initial. Instances of the Event class
enumerate members of the input alphabet Σ. The
attribute guard of a transition is a textual field that
names one of the Event instances.

The output metamodel encodes a structured sub-
set of C needed to implement FSAs. We will present
this metamodel by working backwards from the
generated code. The generated C code is based on a
well-known and efficient technique for implement-
ing automata in C [55]. Algorithm 1 outlines the
approach in pseudocode. Two enumerations encode
the states and events of the automaton (Lines 1,2).
A variable called currentState stores the current
state of the automaton, and it is initialized to the
initial state Sk (Line 4). The program must have
a mechanism to read events from the environment;

20

1: enum STATES { S1 = 0, S2, . . ., Sn };
2: enum EVENTS { E1 = 0, E2, . . ., Em };
3: EventStream evStream;
4: int currentState = Sk ;
5: int currentEvent ;
6:

7: while (evStream.read(currentEvent)) {
8: switch (currentState) {
9: case S1:
10: switch (currentEvent) {
11: case Ei :
12: currentState = Si ; break;
13: case Ej . . . } break;
14: case S2 . . . }
15: }

Algorithm 1. Pseudocode for executing a finite state acceptor.

we assume that a class EventStream exists to
accomplish this task (Line 3). Most of the work
is done in the while loop (Line 7) that repeatedly
reads an event from the environment and stores
it in the variable currentEvent. The loop contains
nested switch statements; the outer switch chooses
a case using the currentState (Line 8), and contains
a case statement for every state of the automaton
(e.g., Line 9). Each outer case contains an inner
switch that chooses a case using the currentEvent.
The inner switches contain case statements for each
possible transition that the automaton can take from
the corresponding state. The labels of the inner cases
are the EVENT enumeration elements that guard the
transitions. For example, if an automaton had the
transition S1

Ei→ Si, then the code would have the
inner case shown in Line 11. This case correctly
updates the currentState to the new state Si (Line
12). This encoding scheme effectively implements a
transition table by using the efficient switch state-
ment. Though not shown, each inner switch con-
tains a default case that breaks the simulation loop.
This halts the machine if an improper sequence of
events is presented.

Using the structure of the C code as a guide,
we obtain the metamodel shown in Figure 13. This
metamodel almost exclusively relates classes by
containment; a reflection of the fact that it encodes
a C abstract syntax tree. The root of the AST is
an instance of FSAProgram, which contains exactly
one child node of type Declarations and one of type
SimLoop. The Declarations node contains one or
more children of type Variable and one or more chil-
dren of type Enumeration. The Variable class has an

FSAProgram

Declarations

Enumeration

isEventEnum: bool

Variable

type: enum

EventStreamVar

CurrentEventVar

SimLoop

Switch

SwitchVar

CaseLabel

Assignment

Case

Message

messageText: field

EnumElement

CaseAction

refers

refers

refers

refers

1 1
1

1

1

1
1

1

1

1

1

0..1

1..*

1..* 1..*

1..*

Fig. 13. Metamodel of the output language; a structured subset of
C.

attribute type for specifying the type of the variable.
Each instance of Enumeration contains 1 or more
instances of EnumElement. Thus, the Declarations
subtree contains all the parts for defining the nec-
essary variables and enumerations that implement
a FSA. The SimLoop subtree is necessarily more
complicated. In particular, the SimLoop must know
which variable corresponds to the EventStream and
which corresponds to the currentState. This is han-
dled by a feature of GME called a reference as-
sociation. A reference association is much like a
reference in traditional languages; it “points” to
another object in the model (program). The SimLoop
node contains exactly one instance of EventStream-
Var, which is a reference to a variable. Presumably,
the EventStreamVar instance will refer to the actual
variable that should be used to read events from
the environment. Similarly, the SimLoop instance
contains a CurrentEventVar, which refers to the
currentEvent variable. (In GME the reference as-
sociation is indicated with a directional association
with rolename refers.) The rest of the metamodel de-
scribes how switch, case, and variable assignments
can be nested. In order to provide user feedback
a case statement may contain an instance of the
Message class, which is a placeholder for a printf
statement.

The output metamodel closely resembles the set
of C code ASTs corresponding to FSA implemen-
tations. It is a simple exercise to generate actual
code from such an AST model, and we can be
(fairly) sure that such a generation procedure is
correct. The more complicated task is the trans-
formation of a FSA model into a C AST model.
Figure 14 shows the graph rewriting rule that fills
the STATE enumeration with elements. In order to

21

understand this rule, we must describe GReAT in
more detail. Graph transformation tools locate all
subgraphs of the input that are isomorphic to rule
patterns. Unfortunately, subgraph isomorphism is
computationally difficult (NP-complete), so it must
be implemented carefully. GReAT’s approach is to
provide rules with context vertices; rules only match
subgraphs that include the context vertices. Context
vertices are passed into a rule via “input ports”. The

iFSA

FSA

iState

State

iStates

Enumeration

isEventEnum: bool

iNewElem

EnumElement

FSAIn

StatesIn

lnkStateEnum

lnkState

SetNames

string enumName("STATE_");

iNewElem.name() = enumName.append(iState.name());

Fig. 14. Graph rewriting rule that creates the STATE enumeration
elements.

rule in Figure 14 is passed two context vertices,
as indicated by the two input ports labeled FSAIn
and StatesIn. The context vertices are actually typed
instances of metamodel classes; they can be cast
to particular types by making connections from the
ports to class instances. For example, the connection
from FSAIn to an instance called iFSA of type FSA
casts the context vertex FSAIn to an FSA instance.
The instance name iFSA is used to refer to the
context vertex locally within the rule, and is not the
actual name of the instance. As the names imply,
this rule is provided with the FSA instance of the
input model and STATES enumeration instance of
the output model.

