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Abstract

We present a design methodology for specifying embed-
ded systems that addresses the complex nature of embedded
systems design. Our approach uses modern model-based
techniques to correct specifications as they are constructed,
driving the engineer towards a more correct specification.
We also present a concrete specification language based on
this methodology.

1. Introduction

Embedded systems are difficult to design because of the
resource constrained, real-time, and often safety critical na-
ture of this class of systems. Any realistic design approach
must allow the designer to specify rich and complex sys-
tem dynamics (e.g. non-linear, time-varying behaviors),
and to check that these dynamics satisfy system constraints.
The problem is compounded by the varied spectrum of con-
straints that includes power requirements, deadline require-
ments, computational constraints, memory limitations, and
security requirements. Furthermore, unlike traditional soft-
ware applications, the correctness of an embedded system
often depends on a good model of its environment. For ex-
ample, the correctness of an autonomous flight controller
depends on a good model for the dynamics of flight. This
stack of requirements leaves us wondering if embedded sys-
tems design can, in general, be tackled.

Historical evidence seems to contradict this gloomy pic-
ture, at least a little. Historically, we have designed enor-
mous computational systems, both in hardware and soft-
ware, and the key to this success seems to be the design
methodology. For example, the scalability of digital hard-
ware design is due to the de facto design methodology that
starts with HDL and RTL descriptions, and then synthe-
sizes systems of boolean equations, and then maps these

to cell libraries, and then synthesizes the layout [2]. Simi-
larly, the scalability of traditional software can be attributed
to the OOP methodologies that result in libraries of encap-
sulated behavior with low coupling, from which even bigger
libraries of more complex behavior can be constructed [14].
Without these methodologies, we would not be able to man-
age the complexity of these enormous systems.

This discussion make us wonder: Will some design
methodology save us from the complexity of embedded sys-
tems design? Before we discuss proposed methodologies
that might suggest that the answer is Yes, let us point out
that the answer may be No. As mentioned before, em-
bedded systems design places a strong emphasis on global
properties (deadlock freedom, power, etc...) and a correct
embedded system usually means correct with respect to
these properties. It may turn out that verification for es-
sential classes of embedded systems is intractable, in which
case we will have to restrict ourselves to small systems, or
accept that certain properties are, for all practical purposes,
unknowable.

Setting this negative possibility aside, there are al-
ready two major classes of design methodologies that have
evolved, the first of which is the verification approach. In
order to better contrast this approach with others, we call it
the Incorrect until Verified (IuV) methodology. In the IuV
methodology, one designs a system using the most conve-
nient methodology, like OOP or logic synthesis, under the
assumption that essential system properties may be incor-
rect and must be verified. During certain design increments
the engineer passes the (partial) specification to a verifica-
tion tool that checks global properties. If the properties are
not satisfied, then a change must be made to the specifica-
tion. In the worst case, this verification step is performed
once, after the entire system has been specified. This ap-
proach has the advantage of flexibility: The engineer can
design using any methodology without design restrictions
as long as some verification tool can check the specifica-



tion. Of course, this caveat is the major problem with the
IuV approach, because verification is intractable for many
important properties so this approach does not scale in gen-
eral. Additionally, for some classes of systems (e.g. some
classes of hybrid systems) (sound and complete) verifica-
tion tools do not exist.

The polar opposite of the IuV methodology is the
Correct by Construction (CbC) methodology. The CbC
methodology restricts the specification process so that only
analyzable systems are specified. Some CbC approaches
go so far as to make it impossible to specify an incor-
rect system with respect to certain properties. For exam-
ple, in the time-triggered language Giotto [15] all specifi-
cations are inherently deadlock free (though not necessarily
schedulable), so deadlock freedom does not need to be ver-
ified. Other CbC methodologies keep the specifications in
a realm where analysis is tractable. For example, in syn-
chronous dataflow (SDF) languages, schedulability is de-
cidable in polynomial time [9]. Clearly the advantage of
the CbC approach is that it is guaranteed to scale with re-
spect to properties. The disadvantage is that no known CbC
methodology can handle all interesting classes embedded
systems. Thus, it is possible that a system of interest can-
not be specified in a particular CbC tool, in which case one
must find a different tool or resort to the IuV approach and
hope that sufficient verification tools exist.

