
A Component Model for Hard Real Time Systems:
CCM with ARINC-653

Abhishek Dubey Gabor Karsai Nagabhushan Mahadevan
Institute for Software Integrated Systems, Vanderbilt University,

Nashville, TN 37212, USA

Abstract

Size and complexity of software in safety critical system is increasing at a rapid pace. One
technology that can be used to mitigate this complexity is component-based software devel-
opment. However, in spite of the apparent benefits of a component-based approach to devel-
opment, little work has been done in applying these concepts to hard real time systems. This
paper improves the state of the art by making three contributions: (1) we present a component
model for hard real time systems and define the semantics of different types of component
interactions; (2) we present an implementation of a middleware that supports this component
model. This middleware combines an open source CORBA Component Model (CCM) imple-
mentation (MICO) with ARINC-653: a state of the art RTOS standard, (3) finally; we describe
a modeling environment that enables design, analysis, and deployment of component assem-
blies. We conclude with a discussion of lessons learned during this exercise. Our experiences
point towards extending both the CCM as well as revising the ARINC-653.

1 Introduction
Core functions and system integration effort in complex cyber-physical systems, such as aircraft
are increasingly becoming reliant on software. This has led to an exponential increase in size and
complexity of software associated with these systems [32, 6]: avionics architectures have evolved
from independent analog avionics in 40’s, to federated avionics of 60’s, to the integrated avionics
of 80’s, and finally to the advanced integrated avionics of post 2000 era. One way to address
the rise in system complexity is to use component-based software along with robust composition
techniques for constructing these systems; a concept that has been around since the early days of
software engineering.

Component-based software development is based on the notion that software should be assem-
bled from pre-fabricated and pre-tested components, which encapsulate parts of a software system
that implement a specific service or a set of services. Several software component models have
been developed in the past two decades. These include COM and .NET by Microsoft, the CORBA
Component Model defined by OMG and implemented by many vendors, and Enterprise Java Beans
from Sun/Oracle, just to name the three major ones. The component models define what a compo-
nent is, how it can be customized, how it can be deployed on the platform, and how the components

DRAFT



can interact via the platform. The primary goal of this approach is to promote reusability and to in-
crease the productivity of developers. Furthermore, if the component model is well designed, then
the properties of the resulting system can be determined from properties of interacting components
[35, 42]. Yet another potential benefit of using components is fault-management and -containment:
the component middleware can catch faults in components at run-time and take some appropriate
action (e.g. restart the component) before the effect propagates to other components.

There has been considerable interest in developing a component middleware for soft real time
systems [10, 39, 12]. Most implementations have relied on different implementations of RT-
CORBA [21]. However, in spite of the apparent benefits of a component-based approach to devel-
opment, little work has been done in applying these concepts to hard real time systems. It is known
that the complexity of such hard real time systems keeps increasing over time, and using reusable
components along with robust composition techniques is crucial.

This paper is an extension of our work published earlier in [17]. The contributions of our work
described here are:

1. We present a component model that is suitable for hard real time systems. The guiding
principles of our design are static memory allocation for determinism, spatial and temporal
isolation between components of different criticality, specification and adherence to real
time properties such as periodicity and deadlines, and providing well-defined compositional
semantics. Instead of starting afresh we chose to develop our work based on the existing
OMG CCM standard1 because it is one of the widely used component model and software
developers are already familiar with it.

2. Next, we describe the design and implementation of the middleware that supports the com-
ponent model. This middleware is built by extending an open source CORBA Component
Model (CCM) implementation called MICO [34] and layering it on top of an emulation of
ARINC-653 platform services [1]: the state of the art standard in Integrated Modular Avion-
ics architecture [44]. We had to use an emulated implementation because of lack of access
to an actual ARINC-653 implementation.

3. Finally, we describe the domain specific modeling environment for this framework, con-
structed using Model Integrated Computing tools available at [4]. It allows the applica-
tion developers to model components and the set of services they provide (without detail-
ing the implementation and independently of the actual deployment configuration); and
capture real time properties and resource requirements. This allows system integrators
to configure software assemblies using precisely defined compositional semantics, spec-
ify the deployment topology, and perform design-time checks. These tools and the run-
time are available for at https://wiki.isis.vanderbilt.edu/mbshm/index.
php/ACMTOOLSUITE.

The paper is organized as follows. Section 2 provides the background on the ARINC-653
standard and the CORBA Component Model. Section 3 describes our extensions to the CORBA
component model in detail. Sections 4, 5 and 6 detail our approach towards combining the CORBA
Component Model with the hard real time ARINC-653 platform services and present our results.
We conclude with related works and a summary in sections 7 and 8.

1http://www.omg.org/spec/CCM/4.0/

2

DRAFT

https://wiki.isis.vanderbilt.edu/mbshm/index.php/ACMTOOLSUITE
https://wiki.isis.vanderbilt.edu/mbshm/index.php/ACMTOOLSUITE


Figure 1: ARINC 653 architecture.

2 Background
This section provides the necessary background on ARINC-653 platform services, the CORBA
Component Model and Model-Integrated Computing, three main technologies used in our work.

2.1 ARINC-653 Platform Specification
The ARINC-653 software specification describes the standard Application Executive (APEX) ker-
nel and associated services that are supported by safety-critical real time operating systems (RTOS)
used in avionics. It has also been proposed as the standard operating system interface on space mis-
sions [15].