A GReAT rule finds all subgraphs that contain
the context vertices and are isomorphic to the
instances drawn in solid lines. In particular, this
rule generates a match for each instance of State
contained in iFSA; the matching State instance is
locally named iState. The instances drawn in dotted
lines represent objects that are added to input/output
graphs. In this case, for each state in the FSA
a corresponding EnumElement is instantiated an
put inside of the STATES enumeration. GReAT

provides a useful feature called crosslinking that
allows temporary marking of vertices in the in-
put/output graphs. The dotted line from iState to
iNewElem creates a temporary edge between the
matched state and the newly created enumeration
element. This crosslink allows the transformation
engine to “remember” each state/element pair. Once
the new enumeration element is created, it has a
default name. This name will be used for code
generation, so it should be set to something more
appropriate. GReAT provides attribute mappings for
modifying the values of instance attributes. Figure
14 contains an attribute mapping called SetNames,
which sets the name of each enumeration element
to STATE sname, where sname is the name of
the corresponding State instance. This simple rule
performs a number of actions that would otherwise
have to be coded. The declarative backbone of the
graph transformation approach allows compact rules
to accomplish many tasks.

Figure 15 shows the rule that creates the basic
structures of the C code. A MainProgram is cre-
ated, which contains a Declarations section and a
SimLoop section. The essential variables and enu-
merations are declared, and the outer Switch and
SwitchVar are created. Recall that the simulation
loop must know which variable is the currentEvent
and which is the eventStream. The rule creates
an instance of CurrentEventVar, a reference to
a variable, and creates a refers association from
the CurrentEventVar instance to the currentEvent
variable in the declarations section. This way, the
simulation loop has a reference to the correct vari-
able. A similar mechanism specifies the appropriate
eventStream variable to the simulation loop. The
SetTypes attribute mapping sets the typenames of
the C variables. This rule can be executed if a single
instance of FSA is found in the input graph. Since
there is exactly one instance of FSA, the rule fires
exactly once. Finally, notice that this rule contains
“output” ports. These ports pass matched/created
vertices out of the rule so they can be used as
context vertices for other rules. The iFSA instance,
States and Events enumerations are passed out.
These vertices will be used as context vertices for
the rule in Figure 14.

Passing context vertices between rules provides
a natural way to sequence rules together. Figure
16 shows how rules can be explicitly sequenced in
a dataflow-like fashion. The oblong labeled Build-

22

MainProgram

FSAProgram

Declarations

Declarations

SimLoop

SimLoop

Events

Enumeration

isEventEnum: bool

States

Enumeration

isEventEnum: bool

currentState

Variable

type: enum

currentEvent

Variable

type: enum

eventStream

Variable

type: enum

CEVar

CurrentEventVar

ESVar

CurrentEventVar

mainSwitch

Switch

mainSwitchVar

SwitchVar

iFSA

FSA
FSAOut

STATESOut

EVENTSOut

refers

refers

SetTypes

currentState.type() = "int";

currentEvent.type() = "int";

eventStream.type() = "EventStream";

Events.isEventEnum() = true;

SetNames

currentState.name() = "currentState";

currentEvent.name() = "currentEvent";

eventStream.name() = "eventStream";

Events.name() = "EVENTS";

States.name() = "STATES";

Fig. 15. Rule creates the declarations, loop, and main switch objects.

MainObjects encapsulates the rule of Figure 15.
It exposes three outputs ports that pass out the
FSA instance, and the enumerations. The oblong
labeled BuildStateEnum encapsulates the rule in
Figure 14; it is passed the FSA instance and the
STATES enumeration provided by the BuildMain-
Objects rule. The BuildEventEnum rule is almost
identical to BuildStateEnum, but fills in the EVENTS
enumeration and requires the EVENTS enumeration
for context. Rules cannot execute until they have
their context, and rules without data dependencies
can be executed in parallel or sequenced in an
arbitrary order. For example, one can imagine that
BuildStateEnum and BuildEventEnum are applied
concurrently. There is one important caveat. Unlike
true dataflow systems, rules do have non-local ef-
fects because they all operate on the same global
graphs. Therefore, the order of execution may affect
the outcome, even if rules do not have explicit
data dependencies. Finally, GReAT allows rules to
be hierarchically grouped into blocks. Thus, we
can group these rules into one large block called
BuildDeclarations. Blocks also have interfaces for
passing context vertices. By default, all the rules
inside the block execute before any vertices are
passed out of the block. In the interest of space,
the remaining transformation rules are included in
the appendix.