In this paper we present a new design methodology
that handles the tricky reality of embedded systems design.
Our methodology is scalable and has utility regardless of
whether or not a grand unifying methodology for embed-
ded systems design exists. We call our approach the Cor-
rected though Construction (CtC) methodology. In the CtC
methodology, the specification is continuously checked for
errors using only polynomial time and space algorithms. In
some situations the specification can be automatically cor-
rected when problems are discovered. This approach cuts
off the cycle of specification and verification that encoun-
ters intractability walls, allowing a specification to be con-
tinually improved. Simultaneously, the CtC methodology
allows rich specification languages that aid the engineer in
designing large scale systems. Of course, all these advan-
tages do not come for free. By restricting ourselves to poly-
nomial time and space algorithms, we cannot decide if prop-
erties are satisifed, however we can approximate them in a
conservative sense: If a violation occurs, then the property
will fail when verified, or, the system cannot be constructed
under a particular CbC tool. If a violation does not occur,
then the property may or may not be satisfied.

The CtC methodology complements the current method-
ologies by driving the designer towards better design de-
cisions. In another words, by checking each design step
as much as tractably possible, the CtC methodology drives
the designer towards a specification that is more correct.

By building the CtC methodology on top of model-based
frameworks, we can translate the specification to a verifica-
tion tool or tool a CbC tool, so we do not eliminate the use
of these other methodologies. Simultaneously, if the uni-
verse is so malevolent that embedded systems design does
not scale, then our approach is a reasonable one to building
large scale systems that are more likely to be correct.

Our strategy for implementing a model-based CtC
methodology is as follows: We begin by defining a specifi-
cation language using a metamodel. This metamodel char-
acterizes the structural semantics (syntax) of the specifica-
tion language. Second, we formally connect this specifica-
tion language to an operational semantics using semantic
anchoring [8]. Third, using this formal anchor we find con-
servative approximations [13] to behavioral properties and
encode them in the metamodel. Fourth, we find generative
actions that can generate parts of a specification in order
to correct problems. Finally, we write translators that can
translate the specification to other verification or CbC tools.

This is a non-trivial process with many steps. But, given
the complexity of embedded system design, the number of
steps is not surprising. In this paper we illustrate a com-
plete CtC specification tool called SMOLES2 (Synchronous
Modeling Language for Embedded Systems Specification)
that is formally anchored to the synchronous reactive (SR)
class of systems [1]. The SMOLES2 language is rich with
constructs like hierarchical composition and separation of
concerns that were thoroughly presented in [7], all of which
are implemented using modern model-based techniques. In
the interest of space we do not show the formal anchoring
process here, but rather describe the semantics of a speci-
fication informally. Our intention is to show a non-trivial
CtC tool along with example systems, that, in the interest
of space, are admittedly simple. In fact, we will use exam-
ples from the digital hardware realm because they are sim-
ple and canonical, but embedded software is designed using
the same methodology. See [4], [11] for other examples
of embedded software designed in the style of concurrent
dataflow graphs.

2 SMOLES2 Without Hierarchy

In order to introduce the SMOLES2 approach, we be-
gin by describing a subset of the total SMOLES2 language.
Specifically, we will temporarily ignore the instantiation of
one SMOLES2 specification inside of another SMOLES2

specification, which is commonly called hierarchical com-
position. We consider hierarchical composition in Section
3.

A SMOLES2 specification is divided into three interact-
ing pieces called aspects. Each aspect provides a set of de-
sign concepts in an attempt to partition the system dynamics
into manageable interacting pieces. A specification must



be constructed in a sequence where the first aspect is de-
scribed, and then the second aspect is described, and so on.
The aspects and the sequence of their construction corre-
spond to typical design increments. The first aspect, called
the Dataflow Aspect, specifies which computational objects
are in the system (e.g. an ALU), and how these objects
communicate. Constructing this aspect is analagous to con-
structing a datapath or dataflow graph. The second aspect,
called the Mode Aspect, manipulates the datapath by dis-
abling and enabling computational objects. This aspect is
analagous to control logic, although it is not specified as an
FSM. The third aspect, called the Machine Aspect, enables
and disables parts of the control logic. This is analogous
to a protocol specification and as such, encodes constraints
on how the environment can interact with the system. After
all three aspects are constructed, they may be modified in
any order. These aspects of the specification incrementally
“ramp up” the amount of non-linearity and time-varying be-
havior in a controlled manner, so that complex embedded
systems can be specified.