ARINC-653 systems (see figure 1) group processes into spatially and temporally separated
partitions, with one or more partitions assigned to each module (i.e. a processor), and one or
more modules forming a system. Spatial partitioning [23] ensures exclusive use of a memory
region by an ARINC partition. It also guarantees that a faulty process in a partition cannot ruin
the data structures of other processes in other partitions. Such space partitioning can, for example,
be used to isolate the low-criticality vehicle management components from safety-critical flight
control components. Each partition has predetermined statically allocated memory. The ARINC
processes hosted within a partition are prohibited from accessing memory outside of the partition’s
defined memory area. This memory protection is enforced by memory management hardware.

Temporal partitioning [23] ensures exclusive use of the processing resources by a partition.
A fixed periodic schedule is used by the RTOS to share the resources between partitions. This
deterministic scheduling ensures that each partition is allowed exclusive access to the processor
or other hardware resources within its predetermined execution interval. It also guarantees that
when the predetermined execution interval of a partition is over, the partition’s execution will be
interrupted, the partition will be placed into a dormant state and the next partition in the schedule
order will be granted exclusive access to the computing resource, i.e. the processor. Note that
all shared hardware resources must be managed by the partitioning operating system in order to
ensure that control of a resource is relinquished when the time slice for the corresponding partition
expires.

This architecture provides functional separation between applications for fault-containment.
The partitions and their underlying processes are created during system initialization. Dynamic
creation of processes while the system is running is not supported. The user configures parti-
tions and their underlying processes with their real time properties (priority, periodicity, duration,

3

DRAFT



Table 1: Communication mechanisms available in an ARINC-653 compliant operating system.
Communication Type Destructive Read Messages Buffered Co-located (in the same Partition)

Blackboard No No Yes
Buffer Yes Yes No

Sampling Port No No Yes
Queuing Port Yes Yes No

Figure 2: CORBA Component Model

soft/hard deadline etc.) The partitions are precisely scheduled at run-time and their processes are
monitored to check for deadline violations. Processes within a partition share data via the intra-
partition services. Intra-partition communication is supported using buffers that provide a queue
for passing data messages and blackboards that allow processes to read, write and clear a single-
item data message. Inter-partition communication is provided using ports and channels that can
be used for sampling or queuing of messages. Synchronization support for processes within a
partition is provided through semaphores and events. Table 1 summarizes these communication
mechanisms.

2.2 CORBA Component Model
The CORBA Component Model (CCM) [43], illustrated in Figure 2, is a standard defined by the
Object Management Group (OMG). It extends the CORBA object model and defines features that
allow software developers to implement, manage and deploy software units (components) that
integrate commonly used functionality and allow for greater software reuse.

The component interfaces are described (using an interface definition language) in terms of
attributes and ports exposed by the component. While the attributes are data entries, ports corre-
spond to the interaction points with other components. Ports could belong to any of the following
four types:

(a) Facets: Facets or provided interfaces are sets of services (methods) that a component ex-
poses to other components. Each service can be called from another component synchronously via
a CORBA two-way operation or asynchronously via CORBA’s asynchronous method invocation.
A service can be also invoked using the CORBA one-way operation.

(b) Receptacles: Receptacles or required interfaces are sets of services that a component needs
from another component to perform its task. The client component is required to connect its
receptacle to a compatible facet of before it can issue the service calls.

(c) Event sources/sinks: Components can publish or subscribe to different types of events
using these ports. An event is a simple, flat data structure. Typically, an event service daemon or
broker is responsible for logically connecting a source port (publisher) in one component to sinks
(consumers) in other components. This event service is also responsible for routing the messages

4

DRAFT



from the sources to sink.
(d)Attributes (with setters/getters): The values of CORBA component attributes can be set

and queried by external entities; the attributes may represent the state of the component.
In a typical CCM deployment, the computational objects are grouped into Components hosted

inside a CCM Container, which is associated with the underlying Object Request Broker (ORB).
Each native operating system process contains an instance of the ORB that hosts the Components.
Dynamic memory and resource allocation is permitted in a typical CCM system. If Components
are configured as session-oriented, a new instance of the Component is created dynamically for
each session request. The alternative is to configure components as service-oriented, which im-
plies that a single instance of the Component persists across all invocations. All interactions be-
tween Components happen through ports that are used to publish or receive subscribed events,
or ports that provide or use interfaces for method calls. Any incoming request is launched and
serviced in worker threads dynamically obtained from a thread pool by the middleware. The com-
munication between the objects is achieved through the services provided by the Component mid-
dleware layer and the underlying ORB. Additional synchronization support from the ORB service
libraries and the underlying OS is also available.

2.3 Model-Integrated Computing
Model Integrated Computing (MIC) [3] is an approach to the development of complex software
systems. The key idea is to use models in all phases of the development (analysis, design, im-
plementation, testing, maintenance and evolution). The Model-driven Architecture (MDA) [2] of
the Object Management Group (OMG) is a parallel approach with overlapping directions. MIC
incorporates the creation of domain-specific, model-based abstractions, which serve to capture rel-
evant aspects of a target system. Such abstractions are available in the form of a domain-specific
modeling language which is used by developers to create multi-aspect models of the system. These
models can then be programmatically traversed and transformed to produce (or modify) code, other
engineering artifacts, etc. Often, models are transformed into alternate but equivalent representa-
tions, which can be used by external analysis and simulation tools to verify certain properties of
the system.

In the MDA approach, the key notion is the use of Platform-Independent Models (PIMs) to
describe the system in high-level terms, then refine these models (possibly using model transfor-
mations) into Platform-Specific Models (PSMs) which are then directly used in the implementation
(which itself could - wholly or partially - be generated from models). In the MIC approach, the
use of Domain-Specific Modeling Languages (DSMLs) is advocated. A domain-specific modeling
language (DSML) allows a designer to describe objects in terms of the domain-specific abstrac-
tions rather than in terms of traditional computer languages. The Generic Modeling Environment
(GME) [29] is a freely available tool, which provides a platform for Model Integrated Computing
design and development.