For the sake of completeness, we will briefly de-
scribe how C code is generated from an AST model.
After an FSA model is transformed into an AST
model, an API-based traverser walks the AST model
and emits C code to a file. The AST model is already
a tree structure (with the exception of references),

EVENTSOut

FSAOut

STATESOut

BuildMainObjects

FSAIn

STATESIn

BuildStateEnum

EVENTSIn

FSAIn

BuildEventEnum

EVENTSOut

FSAOut

STATESOut

BuildDeclarations

Fig. 16. Sequencing and encapsulation of the graph rewriting rules
as a block.

so a simple depth-first walk of the model suffices
to generate code. The fragment below shows part
of the code generation procedure written with the
BON API in C++.
bool Component::WriteCode
(BON::FCO n, NODETYPES nt, NODETYPES pt) {

switch (nt) {
...
case AST_CASE:

if (!ProcessCase(n,pt)) return false;
break;

case AST_ENUM:
writeFile << "enum "

<< n->getName() << " { ";
if (!ProcessElements(n)) return false;
writeFile << " };\n"; break;

case AST_ELEM:
writeFile << n->getName(); break;

...
}
return true;

}

The WriteCode method is passed a node from the
AST model (n) and an enumeration value that
describes the type of the node (nt). The type of
the parent of n is also provided (pt). The method
contains one switch statement with a case for each
node type. For example, if n is an enumeration node
(identified by the constant AST ENUM), then the
method outputs the C fragment: enum NAME {,
and recursively calls WriteCode on the enumeration
elements via the ProcessElements method.
bool Component::ProcessElements
(BON::FCO enumeration) {

std::set<BON::FCO>
elems = BON::Model(enumeration)

->getChildFCOs("EnumElement");

for (iterator fit = elems.begin();
fit != elems.end(); ++fit) {

if (!WriteCode(*fit,AST_ELEM,AST_ENUM))
return false; ...

23

... writeFile << ", ";
} writeFile << enumeration->getName()

<< "_Count"; return true;
}

This method collects all the enumeration elements in
the set elems and then iteratively calls WriteCode on
each element. WriteCode simply prints the name of
the enumeration element and returns. Each element
is separated by a comma and a final “count” element
is appended to the enumeration. Thus, the actual C
code produced looks like: enum NAME { V1 =
0, V2, ..., Vn, NAME Count };. The re-
maining AST node types are handled in a similar
fashion. The appendix shows example output of the
code generator.

Even though this example code generator is quite
simple, it is not entirely trivial. Needless to say,
without graph transformations this code genera-
tor would have been even more complicated. The
transformation approach allows us to minimize the
amount of code necessary to implement the seman-
tic analysis phase. Additionally, formal verification
techniques may make it possible to verify that the
transformation is correctly implemented.

The transformation approach also supports reuse
of model transformations through function com-
position. For example, given modeling languages
MA,MB,MC and transformations τA,B : MA →
MB, τB,C : MB → MC , we may construct a
new map τA,C : MA → MC defined by τA,C =
τB,C ◦ τA,B. The new map τA,C transforms models
from language MA to MC via MB. Function
composition allows reuse of the maps τA,B and τB,C .
At first glance, it may appear that this style of reuse
is purely academic. However, model-based design
employs this style of reuse extensively, precisely
because it simultaneously supports many different
languages and abstraction layers. We show a con-
crete example of this in the discussion.

VI. DISCUSSION AND CONCLUSION

The genesis of model-based design was the het-
erogeneity and resource constraints of embedded
and distributed systems. As a result, the literature
surrounding model-based design may seem foreign
to traditional software engineers. However, as we
have shown, most concepts in model-based design
are systematic extensions of well-established design
techniques. Additionally, these extensions will have
broader impact as the “traditional” software realm

evolves to become more like embedded and het-
erogeneous systems. This is already happening on
two fronts. First, traditional software applications
(e.g. word processing, spread sheets) are being
recast into service-oriented and data-centric archi-
tectures where it is natural to impose complex non-
functional requirements related to time and net-
work usage. (This was discussed in the introduc-
tion with DDS.) Second, next-generation processor
architectures, like the CELL [56], are condensed
heterogeneous systems. Exploiting the power of
these processors will require dramatic changes to
traditional software design techniques so that the
inherent heterogeneity is utilized. These issues have
been extensively explored in [57].

As we have shown, the DSML perspective pro-
vides a convenient metaphor for extending exist-
ing techniques in software engineering. However,
the are other metaphors that also have signif-
icant utility; Platform-based design [58] is one
such alternative. Platform-based design describes
the application context with a set of components.
Components are simultaneously structural and be-
havioral: They have interfaces and are connected
together through these interfaces. A platform in-
cludes structural rules restricting how components
can be connected. Components also encapsulate
behaviors, and interact with each other through their
interconnections. This viewpoint deemphasizes the
separation between the structural and behavioral
semantics. What we call models are referred to as
platform instances, and are instantiations of com-
ponents and component interconnections. Platform-
based design differs from other views by empha-
sizing semi-automatic/automatic system synthesis
from high-level specifications [59]. The Metropolis
[60] projects aims to develop tools for automatic
synthesis between generic platforms.

We now conclude by viewing a classic design
problem through the eyes of model-based design.
Figure 17 shows the classic sketch of simple com-
munication protocol between a sender and a re-
ceiver. As usual, the flowchart is intended to be
a clear high-level specification of the following
communication protocol: The sender broadcasts an
Ack while the receiver waits for the Ack. The
waiting receiver times out every 10ms, though it
returns to the waiting state after this timeout. If
the receiver observes the Ack, then it broadcasts
an Nack. Similarly, after the sender has sent the

24

Start

Send ACK

Wait 10ms

Received

NACK

TRUE

FALSE

Sender

 Done

Receiver

Start

Wait 10ms

Received

ACK

Send NACK

 Done

TRUE

FALSE

Fig. 17. Simple example of a communication protocol.