While these aspects are common pieces of a digital sys-
tem, our SMOLES2 aspects are formally equivalent to SR
systems. Thus, the designer constructs a system spec-
ification using a typical frame-of-mind (datapath,control
logic, etc...), but is constrained to only produce SR sys-
tems, and in turn can apply well-studied analysis tech-
niques. The SMOLES2 specification tool was built on top
of the metaprogrammable, model-based tool GME, so each
aspect is defined by a UML-based metamodel written in the
notation of MetaGME [6], and we will describe the lan-
guage in terms of this metamodel. It is important to note
that a metamodel is not just an abstract description of a
modeling language, but can be used to generate a modeling
environment that enforces the semantics of the metamodel
diagram. By using a model-based metaprogrammable tool
like GME we can rapidly construct a tool that supports our
specification language, and we can utilize modern model-
based concepts like aspects, generative actions, constraints,
and type-instantiation that are core concepts in GME.

2.1 The Dataflow Aspect

The dataflow aspect, used to specify the simpliest layer
of behavior, is a dataflow graph with three classes of
dataflow objects: There are inputs that read data into the
system, outputs that write data to the environment, and in-
ternal operators that perform computation. Internal opera-
tors have an interface that describes how many inputs are
required by the operator and how many outputs are pro-
duced. An operator cannot produce output until it has data
on every input, at which time it consumes all of its data,
and produces data on every output. Internal operators are
assumed to be stateless, though their behavior is not mod-

eled in SMOLES2. Rather, each operator has a place to
store implementation parameters so that the operator can be
correlated to its functionality. Figure 1 shows the part of the
SMOLES2 metamodel that defines operators. The Opera-
tor class has a number of attributes for defining visualiza-
tion information and implementation information. Impor-
tantly, the attribute UserDefinedClass contains the name of
the (external) class that implements an operator, and the at-
tribute ImplementationParam contains a parameter that can
be passed to an instance of the user-defined class.

src

dst

<<Atom>>
PrIn

fieldImplementationParam :
boolShowName :
fieldUserDefinedClass :
fieldOperatorLabel :
fieldScaleSize :

enumShape :
<<Model>>

Operator

fieldImpPortData :
fieldVectorSize :

enumDataType :
<<FCO>>

PrimitivePort

<<Atom>>
PrOut

fieldInformation :
<<Atom>>

OperatorInformation

<<Model>>
OperatorSet

<<Connection>>
InformationConnection

Figure 1. Operator definitions in SMOLES2

metamodel, with example in the inset.

Each operator must have an interface that defines the
number of inputs it requires, the number of outputs it pro-
duces, and the types of each I/O. This is defined in the meta-
model by a containment relation between the PrimitivePort
class and the Operator class. The PrimitivePort class char-
acterizes the data type and size (in the case of a data vector)
of an I/O, and provides an attribute ImpPortData so that an
I/O can be matched with an I/O in the user-defined class.
An operator does not contain instances of PrimitivePort di-
rectly, but contains one or more of the classes that inherit
from PrimitivePort. These classes are PrIn that represents
an input, and PrOut that represents an output. For the sake
of organization, several operators are contained in an in-
stance of the OperatorSet class, and operators may have
documentation attached to them through an association with
an instance of an OperatorInformation class.

Given a set of dataflow operators (instances of Oper-
ator class), these dataflow operators can also be instanti-



src

dst src

dst

<<Model>>
DataFlowGraph

<<Atom>>
CmpInterfaceIn

<<Atom>>
CmpInterfaceOut

<<FCO>>
PrimitivePort <<Connection>>

DataflowConn

InitValue :        field
IsDelay :          bool

<<Connection>>
IOBind

<<Atom>>
Output

fieldVectorSize :
enumDataType :

<<FCO>>
PortFCO

<<Model>>
Operator

<<Atom>>
Input

enumShape :
fieldOperatorLabel :
boolShowName :
fieldScaleSize :

<<Model>>
Component

Figure 2. Dataflow graph and component def-
initions in SMOLES2 metamodel.

ated through type-instantiation. Type-instantiation results
in another instance of an Operator class, but with the ex-
act same internal structure, so if the AND gate were type-
instantiated, it would produce a copy of an AND gate with
technical restrictions on how that copy can be modified.
(See [5], [10] for more details on type-instantiation.) We
use type-instantiation to build dataflow graphs from opera-
tors. Figure 2 shows how graphs can be constructed. The
class DataFlowGraph acts as a container for instances of
operators, and for connections between operator ports. As
mentioned earlier, a graph also has inputs that read data
from the environment and outputs that write data to the en-
vironment. The classes Input and Output represent graph
I/O, and are subclasses of PortFCO, which endows the I/O
classes with data type and size attributes. Graph I/O ob-
jects can also be connected together, and can be connected
to ports of operators. A connection can be delayed mean-
ing that the connection stores the most recent value written
to it, but outputs the previous value written to it. A delay
connection must have an initial value. In the metamodel the
IsDelay and InitValue attributes of the DataFlowConn class
store this information.