Next section describes our design of a component model for hard real time systems. We pay
special attention to the discussion, which highlights the enhancement in this component model
with respect to CCM.

5

DRAFT



3 A Component Model for Hard Real Time Systems
Any component model that aims at being suitable for hard real time systems shall address the
following issues.

1. It must support the specification of real time properties such as periodicity and deadline.
CCM standard natively does not support such specifications.

2. It must be analyzable. That is, we must be able to analyze the properties of the system from
the underlying component assembly. For this, the component model must have well-defined
interaction semantics.

Moreover, given that typical hard real time systems require determinism, components must
support static memory allocation; i.e. the resources required for execution of tasks must be reserved
at system initialization. An advantage of this approach is that it avoids memory fragmentation,
which, if present, requires the RTOS to spend precious computing cycles managing the memory.
The consequence of static memory allocation is that components can only support service life cycle
i.e. a session-based component cannot be created dynamically based on an incoming request. This
is especially true in hard real time systems, where all possible tasks must be known beforehand to
ensure that they can be scheduled.

Another feature, which is not a requirement for hard real time systems but is important to have,
is spatial and temporal partitioning. As discussed in section 2.1, a safety-critical real time system
can group processes into separate partitions with different criticality levels and still allow them to
execute in the same core module, without affecting one another spatially or temporally. This is a
good feature to have in a software assembly, where components with different criticality levels can
be isolated from each other, which in turn provides fault isolation.

Remark 1 We have named our component model ARINC-653 Component Model (ACM) because
ARINC-653 standard is the current state of the art for safety critical real time systems that supports
the two platform principles mentioned in previous paragraphs. However, we should clarify that
this component model is not necessarily tied to ARINC-653 and can be implemented on any other
platform that provides similar services.

Figure 3 illustrates the internals of our component model. A component can have four different
kinds of ports: consumer port, publisher port, provided interface port (similar to a facet in CCM)
and required interface port (similar to a CCM receptacle). A publisher port is a source of events:
this port is used to produce events that will be consumed by another component/s. A publisher
port needs to be triggered to publish an event (probably read from some internal state variable
or a hardware source). This triggering can be either periodic or aperiodic (sporadic). While, a
periodic publisher is triggered at regular intervals by a clock to supply data, an aperiodic publisher
is invoked (sporadically) by an internal method, possibly the implementation code of another port.
A consumer port, as the name suggests, acts as a sink for events. Like a publisher port, it can
be triggered periodically (by a clock) or aperiodically (by the arrival of an event) to consume
an event. An aperiodic consumer consumes all the events published by its publisher on a FIFO
basis (destructive read) and a periodic consumer samples the events published at a specified rate
(nondestructive read).

6

DRAFT



Figure 3: ARINC Component Model (ACM)

A provided interface port (or facet) contains the implementation for the methods defined in
the provided interface and services the requests issued on these interfaces by a receptacle. The
incoming client requests are queued by the middleware and are serviced by the provided port’s
implementation in FIFO order.

Two new concepts exist in our extension to the CCM: state variables, which are similar to at-
tributes in CCM but cannot be modified from outside component, and component triggers, which
are internal periodically activated methods within a component that can be used for internal book-
keeping and checking state invariants.

7

DRAFT



Figure 4: ACM Metamodel. The colored boxes indicate the four types of ports, which can be used
to interact with other components.

All the ports - publisher, consumer, facet, and receptacle - and the component trigger method
have to finish their unit of work within a specified deadline. This deadline can be qualified as
HARD (strict) or SOFT (relatively lenient). A HARD deadline violation is an error that requires
intervention from the underlying middleware. A SOFT deadline violation results in a warning. The
soft deadline warning is sent to the component health manager- discussed in section 3.1, which can
act upon it if configured to do so.

Like the deadline, all implementations can specify another property that must be respected:
contracts. These contracts are expressed as pre-conditions and/or post-conditions, and any contract
violation results in an error. This concept is based upon the logic system identified by Hoare
[24]. These are discussed further in section 3.2. Next section describes the metamodel i.e. the
relationship and attributes associated with these ports.

3.1 ACM Metamodel
Figure 4 describes the metamodel of our extensions to the CORBA Component Model. This
metamodel has been designed in a UML based modeling language called MetaGME [29, 4]. It
shows the relationship between all the ports and different attributes that can be set. The main
concepts are as follows:

(a) State Variables: As described in the previous section, these represent the externally ob-
servable state of the component. Unlike CCM attributes they cannot be modified from outside.

(b) Parameters: are configuration attributes which once set during initialization remain con-
stant during the life cycle of that component.

8

DRAFT



(c) Asynchronous Ports: These kinds of ports participate in asynchronous interactions. There
are two kinds of asynchronous ports, Publisher and Consumer. We discussed both of them in
the previous section. The data type of an event is specified by the type entity referred to by the
port. Both ports can be further qualified by attributes such as period, deadline, pre-conditions and
post-conditions, see Table 2. If the period of a publisher is set to infinity, it is called aperiodic.
Otherwise, it is periodic. Periodic publishers are typically activated by the middleware, automati-
cally, while aperiodic publishers are activated by another method within the component. Periodic
consumers are automatically and periodically activated by the middleware, aperiodic consumers
are activated when they have events to consume.