Ack it waits 10ms for a Nack. If Nack does not
arrive in this interval, then the sender broadcasts
the Ack again. At the very least, we would like
to know if the sender and receive both reach the
Done box in the flowchart, assuming they both
start at the same time. Traditionally, there are two
approaches to this design problem. The first ap-
proach is to immediately code an approximation
of this flowchart, and then test it. We need not
mention that this is first technique is doomed to
failure. The second approach is to be more precise
about the meaning of the diagram. For example,
we might decide that hierarchical concurrent finite
state machines (HFSMs) provide a more precise
characterization of the concurrency in the model.
This might lead us to diagram in Figure 18.

This HFSM representation contains two implicit
“clock” automata that emit time tick events. This
representation discretizes time, because there are
no time events that occur within a hypothetical
interval. The fact that we used two clocks, and not
one, suggests that we assume the clocks are not
synchronized. However, in order to make this pre-
cise we must define the synchronization mechanism
between the automata. There are many possible
choices, none of which are more or less correct.
However, these choices drastically affect analysis of
the high-level models. For example, if we choose
the synchronous product of finite state transducers
(FSTs) as the composition mechanism, then the
HFSM is equivalent to the flattened transducer in
Figure 19.

This transducer has the property that from
the state start (S1, A, T1, B) the acceptor state
(S3, A, T3, B) is always reachable from all future

states. However, had we chosen a different compo-
sition mechanism, such as an asynchronous product
(shuffle product), then the analysis would have
yielded a different result. In the asynchronous case,
it is always possible for the sender and receiver
to miss each others messages, so there is path
from the start state for which the acceptor state is
not reachable. Which prediction accurately reflects
reality depends on how the final system will be
implemented. However, this presents a paradox:
Choosing the right high-level specification depends
on knowledge of the implementation, but the high-
level specification is supposed to precede implemen-
tation.

Software engineers argue that design choices
must be carefully contemplated, usually within the
framework of a design methodology. Traditionally,
a design choice refers to a decision about the
architecture of a point design. However, the above
example shows that there are other design choices
that affect the entire class of possible designs.
These choices are equally important, because they
influence whether analysis and verification at the
pre-implementation phases reflect the properties of
the future implementation. Using the enhancements
of model-based design we can capture “meta-level”
design choices, as shown in Figure 20. Each oval
represents the structural semantics (syntax) of a
DSML. The top oval is the flowchart language, and
the row beneath lists various hierarchical automata
structures. On the left there is a hierarchical FSM
language, in the center is a hierarchical timed-
automata language (HTA), and on the right is a
hierarchical hybrid automata language (HHA). The
meta-level design choices define how a flowchart
model is projected onto these other languages. We
can explicitly characterize these choices by writing

s1 s2 s3

/ack nack/

10msA/ack

t1

t2 t3

t4

10msB/

 /

ack/

/nack

A

/10msA

B

/10msB

Sender SenderTimer

Receiver ReceiverTimer

Fig. 18. One possible representation of the protocol using HFSMs.

25

((Sender)X(SenderTimer))X((Receiver)X(ReceiverTimer))

(s3,A,t4,B) \10msB\10msA

(s3,A,t3,B)

\nack

\10msB\10msA

(s3,A,t2,B)

ack\

\10msB\10msA

(s3,A,t1,B)

\ \

\10msA(s2,A,t4,B)

nack\

\10msB\ack

(s2,A,t3,B)

\

\10msB\ack

(s2,A,t2,B)

nack\\

\10msB

(s2,A,t1,B)

\

nack\

\

\ack

(s1,A,t4,B)

\ack

\10msB\10msA

(s1,A,t3,B)

\ack\nack

\10msB\10msA

(s1,A,t2,B)

\

\10msB\10msA

(s1,A,t1,B)

\

\ack

\

\10msA

Fig. 19. Interpretation of the specification assuming synchronous
product.

modeling transformations between the languages.
For example, the transformation that assigns a
unique automaton to each clock of the flowchart
is shown by the arrow labeled locally asynchronous
clocks. Similarly, the transformation that creates one
unique global clock is shown by the arrow labeled
external global time events. If we prefer to consider
time as dense and globally synchronized, then we
would consider possible projections onto the HTA
language. If time is dense but clocks tick at different
rates, the we would consider projections onto the
HHA language. For each hierarchical language,
the semantics of concurrency is defined in terms
of product operators that transform a hierarchical
model into a flat automaton structure. Figure 20
shows the flattened automata languages below their
hierarhical counterparts, and shows model transfor-
mations from the hierarchical version to the flat
version. These transformations capture the ways that
concurrent automata interact. As the diagram shows,
there is not one unique way to view concurrency, but
a spectrum of possibilities. Finally, code and analy-
sis models can be easily generated from the simple

Flowchart
External global

time events

Local asynchronous

timers

Synchronized clocks

Skewed clocks

Stopwatches

HFSM HTA HHA

Finite State Mach. Timed Automata Hybrid Automata

Synchronous
Product

Asynchronous
Product

Intersection

Parallel
Composition

Uppaal
Style

IF
Style

AND
Product

MAX
Product

MIN
Product

Simulation
Semantics

Reachability
Analysis

Realtime Code
Generation

CTL
Evaluator

Simulation
Semantics

brickOS Code
Generation

Ellipsoid
Approximation

Simulation
Semantics

Level Set
Methods

Key:
Model syntax

Model Transformation

External tool

Fig. 20. Model-based view of the meta-level design choices.

flattened languages, and then tested or verified using
tools based on the corresponding formalism. (See
Section 3.)