The Component class is the top-level wrapper for a
specification. It contains all three aspects of the specifica-
tion, and so a component contains exactly one instance of
DataFlowGraph. A component also exposes an interface,
and this interfaces matches the interface on the dataflow
graph. For each Input (Output) in the graph there is an in-
stance of CmpInterfaceIn (CmpInterfaceOut) that is bound
to that input (output). With these definitions we can rapidly
construct a meaningful dataflow graph. For example, Fig-
ure 3 shows a one-bit adder with carry-in and carry-out

Figure 3. Example dataflow graph that imple-
ments a one-bit adder.

signals. The inset shows the component when viewed from
the outside. Notice how the graph inputs and outputs have
been exposed at the component level. A component can also
have documentation.

2.2 The Mode Aspect

The Mode Aspect allows one to specify non-linear be-
haviors that cannot be specified in the Dataflow Aspect. In
terms of more familiar digital design, the Mode Aspect cor-
responds to control logic that is applied to the datapath. This
control logic is not defined as an FSM, but rather by a set
of modes where each mode can reconfigure the dataflow
graph by disabling computational objects. More precisely,
a mode is a directed graph that topologically resembles the
dataflow graph, but its vertices describe whether or not the
corresponding object in the dataflow graph should be dis-
abled. This works by constructing a mode from references
to dataflow objects. A reference is a modeling construct that
allows an object in one model to refer (like a pointer) to an-
other object in another model. A reference may also have its
own attributes. In our specification tool, a mode is a graph
with vertices that are references, such that each reference is
annotated with an attribute indicating whether or not the re-
ferred dataflow object should be disabled. Figure 4 shows
how this is described in the metamodel. For each class that
can be contained in a dataflow graph, there is correspond-
ing class that can be contained by a mode. For example
an instance of a ModeOperator class refers to an instance
of an Operator, as indicated by the arrow from the Mode-
Operator class to the Operator class. The ModeOperator
class has an enumeration attribute ShouldUseOp which can
take on three possible values. If ShouldUseOp = Y es,
then the referenced operator will not be disabled from the



<<Model>>
ModeSet

enumShouldUseOp :
<<Reference>>
ModeOperator

<<Model>>
Operator

<<Atom>>
Output

fieldScaleSize :
fieldOperatorLabel :

enumShape :
boolShowName :

<<Model>>
Component

enumWillInputBePresent :
<<Reference>>

ModeInput

fieldEntryCondition :
<<Model>>

Mode

<<Atom>>
Input

enumShouldProduceOutput :
<<Reference>>

ModeOutput

Figure 4. Mode definitions in SMOLES2 meta-
model.

graph. If ShouldUseOp = No, then the reference op-
erator will be disabled in the graph. If ShouldUseOp =
Constant Operation, then the dataflow operator is con-
sidered to be a constant value, which is disabled based on
the disabled signals of its neighbors. Changing the en-
abled/disabled attribute of a ModeOperator changes its
color: Black indicates a disabled vertex, gray indicates a
constant vertex, and white indicates an enabled vertex. Fig-
ure 5 shows two modes for the 1-bit adder example. (Note
that the edges have been hidden in Figure 5.) The left mode
of Figure 5 leaves all of the objects in the graph enabled,
while the right mode disables all of the objects in the graph.

Figure 5. Two example modes for the 1-bit
adder.

The mode set characterizes the ways the datapath can be
configured, or equivalently, the set of control responses that
a controller can make. Of course, a mode set is meaning-
less if there is no way pick which mode to apply. There-

fore, a mode also describes when it should be applied. The
mode encodes an entry condition in two ways. First, the
enabled/disabled information on ModeInput instances (that
refer to graph inputs) encode conditions on the availability
of data. If a graph input i is enabled in mode m, then mode
m is a valid control response only if the environment pro-
vides data on input i. In synchronous languages this a test
on the presence of data. Conversely, if a graph input i is
disabled in mode m, then mode m can only be applied if
the environment does not provide any data for input i. This
is a test on the absence of data. The mode on the left can
only be applied if the environment provides data on all of
the adder inputs (i1, i2, ci) and the mode on the right can
only be applied if the environment provides no data for any
of the inputs. An interaction with a component is valid only
if some mode can be applied, so providing the 1-bit adder
with only an i1 signal would result in a run-time error. This
is a reasonable constraint, considering that the digital logic
in Figure 3 would behave irradically if it were not provided
all (or none) of its inputs.