(d) Synchronous Ports: These ports are used for either requesting some service from another
component or servicing an incoming request. There are two main kinds of synchronous ports,
Provided and Required. Each provided port contains implementation of a collection of meth-
ods. These methods can be further qualified by filling in their attributes e.g. call type, deadline,
pre-conditions and post-conditions. (see Table 2). Furthermore, each method contains a number
of arguments. These arguments can be marked to be used strictly for sending input (IN) to the
facet, strictly for sending output (OUT) to the receptacle, or to be used for both input as well as
output (INOUT). The third kind, Resource Usage Monitoring Interface is used for monitoring
the component resource usage. By design, this interface can only contain read only methods i.e.
they cannot change the internal state of the component.

(e) Component Triggers: A component can contain a number of internal methods, known
as component triggers. These methods are periodically triggered. They must have a finite, non-
zero period. Typically, they are used for record keeping and invariant checking of the component.
These methods are further qualified by filling in attributes such as period, deadline and invariant
(see Table 2).

(f) Component Health Managers: Component-level health managers (CLHM) for software
components detect anomalies, identify and isolate the fault causes of those anomalies (if feasible),
prognosticate future faults, and mitigate effects of faults – on the level of individual components.
CLHM is implemented as a ‘side-by-side’ object that is attached to a specific component and acts
as its health manager. It provides a localized and limited functionality for managing the health of
one component, but it also reports to higher-level health manager(s): the system health manager -
all in a real time context where dependability is required. A detailed discussion on this topic is out
of scope for this paper. Interested readers are referred to [18, 16].

Deployment: Unlike the standard CCM where the functional logic belonging to an interface
port is executed on a new, dynamically created, or pre-existing but dynamically released worker-
thread, in ACM the functional logic for each port is executed on a statically allocated schedulable
unit. This choice is guided by our first design principle of static memory allocation, which restricts
dynamic creation. On an ARINC-653 operating system, these schedulable units are ARINC-653
processes. Furthermore, each component is deployed on one ARINC-653 partition. Multiple
components can reside in the same partition.

3.2 Correctness Contracts
Each functional entity in ACM can be annotated with correctness criteria, which are specified as
pre-conditions and post-conditions. We envision that these conditions should be specified over
the current value, or the history of the value, or rate of change of values of certain data elements.

9

DRAFT



Table 2: Attributes of Component Entities
Name Type Values Default Remark Applicable

To
Validity
Period

double [0,∞) ∞ Marks the time-limit for an event to be
valid (not stale).

Consumers

ReadOnly Boolean True,
False

∞ Marks if the port can update the state of
the component or not

All ports and
component
triggers

Deadline double [0,∞) ∞ Marks the time-limit by which the pro-
cess should finish execution.

All ports and
component
triggers

Deadline
Type

ENUM HARD HARD Marks the nature of the deadline. All ports and
component
triggers

SOFT
Period double [0, ∞]

for SOFT
deadline.
[Deadline,
∞] for
HARD
deadline

∞ Marks the rate at which the scheduler
launches the process. Notice that the
maximum response for hard deadline
tasks should be less than or equal to the
period.

All ports and
component
triggers.
Synchronous
ports are
always aperi-
odic.

Call Type ENUM TWO
WAY

TWO
WAY

Marks whether an RMI call is blocking or
non-blocking(same as in CCM/CORBA)

Methods on
Synchronous
ports

ONE
WAY

Post-
Condition

string N/A N/A The contract to be satisfied at the end of
the execution.

All ports

Pre-
Condition

string N/A N/A The contract to be satisfied at the begin-
ning of the execution.

All ports

Invariant string The contract to be satisfied during the op-
eration of trigger.

Component
triggers

These data elements can be part of the (a) the event-data of asynchronous calls, or (b) the function-
parameters of synchronous calls, or (c) the state variables of the component, or (d) resource usage
of the component. While pre-conditions are assumptions that must be true before execution of a
call, post-conditions are guarantees, which will be true after the execution. This type of reasoning
is critical in achieving modular certification of software components [35].

Remark 2 Given that multiple components can be deployed in a partition, it is possible that one
component can modify the state variables of the other component. Therefore, it is important to
ensure that components are coded in a way that this does not happen. One way to address this is
to use our model-based process, described later in this paper. This process, if followed, ensures
that the components even if located in the same partition exchange information only though their
external interfaces and do not address each other’s memory directly.

10

DRAFT



3.3 Semantics of Component Interactions
While each component and its associated ports, states, internal triggers can be individually config-
ured, an assembly is not complete until the interactions between all ports is configured. The associ-
ation between the ports depends on their type (synchronous or asynchronous) and the event/interface
type associated with the port. Two kinds of interactions, asynchronous interactions and syn-
chronous interactions are possible between components. The possible combination of these in-
teractions with periodic and aperiodic triggering of processes that are bound to the respective ports
gives rise to a richer set of behaviors compared to CCM.

3.3.1 Asynchronous Interactions

These interactions occur when a publish port of a component is connected to a consumer port of
another component. While a consumer can be connected to only one publisher, a publisher may be
connected to one or more consumers. Strict type matching on the event type is required between
the publisher and its consumers.

A periodic consumer always exhibits sampling behavior. Even if the rate of the publisher is
indeterminate, for example if the publisher is aperiodic, setting the period of the consumer ensures
that the events from the publisher are sampled at a specific rate. When the interacting publisher
and consumer both are periodic, the value of the consumer’s period relative to the publisher’s
determines if the consumer is over-sampling (higher rate of consumption or lower period compared
to publisher) or under-sampling (lower rate of consumption or higher periodicity compared to
publisher).