The framework of Figure 20 permits the system-
atic exploration of meta-level design choices. The
domain-specific language is the key ingredient that
allows this framework to emerge. Given a flowchart
model m, we can explore the impact of meta-level
choices by choosing a sequence of transformations
τ1, τ2, . . . , τn where the domain of τ1 is the flowchart
language and the codomain of τn is the syntax of
simulation instructions for a simulator. Then, by
composition, (τn ◦ . . .◦τ2 ◦τ1)m yields a simulation
artifact. The sequence of maps captures the meta-
level choices, and the simulation artifact captures
the final outcome of these choices. Notice that the
number of semantic variants of a language is equal
to the number of unique paths from the language
to a leaf. In general, this is combinatorial in the
number vertices in the diagram. This fact alone
shows why it can be quite difficult for a designer
to make the right meta-level choices. At the same
time, it means that a particular τi may appear in
an exponential number of semantic variants, yield
significant reuse of the DSMLs. In conclusion, the
model-based approach uses the DSML to capture
the properties of a particular application context at
a particular level of abstraction. Model transforma-
tions link DSMLs, providing a useful landscape of
the related abstraction layers.

26

APPENDIX
TRANSFORMATION FROM FSA TO C

This appendix completes the FSA to C transfor-
mation example. The next step in the transforma-
tion is to create an assignment that initializes the
currentState variable to the intial state. Figure 21
shows the rule that accomplishes this. It locates
the initial state in the input FSA and then uses
the crosslink created in Figure 14 to extract the
associated enumeration element. It then creates a
new assignment in the SimLoop that initializes the
current state variable to the initial state enumeration
element.

iFSA

FSA

iInitial

Initial

MainProgram

FSAProgram

iInitElem

EnumElement

iLoop

SimLoop

iInitAssign

Assignment

iAssignVar

SwitchVar

iValue

CaseLabel

iCurrentState

Variable

type: enum

FSAIn

MainIn

csIn

lnkStateEnum
lnkState

refers

refers

SetAssignName

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iInitEnum.name());

iInitAssign.name() = assignName;

Fig. 21. Finds the initial state and creates an assignment that
initializes the currentState variable

The next step in the transformation is to create a
unique case block for each instance of State. Figure
22 shows the transformation logic. An empty switch
block is placed inside each of the new case blocks.
This switch block will contain a case for each in-
stance of Transition that starts on the corresponding
state. The empty switch is passed out for processing
by other rules. This rule also uses the previously
created crosslinks to find the EnumElement linked
to a State.

At this point in the transformation, every state
has a corresponding case block, and inside of this
case is an empty switch that switches on the cur-
rentEvent variable. Given a State instance s and
the corresponding Switch instance w, we wish to
find every transition s

e→ s′. For each of these, we
must add a case to w with label e, and this case

iFSA

FSA

iState

State

MainProgram

FSAProgram

iStateElem

EnumElement

iLoop

SimLoop

iMainSwitch

Switch

iStateCase

Case

iTranSwitch

Switch

iSwitchVar

SwitchVar

iCaseLabel

CaseLabel

iCurrentEvent

Variable

type: enum

FSAIn

MainIn

ceIn

switchOut

lnkStateEnum
lnkState

lnkState

lnkCase

refers

refers

SetCaseName

string caseName("Case_");

iStateCase.name() = caseName.append(iState.name());

iCaseLabel.name() = iStateElem.name();

Fig. 22. Creates a case and empty switch block for each State
instance.

must assign s′ to the currentState variable. Figure
27 shows the transformation that accomplishes this.
Because of the semantics of GReAT, this rule only
works for non-loop transitions, i.e. s 6= s′. Figure
28 shows the rule that handles loop transitions. Note
that these two rules use a new construct called a
guard. A guard is boolean expression that can be
attached to a rule; GReAT discards all matches
that do not evaluate to true with respect to all
guard expressions. The guard permits GReAT to
find the Event instance e corresponding the trigger
of a Transition. Recall that a Transition instance
has a string attribute (also) called guard. Thus, we
must locate the Event instance with the same name
as the string attribute on the Transition instance.
A guard expression allows us to filter matches so
that we only consider Transition-Event pairs where
the string attribute on the guard of the Transition
matches the name of the Event. Notice that by sub-
classing State into Initial and Acceptor, we avoid a
number of guard expressions. We could have added
an enumeration attribute to State that would capture
these distinctions, but the GReAT rules would have
been more complicated.

The final rule is one of the simplest. It introduces
user feedback into the generated code. Whenever the
automaton transitions to an acceptor state, a simple
message is displayed to the user. The message
declares that the input sequence was accepted, and
identifies the accepting state. This rule relies on the
lnkState-lnkCase crosslink (created in Figure 22) to
find the case block associated with each acceptor
state, i.e. instance of Acceptor. Figure 23 shows this
rule.

27

iFSA

FSA

iAcceptor

Acceptor

iAcceptorCase

Case

iAcceptMessage

Message

messageText: string

FSAIn
lnkCase

lnkState

SetMessageText

string messageStr("Accepted input at state ");

messageStr.append(iAcceptor.name());

iAcceptMessage.messageText() = messageStr;

Fig. 23. Builds feedback messages

Figure 29 shows the sequencing of the GReat
rules. Recall that if a rule contains smaller rules,
then the smaller rules complete before downstream
rules execute. This semantics is important, because
the rules inside of the BuildSimulator rule depend
on the fact that the state and event Enumeration
instances have already been constructed. This is
ensured by placing in BuildStateEnum and BuildE-
ventEnum rules inside of the BuildDeclarations rule.