Often times we want a control response to be applied if
the data is present and carries a particular value. For exam-
ple, we may want a division component to only perform
division if the divisor is nonzero, so we could write the
entry condition divisor != 0. Such data-dependent entry
conditions are specified in the EntryCondition attribute of a
mode. SMOLES2 supports the condition language shown
in Figure 6 (assuming that signals are bit vectors). The

expr ← ‘(’ expr ‘)’ | var
| bitvec | bool
| expr numop expr
| expr binop expr
| expr bitop expr
| expr ‘[’ number ‘]’
| expr ‘[’ number ‘-’ number ‘]’

numop ← ‘=’ | ‘>’ | ‘<’ |
‘!=’ | ‘>=’ | ‘<=’

bitop ← ‘|=|’ | ‘|!|’
binop ← ‘&’ | ‘|’
var ← [a-z,A-Z, ][a-z,A-Z,0-9, ]∗

number ← [0-9]+

bitvec ← [0,1]+

bool ← ‘true’ | ‘false’

Figure 6. BNF-grammar for the condition lan-
guage supported by SMOLES2.

numop operators perform numerical comparisons, while
the bitop operators compare bit vectors. Slicing opera-
tors extract sub vectors from a bit vector, so var[0-4] ex-
tracts the subvector from positions zero to four, inclusive.



As a final note, notice that our modes expand the set
of behaviors that a component can exhibit. In other tools
modes serve as a convenient way to group together behav-
iors, while in our tool we must have modes in order describe
true SR systems and not just homogenous SDF systems. Of
course we must be careful not to make modes so expressive
that unanalyzable systems could be specified. In order to
prevent this we only allow modes to enable/disable vertices
in the SDF graph.

2.3 The Machine Aspect

We used the Mode Aspect as means to specify non-linear
dynamics. Similarly, we use the Machine Aspect as a means
to specify time-varying dynamics. Continuing with the dig-
ital design analogy, control logic is naturally specified by
modes that enable/disable dataflow operators, while state-
dependent interaction protocols are naturally described by
state machines that enable/disable modes in the mode set.
A Machine Aspect is a state machine where each state enu-
merates a subset of modes from the mode set. When the
system enters a state, it disables all modes except those enu-
merated by the state. At this point either the environment
interacts with the system so that a mode from the subset can
be applied, or a run-time error occurs. If a mode is applied,
then the state machine takes a transition to another state.
Transitions only have mode application events as guards.
A transition si

emk−→ sj means that the machine goes from
state si to sj if the event where mode mk was applied oc-
cured while the system was in state si. Intuitively, a Ma-
chine Aspect encodes a set of control trajectories, and the
environment must remain on one of these trajectories, oth-
erwise a run-time error is produced. Figure 7 shows how
a machine is represented in the SMOLES2 metamodel. A
state, which is an instance of a class State, contains a col-
lection of references to modes. State transitions, which are
instances of StateTransition, begin on mode reference and
end on state. The interpretation is that the state that contains
the reference is the source state (si), the mode pointed to by
the reference is the guard (mk), and the destination state is
the destination for the transition (sj). A machine must con-
tain exactly one start state, which is an instance of the class
StartState, that has a guardless transition to some state. The
start state does not contain any modes, and its transition is
taken immediately.

2.4 Well-formed Models

With this background we now describe how our CtC tool
SMOLES2 detects and corrects specifications. We use two
model-based approaches to detect and correct models, and
these can be broadly classified as generative and constraint-
based. The generative approach detects changes in one as-

src

dst

src

dst
<<Model>>

Machine

<<Connection>>
StartStateConn

<<Model>>
Component

<<Reference>>
ModeRef

<<Model>>
Mode

<<Model>>
State

<<Atom>>
StartState

<<Connection>>
StateTransition

Figure 7. Machine definitions in SMOLES2

metamodel.

pect of the specification and then generates changes in other
aspects to make the overall specification consistent. The
constraint-based approach checks partial specifications for
problems, localizes those problems, and reports them to the
user. The constraint checks are conservative approxima-
tions in the sense that a constraint violation implies that ver-
ification will fail, but if a constraint is not violated then ver-
ification may or may not fail. Constraint checks are poly-
nomial time algorithms that operate directly on the model
syntax, i.e. they do not check the model with respect to
a different representation. This means that they can iden-
tify the malformed part of the specification but they only
approximate the true verification algorithms, which are NP-
hard.