Interaction between a periodic publisher and an aperiodic consumer is indicative of a pattern
where the sink or the consumer is reactive in nature. In such a case, the consumer port stores
incoming published events in a queue, which are consumed in a FIFO manner. If the queue size is
configured appropriately, this allows the consumer to operate on all of the events received.

The case for interaction between an aperiodic publisher and an aperiodic consumer is similar
to the one between a periodic publisher and an aperiodic consumer.

3.3.2 Synchronous Interactions

This interaction implies call-return semantics. A required interface port can be associated with a
provided interface port of an identical interface type. A provides port can be associated with one
or more requires ports. Because of the synchronous nature of these interactions, the deadline of
required interface method (i.e. the caller) must be greater than the deadline value for the provided
interface method (i.e. the callee).

Synchronous ports in this model are always aperiodic. The interaction patterns observed on
synchronous ports is borrowed from CCM. The key difference is deadline monitoring. The default
type of interaction is call-return or two-way communication i.e. the requires port waits for the
provides port to finish its operation and return the results.

The restriction on synchronous interactions has been relaxed to allow CORBA style one-way
calls. When such methods are invoked, the requires port performs a non-blocking call. It returns
without waiting for the provides port to finish its operation. There are no return values in such
calls. However, one should note that even though the call is made in a non-blocking fashion it is
different from an asynchronous interaction. While, a publisher does not fail if a consumer fails to

11

DRAFT



consume the message properly, a one-way call via the middleware will result in an exception if the
target provided port is not available.

Remark 3 Safe component interactions must satisfy the following constraints: (a) Deadline of a
requires port must be greater than or equal to the deadline of the interacting provided port. (b)
Validity period of a consumer must be greater than the periodicity of the publisher. Otherwise,
a consumer can possibly receive data that it considers stale. (c) The contract imposed by the
post-condition of a component providing a service or publishing an event must be stricter than
the pre-condition checked by the interacting destination component. If this is not true, the source
component might send data, which is locally valid but will violate pre-condition of the destination
component.

Remark 4 It is important to point out that it is possible to identify specific faults and their propa-
gation pattern based on component interactions - periodic publisher/periodic consumer, periodic
publisher/aperiodic consumer aperiodic publisher/periodic consumer, aperiodic publisher/aperiodic
consumer, and synchronous interactions. While the interaction ports can be customized (by the
event-data-types published/consumed, interfaces/methods exposed, periodicity, deadline etc.), their
fundamental behaviors and interaction patterns are well defined. Additionally, capturing the de-
tails of how the data and control flows within a component by modeling the data dependencies
between its ports and its state variable and modeling the control dependencies between different
ports further assists in capturing the fault propagation within the component. This approach is
similar to the failure propagation and transformation calculus described by Wallace [42].

Example 1 Figure 5 shows a simple example assembly of components. The Sensor component
contains an asynchronous publisher interface (source port) that is triggered periodically (every 4
msec). The event published by this interface is consumed by a periodically triggered asynchronous
consumer/event sink port on the GPS component (every 4 msec). Note that the event sink process is
periodically released, and each such invocation reads the last event published by the Sensor. If the
Sensor does not update the event frequently enough, the GPS may read stale data. The consumer
process in the GPS, in turn, produces an event that is published through the GPS’s event publisher
port. This event triggers the aperiodic consumer / event sink port on the Navigation Display
component. Upon activation, the display component uses an interface provided by the GPS to
retrieve the position data via a synchronous method invocation call into the GPS component.

Next, we describe the implementation of a framework that provides services necessary for
constructing software applications from ARINC-653 components.

4 Implementation of a Framework for Enabling ARINC-653
Component Model

Given that our component model described in the previous section is an extension of CCM, we took
the approach of using and extending an existing implementation of CCM and layering it on top of
a library implementing ARINC-653 platform abstractions. During the exercise, we discovered that
there are certain incompatibilities between the two. These are discussed later in section 6.

12

DRAFT



Figure 5: Example: Component Interactions. Here each interface is annotated with its (periodicity,
deadline) in seconds.

Figure 6: ARINC component framework.

Figures 6 and 8 describe the full framework depicting the ARINC component middleware, the
runtime instance deployed on the middleware and a set of model-based tools for configuration,
design, analysis and code-generation. Next subsections describe these layers in detail.

4.1 ARINC component middleware: Merging CCM with ARINC653
Layers of this middleware from bottom to top are described in the following subsections.

4.1.1 APEX Services Emulation Library

Due to the lack of access to a native ARINC-653 implementation, we had to first built an emulation
of ARINC-653 environment. Current implementation on the Linux operating system is used for
providing support for developing and experimenting with component-based systems using ARINC-
653 Part 1 interfaces as described in [1]. We selected Linux as the operating system because
it is widely available, supports a real time scheduling policy (SCHED FIFO), and provides an

13

DRAFT



implementation of the POSIX thread library. Section A in appendix discusses certain issues faced
during this exercise.

See Table 9 in the Appendix for the full list of services. These services include intra-partition
process communication services, Blackboards and Buffers etc. Buffers provide a queue for passing
messages and Blackboards enable processes to read, write, and clear a single message. Intra-
partition process synchronization is supported through Semaphores and Events. We have also
implemented process and time management services as described in the ARINC-653 specification.
Inter-partition communication is provided by Sampling ports and Queuing ports. Overall, this
layer was implemented in approximately 15,000 lines of C++ code.

In this library, partitions are mapped to Linux process and ARINC-653 processes are imple-
mented as POSIX threads. ARINC-653 processes, just like POSIX threads, share the address
space. Memory partitioning between emulated partitions is provided by the Linux Kernel. Tem-
poral partitioning is provided by a controller called module manager, discussed later in section
4.2.1.