Fig. 24. Example FSA acceptor

Figure 24 shows an example FSA. State S1 is the
initial state, while state S3 is an acceptor state. The
FSA contains two events, named a and b. Figure 25
shows the result of applying the transformation to
the FSA in Figure 24. This tree shows the hierarchy
of the generated model. When viewed from this
perspective, it is easy to see how close the generated
model is to the final C code. The actual code
produced by the code generator is shown in the next
subsection. In the interest of space the EventStream
class is not shown. Finally, Figure 26 shows the
result of executing the FSA with some input. Note
that the “accept” message is delayed by one event.

Fig. 25. Partial C abstract syntax tree generated from example FSA.

Input event [0 to 1]: b
Input event [0 to 1]: b
Input event [0 to 1]: b
Input event [0 to 1]: a
Input event [0 to 1]: b
Input event [0 to 1]: b
Input event [0 to 1]: a
Input event [0 to 1]: b
Accepted input at state S3
Input event [0 to 1]: a
Input event [0 to 1]: a
Input event [0 to 1]: b
Accepted input at state S3
Input event [0 to 1]:

Fig. 26. Simulatation of generated FSA model

A. C Code generated from FSA
#include "EventStream.h"

// ------- FSA Enumerations ------- //
enum STATES { STATE_S1 = 0, STATE_S3,

STATE_S2, STATES_Count };
enum EVENTS { EVENT_a = 0, EVENT_b,

EVENTS_Count };

// ------- FSA Variables ------- //
int currentEvent;
EventStream eventStream(EVENTS_Count);
int currentState;

// --- FSA Simulation Loop ---- //
void main() {
currentState = STATE_S1;
while(eventStream.read

(currentEvent)) {
switch (currentState) {
case STATE_S2:

switch (currentEvent) {

28

case EVENT_a:
currentState = STATE_S3;
break;

case EVENT_b:
currentState = STATE_S2;
break;

default:
return;
break;

}
break;
case STATE_S3:
printf("Accepted input at state S3\n");

switch (currentEvent) {
case EVENT_a:
currentState = STATE_S2;
break;

case EVENT_b:
currentState = STATE_S1;
break;

default:
return;
break;

}
break;
case STATE_S1:

switch (currentEvent) {
case EVENT_b:
currentState = STATE_S1;
break;

case EVENT_a:
currentState = STATE_S2;
break;

default:
return;
break;

}
break;
default:
return;
break;
}

}
printf("HALT\n");

}

29

iTransition

Transition

guard: string

iState

State

iDestState

State

iDestEnum

EnumElement

iNextState

CaseLabel

iFSA

FSA

iTrigger

Event

iTriggerEnum

EnumElement

iStateSwitch

Switch

iTransCase

Case

iTransLabel

CaseLabel

iUpdateStateVar

Assignment

iCurrentState

Variable

type: enum

iUpdateVariable

SwitchVar
type: enum

stateIn

switchIn

csIn

src dst

type

lnkState
lnkStateEnum

refers

lnkEvent
lnkEventEnum

refers

refers

MatchGuardEvent

string trigName(iTrigger.name());

return !trigName.compare(iTransition.guard());

SetObjectNames

iTransCase.name() = iTriggerEnum.name();

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iDestEnum.name());

iUpdateStateVar.name() = assignName;

Fig. 27. Creates non-loop transitions

30

iState

State

iTransition

Transition

iDestEnum

EnumElement

iNextState

CaseLabel

iFSA

FSA

iTrigger

Event

iTriggerEnum

EnumElement

iStateSwitch

Switch

iTransCase

Case

iTransLabel

CaseLabel

iUpdateStateVar

Assignment

iCurrentState

Variable

type: enum

iUpdateVariable

SwitchVar
type: enum

stateIn

switchIn

csIn

src

dst

type

lnkState
lnkStateEnum

refers

lnkEvent
lnkEventEnum

refers

refers

MatchGuardEvent

string trigName(iTrigger.name());

return !trigName.compare(iTransition.guard());

SetObjectNames

iTransCase.name() = iTriggerEnum.name();

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iDestEnum.name());

iUpdateStateVar.name() = assignName;

Fig. 28. Creates loop transitions

EVENTSOut

CEVarOut

CSVarOut

MainOut

FSAOut

STATESOut

BuildMainObjects

FSAIn

STATESIn

BuildStateEnum

EVENTSIn

FSAIn

BuildEventEnum

CEVarOut

CSVarOut

MainOut

FSAOut

BuildDeclarations

CEVarIn

CSVarIn

MainIn

FSAIn

FSAOut

BuildSimulator

CEVarIn

CSVarIn

MainIn

FSAIn

CSVarOut

SwitchOut

StateOut

BuildStates

CSVarIn

SwitchIn

StateIn

FSAOut

BuildNonLoops

StateIn

SwitchIn

CSVarIn

BuildLoops

CSVarIn

MainIn

FSAIn

InitStateVar

FSAIn

BuildMessages

Fig. 29. Sequencing of transformation rules

31

REFERENCES

[1] M. Barnett and W. Schulte, “The abcs of specification: asml,
behavior, and components.” Informatica (Slovenia), vol. 25,
no. 4, 2001.