Generative actions work to maintain a consistent speci-
fication across aspects. The generative actions are simple,
but absolutely essential to the scalability of the SMOLES2

specification language. For example, given a dataflow graph
with n inputs, we may construct 2n unique modes without
using data-dependent entry conditions (and many more with
data-dependent entry conditions). If the dataflow graph is
changed, it may mean changing up to 2n modes so that the
topology of each mode matches that of the dataflow graph,
and so that the references in the modes point to valid objects
in the dataflow graph. The engineer cannot be expected
to maintain these consistency requirements, so SMOLES2

includes a generative engine that watches changes to the
dataflow graph and updates all modes so that they become
consistent with the dataflow graph. This means that if an
object is added to the dataflow graph, then a new reference
is created in every mode. If an object is deleted, then the ref-



erences are deleted from every mode, and if a connection is
created/deleted, then a connection is created/delete between
references in every mode. Generative actions are also used
to generate component interfaces and to remove references
to deleted modes from states in the Machine Aspect.

Checking the Dataflow Aspect and the Machine Aspect
is fairly simple. First, a type check on edges in the dataflow
graph ensures that connections between ports respect sig-
nal types and widths. As a necessary condition for bounded
memory, we also check that every primitive operator has
all of its inputs fed by some other operator or input, i.e. we
check that there are no dangling inputs. As a necessary con-
dition for determinism, we check that there is a start state,
and that there is exactly one transition for every mode ref-
erence.

Checking the Mode Aspect is a more complicated pro-
cess. Disabling an object from a dataflow graph can have
the negative effect of causing a dangling input on another
operator. We must check that disabled operators do not
induce dangling inputs in the dataflow graph. The lower
left-hand mode in Figure 8 induces such dangling input
on the bottom AND gate. Another problem arises when

Figure 8. Dataflow graph exhibiting potential
problems.

dataflow operators are connected in a cycle (without any
delay edges). If all operators in the cycle are enabled in
a particular mode, then deadlock results. In order to pre-
vent deadlock, every mode must disable one or more ob-
jects in the cycle. Checking this property is equivalent to the
causality analysis of the synchronous languages, if no hier-
archy is in the SMOLES2 model. When hierarchy is added,
this check becomes a conservative approximation of causal-
ity analysis. The lower right-hand mode in Figure 8 permits
the deadlocked cycle that includes the two AND gates. A
third problem arises if multiple operators write data to the
same input port of another operator. Since the system is
supposed to be deterministic, every mode must disable one
or more of the operators that drive the same input port. The

upper right-hand modes allows the values 0 and 1 to be si-
multaneously written to the 2nd input of the bottom AND
gate, and this violates the determinism requirement. The
upper left-hand mode eliminates all of these problems.

We check for these problems by assigning a control type
to each vertex in a mode, and then by performing type in-
ference on the control types. Mode vertices that reference
graph inputs can be of type absent (A), present (P), con-
stant (C), or don’t care (D). (A don’t care input allows a
mode to be entered regardless of whether data is present or
absent on that input.) All other vertices can only be of type
absent, present, or constant. The inference works by first
assigning a control type to all non-deterministic merges.
Let the sequence t1, t2, . . . , tn denote the control types of
all vertices participating in the merge, then the type of the
merge is tmerge(n). This is calculated according the fol-
lowing recursion:

tmerge(1) = (t1)1
tmerge(i > 1) = (ti)1 ∨merge tmerge(i− 1)2

(1)

where the operator ∨merge is the join of the merge lattice
shown in Figure 9. For technical reasons involving the

A1

A2

P1 P2 C1 C2 D1 D2

E1

E2

Figure 9. Merge lattice for type-inference of a
merge.

symmetry of the join operation, each control type is split
into two different elements of the lattice, and the recursion
“casts” between these elements. For example the absent
type can be cast to A1 or A2, and we denote this casting
with the operators (•)1 and (•)2. The elements D1 and D2

are the don’t care types, and the elements E1 and E2 are the
error types. If the type of a merge is the error type, then the
merge is illegal, and this happens if the control types imply
that more than one value will be written to the port. After
every non-deterministic merge has been assigned a type, we
can aggregate all of the types on the input ports of each op-
erator to form the apply type tapply . Calculating tapply uses
the same recursion as Equation 1, except the join is over
a different lattice called the apply semi-lattice (Figure 10).