Processes, both periodic and aperiodic, can only be created at initialization, following the
ARINC-653 specification. Specified process properties include the expected deadline, which can-
not be changed at run-time. We have designed this layer such that it can be replaced by a real
APEX kernel without affecting the layers on the top.

4.1.2 MICO ORB Library

The next layer is MICO [34], an open source implementation of CORBA Component Model.
MICO’s services are used to create and host components, and perform synchronous remote method
invocation (RMI). MICO’s implementation of asynchronous (publish/subscribe) communication
was found to be questionable as the consumer’s method was invoked from within the publisher’s
thread using RMI calls. Asynchronous publish- subscribe communication was implemented us-
ing the inter-partition and intra-partition communication facilities in the APEX library. Next, we
describe the layers that are configured and instantiated for each module in a component assembly.

4.2 Layers Instantiated for Running a Software Assembly on ARINC Com-
ponent Middleware

The Component Assembly and Deployment Configuration, described in section 4.3, dictate the
layers that are instantiated and configured for runtime. These layers are described next.

4.2.1 APEX Module Manager

The module manager is responsible for providing temporal partitioning among partitions (i.e.,
Linux processes). For this purpose, each module is bound to a single core of the host processor.
Each partition inside a module is configured with an associated period that identifies the rate of
execution. The partition properties also include the time duration of execution. It is known that
potential partition jitter will occur if the periods associated with all partitions in a module are not
harmonic i.e., between any given pair of partitions, the period of the first is an integer multiple of
the second or vice versa [9, 19]. Moreover, the Process periods should be multiples of respective
Partition periods to reduce process jitter.

14

DRAFT



Table 3: Algorithm for Module Manager
Given: P {Set of all partitions.}
Given: (∀p ∈ P ) PERIOD(p) {period of all partitions}
Given: (∀p ∈ P ). DURATION(p) {duration for which p will run during each execution.}
Given: H = LCM(period(P ) {Hyper period value}
Given: (∀p ∈ P ). OFFSET (p) {set of Offsets within a hyper period when p should start execution }
Given: (∀p ∈ P ). EXECUTABLE(p) {relative path to the executable file.}
Given: (∀p ∈ P ). SRC SP (p) {set of source sampling ports.}.
Given: (∀p ∈ P ). SRC QP (p) {set of source queuing ports}
Given: CHANNELS {inter-partition communication links. SRC(c) is the source port. DST (c) is the set of all

destination ports.}
Require:

∑
p∈P DURATION(p)/PERIOD(p) ≤ 1

Begin Module Manager
1: Set scheduling policy to SCHED FIFO
2: Set CPU affinity to a single core.
3: for channel ∈ CHANNELS do
4: for p ∈ P do
5: if SRC(channel) ∈ SRC SP (p) or SRC(channel) ∈ SRC QP (p) then
6: p.SRCCHANNEL.append(channel)
7: end if
8: end for
9: end for

10: Initialize OFFSETS {OFFSETS is a sequence of tuple <time {value starting from 0}, Partition>}
11: for p ∈ P do
12: OFFSETS.add(OFFSET (p), p)
13: end for
14: Sort OFFSETS in ascending order based on the time value.
15: for p ∈ P do
16: childprocess =fork(EXECUTABLE(p))
17: Wait on handshake from childprocess subject to a timeout
18: if timeout then
19: Shutdown Module
20: Exit
21: end if
22: end for
23: for entry in OFFSETS do
24: T1← currenttime
25: T2← T1 +DURATION(entry.Partition)
26: Send SIGCONT to EXECUTABLE(entry.Partition) {SIGCONT is a POSIX signal}
27: clock nanosleep(T2) {Use a high-resolution clock such as clock realtime in Linux.}
28: Send SIGSTOP to EXECUTABLE(entry.Partition) {SIGSTOP is a POSIX signal}
29: for c ∈ entry.Partition.SRCCHANNEL() do
30: c.fire() {Move message from source port of the channel to all the destination ports}
31: end for
32: end for
End Module Manager

The module manager is configured with a fixed cyclic schedule. This schedule is computed
from the specified partition periods and durations. It is specified as offsets from the start of the
hyper period, duration and the partition to run in that window.

Computing the Module Schedule: Let P be the set of all partitions in a module. Let φ(p) ∈

15

DRAFT



R2 ∩ [0,∞) denote the period of partition p ∈ P. Let ∆(p) ∈ R ∩ [0, φ(p)] denote the duration of
time that a partition needs to be executed every φ(p) time units. Then hyper period H is given as
H = LCM(φ(P))3, where LCM is the abbreviation for the least common multiple.

Now the count of times a partition runs in a hyper periodN(p) is given asN(p) = H/φ(p). Let
O(p) =< Oi >

i=N(p)
i=1 be the sequence of offsets from the start of the hyper period when partition

p needs to be started. We will use the notation Op
i to denote the offset of ith execution for partition

p in the hyper period.
The goal is to compute the set of all offset sequences for all partitions, O(P). A feasible

valuation for O(P) can be found by solving the following system of constraints using a constraint
solver library such as Gecode4:

C1 The start for all partitions must happen before the period ends i.e. (∀p ∈ P)(Op
1 ≤ φ(p)).

C2 Time between any two executions should be equal to partition period i.e. (∀p ∈ P)(k ∈
[1, N(p)− 1])(Op

k+1 = Op
k + φ(p)).