[2] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented
design of embedded hardware and software systems.” Journal
of Circuits, Systems, and Computers, vol. 12, no. 3, pp. 231–
260, 2003.

[3] A. L. T. B. G. Karsai, J. Sztipanovits, “Model-integrated
development of embedded software,” Proceedings of the IEEE,
vol. 91, no. 1, pp. 145–164, January 2003.

[4] J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, and G. Karsai,
“Domain model translation using graph transformations.” in
ECBS, 2003, pp. 159–167.

[5] A. B. D. Masys, D. Baker and K. Cowles, “Giving patients
access to their medical records via the internet: the pcasso
experience,” Journal of the American Medical Informatics As-
sociation, vol. 9, no. 2, pp. 181–191, 2002.

[6] O. Danvy, “An analytical approach to programs as data
objects,” BRICS, Department of Computer Science, University
of Aarhusy,” Doctor Scientarum Thesis, 2006. [Online].
Available: http://www.brics.dk/˜danvy/DSc/00 dissertation.pdf

[7] E. A. Lee, “Absolutely positively on time: What would it take?”
IEEE Computer, vol. 38, no. 7, pp. 85–87, 2005.

[8] I. M. A. B. M. J. C. Tomlin, S. Boyd and L. Xiao, Compu-
tational Tools for the Verification of Hybrid Systems. John
Wiley, 2003, in Software-Enabled Control, T. Samad and G.
Balas (eds.).

[9] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill, “Scanning
the issue - special issue on modeling and design of embedded
software.” Proceedings of the IEEE, vol. 91, no. 1, pp. 3–10,
2003.

[10] R. Stärk, J. Schmid, and E. Börger, Java and the Java Virtual
Machine - Definition, Verification, Validation. Springer, 2001.
[Online]. Available: citeseer.ist.psu.edu/470832.html

[11] K. Samelson and F. L. Bauer, “Sequential formula translation.”
Commun. ACM, vol. 3, no. 2, pp. 76–83, 1960.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design pat-
terns: elements of reusable object-oriented software. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[13] E. W. Dijkstra, “The humble programmer.” Commun. ACM,
vol. 15, no. 10, pp. 859–866, 1972.

[14] E. K. Jackson and J. Sztipanovits, “Using separation of con-
cerns for embedded systems design,” Proceedings of the Fifth
ACM International Conference on Embedded Software (EM-
SOFT’05), pp. 25–34, September 2005.

[15] Object Management Group, “Data distribution service for
real-time systems specification,” Tech. Rep., 2005. [Online].
Available: http://www.omg.org/docs/formal/05-12-04.pdf

[16] A. Srivastava and A. Eustace, “Atom: a system for building
customized program analysis tools,” in PLDI ’94: Proceedings
of the ACM SIGPLAN 1994 conference on Programming lan-
guage design and implementation. New York, NY, USA: ACM
Press, 1994, pp. 196–205.

[17] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm,
“The influence of processor architecture on the design and the
results of wcet tools.” Proceedings of the IEEE, vol. 91, no. 7,
pp. 1038–1054, 2003.

[18] R. Alur and D. L. Dill, “A theory of timed automata.” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[19] T. A. Henzinger and C. M. Kirsch, “A typed assembly language
for real-time programs.” in EMSOFT, 2004, pp. 104–113.

[20] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a
time-triggered language for embedded programming.” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 84–99, 2003.

[21] G. Agha, Actors: a model of concurrent computation in dis-
tributed systems. Cambridge, MA, USA: MIT Press, 1986.

[22] G. Kahn, “The semantics of simple language for parallel
programming.” in IFIP Congress, 1974, pp. 471–475.

[23] E. A. Lee and T. M. Parks, “Dataflow process
networks,” May 1995, pp. 773–799. [Online]. Available:
citeseer.ist.psu.edu/lee95dataflow.html

[24] B. E. G.E. Allen, “Real-time sonar beamforming on work-
stations using process networks and posix threads,” in IEEE
Transactions on Signal Processing, vol. 48, no. 3, 2000, pp.
921–926.

[25] Y. Zhou and E. A. Lee, “A causality interface for deadlock
analysis in dataflow.” in EMSOFT, 2006, pp. 44–52.

[26] L. Gasieniec, A. Pelc, and D. Peleg, “The wakeup problem
in synchronous broadcast systems.” SIAM J. Discrete Math.,
vol. 14, no. 2, pp. 207–222, 2001.

[27] G. D. Plotkin, “A structural approach to operational semantics.”
J. Log. Algebr. Program., vol. 60-61, pp. 17–139, 2004.

[28] Y. Gurevich, “Evolving algebras 1993: Lipari guide,” pp. 9–36,
1995.

[29] S. N. M. E. K. Chen, J. Sztipanovits and S. Abdelwahed, “To-
ward a semantic anchoring infrastructure for domain-specific
modeling languages.” in Proceedings of the Fifth ACM In-
ternational Conference on Embedded Software (EMSOFT’05),
September 2005.

[30] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing.”
IEEE Trans. Computers, vol. 36, no. 1, pp. 24–35, 1987.