This semi-lattice ensures that no dangling inputs will occur.
Notice how constant data can play the role of a present or
absent signal, depending on context. Given an operator with
input ports p1, p2, . . . , pm, let the sequence t1, t2, . . . , tm
be the control types on each port. If the port pj has a merge,
then the port type tj is the type of the merge, otherwise tj
is the type of the single vertex writing to port pj . Using this

C2

C1

P2

P1

D2

D1

A2

A1

E2

E1

Figure 10. Apply semi-lattice for type-
inference of input ports.

sequence and the apply semi-lattice, calculate tapply(m) to
find the apply type. If the process of determining the merge
and apply types yields an error type, then that error is lo-
calized to the vertex that first caused the type to switch to
an error type. After all merge and apply types are calcu-
lated (and assuming no errors are found), we check that the
type tv of a vertex v is compatible with the type being ap-
plied to that vertex (tvapply). The types are compatible if the
following holds:(

(tv = P) ⇒ (tvapply = P) ∨ (tvapply = C)
)

∧(
(tv = C) ⇒ (tvapply = C)

) (2)

If Equation 2 does not hold, then the error is localized to the
vertex v. All of these checks are polynomial time and occur
in response to modeling events or can be invoked by the en-
gineer. Furthermore, the checks operate on the specification
and localize errors to the offending parts of the specifica-
tion.

2.5 Examples

The first example is a 1-bit memory with read (R), write
(W ), 1-bit input (I), and 1-bit output (O) signals (Figure
11). Though this example is simple, it uses many con-
structs including cycles, merges, and don’t care inputs. The
small rectangular objects are identity operators (zero-delay
buffers) that pass data through without modification. Two
of these identity elements are connected in a cycle with a
delay edge (the dotted line) in order to hold a bit of data. A

write occurs when R is absent, and data is present on the
W and I signals. The Write mode (upper left-hand mode)
disables the third identity function, which breaks the feed-
back cycle and allows the input data to be written onto the
delay edge. The Read mode (upper right-hand mode) is ap-
plied whenever R is present. The dark gray coloring on the

Figure 11. 1-bit memory example.

W and I signals indicates don’t care conditions. The Read
mode disables the first identity function, so that if data is
present on the I signal it cannot disturb the bit stored in the
feedback cycle. The small inset shows the Machine Aspect,
which only has one state with all three modes permitted by
the state. Each mode returns the system back to the same
state.

In the second example we consider a system with a more
interesting Machine Aspect. Figure 12 shows a 2x clock
multiplier (or oversampler). The input to the system is a
clock signal CLK and the output is another clock signal
FAST with a rate twice that of CLK. The dataflow graph
writes the constant value 1 to the output FAST . The ma-
chine starts in the state Tick which restricts the system to
the upper left-hand and lower left-hand modes (TICK and
NOTHING). While the environment provides no data for
CLK, the system stays in the Tick state. When a clock tick
occurs, the FAST signal emits a value, and the system goes
to the OverSample state. In the OverSamp state only the
upper right-hand mode can be applied (OV ERSAMP ),
which requires the environment to provide an event with-
out a clock tick and responds with a clock tick on FAST .
After emitting FAST , the system returns to the Tick state
and the process repeats. The result is that for every tick of
CLK there are two ticks of FAST .



Figure 12. 2x clock multiplier example, i.e.
oversampler

3 SMOLES2 with Hierarchy

Hierarchical composition is essential for the scalability
of our (and most other) specification techniques. Hierar-
chical composition allows one to use a previously defined
SMOLES2 specification (component) in a dataflow graph.
Replacing an operator with a component has a profound ef-
fect on the methods that we previously described. In gen-
eral components are not monochronous, i.e. a component
can respond to an event that does not provide data to ev-
ery input on the component’s interface, and a component
need not provide output on every output port. Contrast this
with the primitive operators that can only fire when every
input has data, and when fired, produce data on every out-
put. Components also have state in the form of delay edges
and the current state of the Machine Aspect, while opera-
tors are stateless. Nonetheless, we can still assign a reason-
able semantics to this composition: Operators fire when-
ever they have data on all of their inputs, and components
fire when every input has data or when all writers of that
input have been disabled. In another words, a component
can fire once it is known which of its inputs are present and
which are absent. This definition eliminates all cycles that
consist entirely of components, and this constraint can be
easily checked.