C3 The last start must finish before the hyper period ends i.e. (∀p ∈ P)(Op
N(p) + ∆(p) ≤ H)

C4 A partition cannot be preempted i.e. (∀p ∈ P)(∀z ∈ P)(k ∈ [1, N(p)])(j ∈ [1, N(z)])
(Op

k ≤ Oz
j =⇒ Oz

j ≥ Op
k + ∆(p))

Once configured, the module manager implements the schedule using the SCHED FIFO policy
of the Linux kernel. The manager is responsible for checking that the schedule is valid before
the system can be initialized i.e. all scheduling windows within a hyper period can be executed
without overlap. Table 3 describes the algorithm of a module manager in pseudo code. Note
that module manager is also responsible for transferring the inter-partition messages across the
configured channels.

Example 2 Figure 7 shows the example execution time line of a module with two partitions and a
hyper period of 2 seconds.

4.2.2 APEX Partition Scheduler

A partition scheduler is instantiated for each partition using the APEX services emulation library.
It implements a priority preemptive scheduling algorithm using Linux SCHED FIFO scheduler.
The partition scheduler initializes and schedules the (ARINC-653) processes inside the partition
based on their periodicity and priority. It ensures that all processes, periodic as well as aperiodic,
finish their execution within the specified deadline. Upon a hard deadline violation, the faulty
process is prevented from further execution, which is the specified default action. It is possible
to change this action to allow a restart. Soft deadline violations result in a warning issued by the
middleware. The default action is to log the warning.

2R is the set of all reals
3Here φ(P) is a used as a succinct representation of set {x|x = φ(p)∧p ∈ P}. We will use this short representation

for other sets also.
4http://www.gecode.org/

16

DRAFT



Figure 7: A module configuration and the time line of events as they occur.

4.2.3 Object Request Broker (ORB)

The main ORB thread is executed as an aperiodic ARINC-653 process within the respective parti-
tion. For controllability, the ORB runs at a lower priority than the partition scheduler does. Since
ARINC does not allow dynamic creation of processes at run-time, the ORB is configured to use a
predefined number of worker threads (i.e. ARINC-653 Processes) that are created during initial-
ization.

4.2.4 Component and Process Layers

This layer provides the glue code, generated from the definitions of components and their interfaces
specified in the design environment, described in the next section. The developer is responsible for
specifying the necessary process properties such as periodicity, priority, stack size, and deadline
in the models. A stage of generation process uses the IDL compiler from the MICO ORB layer.
Purpose of this generated code is to map the concepts of component model into the concepts
exposed by the ARINC Emulator layer and the MICO ORB layer. Details about this mapping are
provided in section 4.3.1. The system developer provides the functional code.

This layer also consists of component level Software Health Managers. As mentioned earlier
in section 3.1, these are special processes that can take mitigation actions, if required. Readers are
referred to [18, 16] for details about health managers. Next, we describe the modeling environment
used to design software components and construct assemblies.

17

DRAFT



Figure 8: The system architecture, component configuration, correctness contracts, assemblies are
specified in a domain specific modeling language. This model is used to generate an instance of
executable assembly.

4.3 The Modeling Environment used for Design Specification
The developed framework also includes a design and modeling environment with code generation
tools that can be used by component developers to model a component and the set of services that
it provides independent of actual deployment configuration, see Figure 8. The grammar of this
language is provided by the metamodel described earlier in Section 3.1. This environment has
been created using Model Integrated Computing tools [4].

During design, each port of a component and the associated process is configured as either pe-
riodic or aperiodic. Furthermore, one must specify the deadline for the functional logic associated
with the port. System integrators create software assemblies from the components, which spec-
ifies the components that are part of an application. The assembly also captures the interactions
between the components through their asynchronous and synchronous interfaces. This is done by
specifying a) the publisher for each consumer port, and b) the provided interface for each required
interface. The Deployment model captures the mapping between the component and a partition in
which it resides. The modeling environment enforces certain design rules to ensure the compatibil-
ity between ports of interacting components and correctness of design. See Table 4 for a summary
of these rules. Finally, the code generator is used to produce non-functional glue code to deploy
the software assembly on the platform.

Example 3 Figure 9 shows the modeled assembly for the example described in section 1 . The

18

DRAFT



Table 4: List of design constraints enforced by the ACM modeling and design environment
1 A Required interface in an assembly should be connected to a provided interface
2 Components in assembly cannot have publishers and consumers with unspecified types
3 For HARD Deadline tasks, Deadline should be less than or equal to period
4 Deadline value should be > 0 and <∞.
5 A consumer in an assembly should have an event source i.e. it should be associated with a Publisher.
6 Name cannot clash with the reserved keywords. This match is case-insensitive.
7 A method defined inside an interface cannot be periodic
8 All names must be a valid identifier i.e. they must match the regular expression

"ˆ[a-zA-Z][_a-zA-Z0-9]*$"
9 One way call cannot have out parameters
10 A component member cannot have the same name as its container.
11 Component Trigger should be periodic
12 Partition duration should be either > 0 and <∞. -1 indicates aperiodic
13 Partition period should be either > 0 and <∞. -1 indicates aperiodic
14 Sum of Duration/Period for all Partitions belonging to module should be less than 1
15 Names of a component members must be unique
16 The interface type of a required interface port must match the interacting provided interface.
17 Deadline of a require interface port must be greater than or equal to the deadline of the provided interface port
18 Consumer validity cannot be less than or equal to 0

Figure 9: Example: Component Interactions. Here each interface is annotated with its (periodicity,
deadline) in seconds.

system integrator can choose to deploy a developed assembly across different partitions and across
different modules. Some of these decisions are based on the level of isolation required between the
components. Based on the given deployment, the necessary configuration information is generated.
Figure 12 shows deployment on a module with two partitions.