[31] X. L. S. N. Y. Z. Christopher Brooks, Edward A. Lee
and H. Zheng, “Heterogeneous concurrent modeling and
design in java (volume 3: Ptolemy ii domains),” EECS
Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2007-9, January 11 2007. [Online]. Avail-
able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-
2007-9.html

[32] ——, “Heterogeneous concurrent modeling and design
in java (volume 1: Introduction to ptolemy ii),” EECS
Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2007-7, January 11 2007. [Online]. Avail-
able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-
2007-7.html

[33] E. A. Lee and Y. Xiong, “A behavioral type system and its
application in ptolemy ii.” Formal Asp. Comput., vol. 16, no. 3,
pp. 210–237, 2004.

[34] S. R. Schach, Object-Oriented and Classical Software Engi-
neering. McGraw-Hill Pub. Co., 2001.

[35] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[36] A. V. Aho and J. D. Ullman, Principles of Compiler Design
(Addison-Wesley series in computer science and information
processing). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1977.

[37] E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful.” Commun. ACM, vol. 11, no. 3, pp. 147–148, 1968.

[38] W. F. Ogden, “A helpful result for proving inherent ambiguity.”
Mathematical Systems Theory, vol. 2, no. 3, pp. 191–194, 1968.

[39] D. Kozen, “Partial automata and finitely generated congruences:
An extension of Nerode’s theorem,” in Logical Methods: In
Honor of Anil Nerode’s Sixtieth Birthday, J. N. Crossley, J. B.
Remmel, R. A. Shore, and M. E. Sweedler, Eds. Ithaca, New
York: Birkhäuser, 1993, pp. 490–511.

[40] S. N. Burris and H. P. Sankappanavar, A course in

32

universal algebra. Springer-Verlag, 1981. [Online]. Available:
citeseer.ist.psu.edu/article/burris81course.html

[41] E. K. Jackson and J. Sztipanovits, “Towards a formal foundation
for domain specific modeling languages,” Proceedings of the
Sixth ACM International Conference on Embedded Software
(EMSOFT’06), pp. 53–62, October 2006.

[42] Object Management Group, “Unified modeling language:
Superstructure version 2.0, 3rd revised submission to
omg rfp,” Tech. Rep., 2003. [Online]. Available:
http://www.omg.org/docs/ad/00-09-02.pdf

[43] Institute For Software Integrated Systems,
“Gme 5 user’s guide,” Vanderbilt Univer-
sity, Tech. Rep., 2005. [Online]. Available:
http://www.isis.vanderbilt.edu/Projects/gme/GMEUMan.pdf

[44] Object Management Group, “Object constraint lan-
guage v2.0,” Tech. Rep., 2006. [Online]. Available:
http://www.omg.org/docs/formal/06-05-01.pdf

[45] A. L. T. P. A. V. A. A. G. K. E. Magyari, A. Bakay, “Udm:
An infrastructure for implementing domain-specific modeling
languages,” in In the 3rd OOPSLA Workshop on Domain-
Specific Modeling, OOPSLA 2003, Anahiem, California, 2003.

[46] H. Emmelmann, F.-W. Schröer, and L. Landwehr, “Beg: a gen-
eration for efficient back ends,” in PLDI ’89: Proceedings of the
ACM SIGPLAN 1989 Conference on Programming language
design and implementation. New York, NY, USA: ACM Press,
1989, pp. 227–237.

[47] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The if
toolset.” in SFM, 2004, pp. 237–267.

[48] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on
uppaal.” in SFM, 2004, pp. 200–236.

[49] T. Hoare, “The verifying compiler: A grand challenge for
computing research,” J. ACM, vol. 50, no. 1, pp. 63–69, 2003.

[50] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds.,
Handbook of graph grammars and computing by graph trans-
formation: vol. 2: applications, languages, and tools. River
Edge, NJ, USA: World Scientific Publishing Co., Inc., 1999.

[51] T. Mens, P. V. Gorp, D. Varró, and G. Karsai, “Applying a model
transformation taxonomy to graph transformation technology.”
Electr. Notes Theor. Comput. Sci., vol. 152, pp. 143–159, 2006.

[52] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and
D. Varró, “Viatra - visual automated transformations for formal
verification and validation of uml models.” in ASE, 2002, pp.
267–270.

[53] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer, “Termination analysis of model transformations
by petri nets.” in ICGT, 2006, pp. 260–274.

[54] S. Neema and G. Karsai, “Software for automotive systems:
Model-integrated computing.” in ASWSD, 2004, pp. 116–136.

[55] W. Wolf, Computers as components: principles of embedded
computing system design. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001.

[56] M. Gschwind, H. P. Hofstee, B. K. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki, “Synergistic processing in cell’s
multicore architecture.” IEEE Micro, vol. 26, no. 2, pp. 10–24,
2006.

[57] L. Stein, “Challenging the computational metaphor:
Implications for how we think,” 1999. [Online]. Available:
citeseer.ist.psu.edu/stein99challenging.html

[58] G. M. L. L. A. S.-V. J. R. Rong Chen, Marco Sgroi,
“Embedded system design using uml and platforms,”
in Proceedings of Forum on Specification and Design
Languages 2002 (FDL’02), September 2002. [Online].
Available: http://www.gigascale.org/pubs/314.html

[59] A. S.-V. Douglas Densmore, Roberto Passerone, “A platform-
based taxonomy for esl design,” IEEE Design and Test of

Computers, vol. 23, no. 5, pp. 359– 374, September 2006.
[Online]. Available: http://www.gigascale.org/pubs/932.html

[60] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. L. Sangiovanni-Vincentelli, “Metropolis: An inte-
grated electronic system design environment.” IEEE Computer,
vol. 36, no. 4, pp. 45–52, 2003.