In the previous section we used control types to stati-
cally determine which operators would be scheduled, which
would be disabled, and if the schedule was legal. Simi-
larly, we can extend the typing mechanism on mode ver-
tices to figure out which inputs on a component’s interface
will have data and which will be absent of data. Once we
know this information, we check if that component contains
a mode that would accept that particular combination of ab-
sent/present data. If we find such a mode that accepts the
input conditions, then we can determine the presence and
absence of the output ports for that component according to
the matched mode. This information is then placed on the
output ports of the instantiated component, and the process
continues. An example of this is shown in the mode in Fig-

Figure 13. ADD mode for 4-bit adder.

ure 13. This mode is a control response for a 4-bit adder
built by instantiating four 1-bit adders as shown in Figures
3 and 5. The 4-bit adder rips two 4-bit signals into eight
1-bit signals, and then feeds a pair of bits into each 1-bit
adder (gray boxes). The carry-outs are chained through the
1-bit adders, and the outputs from the four 1-bit adders are
repacked into one 4-bit signal. The inset shows a zoomed
picture of a 1-bit adder component as it appears in the mode.
Notice that the inputs and outputs of the component are col-
ored white. This coloring indicates that in this mode the
1-bit adder will have data present on all of its inputs, and
will respond by producing data on all of its outputs. In the
mode where no data is presented to the 4-bit adder, all of
the inputs and outputs on all 1-bit adders would be black.

In general, it cannot be statically determined which
mode, if any, a component will apply in response to a partic-
ular set of present/absent inputs. There are several reasons
for this. First, as in the case of the clock multiplier (Figure
12), the particular response may be dependent on the state
in the Machine Aspect. Second, if a component has modes
with data-dependent entry conditions (e.g. i1 > 0) then we
cannot predict which modes can be applied because we do
not know the values of the data. We handle this by apply-
ing conservative approximations to predict whether or not a
mode exists that will accept the inputs. The approximation
we apply is to consider the entire set of modes (i.e. ignore
the Machine Aspect) with all data-dependent entry condi-
tions set to true. If no mode from this relaxation accepts
the inputs, then no mode exists under any state/data pair
that will accept the inputs. If the component has no data-
dependent entry conditions, and a trivial Machine Aspect,
then this approximation becomes exact.

This approximated response must be handled carefully,
because we may identify several modes that can be applied,
and these modes may contradict which objects in the graph
are enabled/disabled. For example, if we know that the
clock multiplier does not receive a CLK, then the OVER-
SAMP mode asserts the output FAST to be present while
the NOTHING mode asserts the output to be absent. Since
we do not have enough information to choose the correct



mode, we must assume that either situation is possible. We
formally encode this missing information by placing a new
control type onto outputs with contradictory disable/enable
information. This don’t know control type (abbreviated K)
indicates that we “don’t know” if the particular output will
have data. We must modify the type lattices so that type
inference handles the don’t know type. (We do not list the
modified lattices.) Figure 14 shows a mode with an in-
stantiated clock multiplier that has an absent CLK. Notice
that the output port of the clock multiplier is colored half
white and half black. This is the visualization of the don’t
know type, which is propagated to the output of the parent
component.

Figure 14. Example of a don’t know type.

The generic algorithm for checking a mode in hierarchi-
cal SMOLES2 combines all of these techniques. First, we
check the mode for any cycles of only components, and for
any present/constant cycles of operators. Next, we calcu-
late tmerge for every port and tapply for every operator for
which we have complete type information. If we do not
have complete type information, then this means we must
approximate the modes of various components. In order to
perform this approximation in a correct order, we evaluate
and propagate component output types according to a topo-
logical sort of the subgraph that only contains components.

4 Conclusions and Future Work

We presented a detailed CtC tool for specifying a par-
ticular class of embedded systems, and we provided poly-
nomial time conservative approximations for checking the
validity of specifications. These approximations are based
on well-known graph algorithms (e.g. cycle checking, topo-
logical sort) and type inference techniques (e.g. type lat-
tices). Additionally, we showed how generative actions can
be used to make interacting aspects consistent without user
intervention.

Our current and future work is to build code generators
that convert a SMOLES2 specification into input for a ver-
ification or CbC tool. We are approaching this from sev-
eral fronts. One front is to write a verification tool that
performs verification in a layer-wise fashion that matches
the sequence of aspects in a SMOLES2 specification. The
other natural front is to map our specifications to existing

synchronous languages like Esterel [3] and Signal [12], for
which many tools already exist. Once connected to these
tools, this CtC tool will be merged with existing IuV and
CbC tools.
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