Next section describes how different concepts in modeling language are mapped to the under-
lying ARINC Component middleware layers.

4.3.1 Generating Runtime Layers from Models

This section describes the association between the model entities and the run-time. Each module
in the design specification is mapped to an instance of the Module Manager, which launches and
schedules the Partitions on the module. The module manager creates each ARINC partition as a
Linux process. Inside each partition, an aperiodic ARINC process is created to host the ORB. The
partition hosts the component home.

The code generator synthesizes the code and the necessary IDL files so that one can use the
services provided by the MICO CCM implementation to create a singleton instance of each com-
ponent, inside the partition. Singleton instance implies that we disable the session life cycle of
components – they cannot have more than one instance in the same partition. Each component

19

DRAFT



Table 5: Implementation of concepts in the ACM middleware. (RMI=Remote Method Invocation).
Concept Target Properties Features of ACM Implementation APEX API Used
Host /Proces-
sor

N/A An Apex module, mapped to a single CPU core. Module

ORB Instance N/A An Apex partition, mapped to an OS Process. Partition
Component
Class

N/A Data structure shared by related ARINC pro-
cesses.

Semaphores

Component
Trigger

Periodic Periodic process, mapped to an OS Thread Process start, stop

Asynchronous
ports

Periodic Periodic process, mapped to an OS Thread Process start, stop

Ports APeriodic APeriodic process, mapped to an OS Thread. Process start, stop
Component
Locks

N/A APeriodic process, mapped to an OS Thread. Semaphores

Synchronous
RMI

Both Aperiodic, and
collocated

Caller method signals callee to release then waits
for callee until completion.

Event, Black-
board

Synchronous
RMI

Both Aperiodic, and
non-collocated

Caller method sends RMI to release callee then
waits for RMI to complete.

TCP/IP,
Semaphore,
Event

Asynchronous
Publish-
Subscribe

Periodic consumer
and Collocated

Callee is periodically triggered and polls event
buffer (Blackboard) - validity flag indicates
whether data is stale or fresh

Blackboard

Asynchronous
Publish-
Subscribe

Periodic consumer
and Non-collocated

Callee is periodically triggered and polls “Sam-
pling Port” - validity flag indicates whether data
is stale or fresh

Sampling port,
Channel

Asynchronous
Publish-
Subscribe

Aperiodic consumer
and Collocated

Callee is released when event is available Blackboard,
Semaphore, Event

Asynchronous
Publish-
Subscribe

Aperiodic consumer
and Non-collocated

Module manager moves the message. Callee is
released upon receipt by an aperiodic trigger pro-
cess

Queuing Port,
Channel

interface method is an ARINC process that is mapped to an OS thread. All ARINC processes are
instantiated with their respective interface method’s periodicity (if periodic) and deadline. Note
that ARINC-653 processes cannot be created during runtime; hence, all processes executing in-
terface methods are created at initialization time. The generated code executes an ORB request
for a particular interface by releasing the appropriate ARINC process (i.e. OS thread). Multiple
processes belonging to the same component may engage read/write locks depending on whether
they are marked as read-only or not. These locks are implemented using ARINC-653 semaphores.
This is required to ensure that race conditions do not occur. Note that all the lock manipulations
are in the generated code.

Remark 5 Our current implementation assigns priorities to generated runtime schedulable enti-
ties automatically, as follows: Priority of Module manager > Priority of Partition Scheduler >
Priority of ORB > Priority of any health management ARINC process > Priority of all other AR-
INC processes. All component processes are assigned same priority. However, this can be changed
manually in the generated code.

Table 5 summarizes how different concepts from component model are implemented in the
ACM middleware. A Periodic publisher is bound to an ARINC process. The real time properties

20

DRAFT



Figure 10: Equivalent implementation of a CORBA CCM interface in our ACM framework.

of this process i.e. the deadline and periodicity are determined from the values specified in the
model.

See Appendix B for details on code generation process for periodic publishers, aperiodic pub-
lishers, periodic consumers, aperiodic consumers, and synchronous ports.

Example 4 Figure 10 shows a portion of the IDL generated for the assembly shown in Figure
9. The bottom left hand side of the Figure shows the code written by the user to implement the
getGPSData interface for the GPS component, when written for pure MICO CCM implementation.
The right hand side of the Figure shows the equivalent code when written in the ACM framework.
Notice that the user provided code is the same except that the user is not required to explicitly
provide synchronization using locks. The top right corner shows the generated code that is used to
translate any ORB initiated call to getGPSData interface on the GPS component into a start call
for the corresponding ARINC-653 process. The generated code also blocks the ORB thread that
invoked the CCM method until the corresponding aperiodic process finishes by using the wait call
on an APEX event used for notification purposes.

The interactions between the synchronous ports (requires and provides) is implemented using
the standard remote method invocation (RMI) capability available in the CCM / CORBA. It is
initiated by invoking a function (on the requires / receptacle side) that launches the ARINC process
associated with appropriate interface-method. An RMI call is issued from the ARINC process.
On the side of the provided interface port, the RMI call is processed by starting and waiting for
the completion of the ARINC Process associated with the interface-method. Once the ARINC
process finishes, the RMI chain completes by transmitting the result via the standard CORBA/CCM
mechanisms.

The interactions between the asynchronous ports (publisher and consumer) are initiated when
the ARINC process associated with the publisher either is started by the scheduler (periodic) or is
started due to an explicit invocation (aperiodic). The publisher process assembles and publishes
the event, which is communicated to each of consumers. The generated transport mechanism for
a publish interaction depends on the location of the Consumer Process relative to the publisher
(collocated or not) and the nature of the Consumer (Periodic/Aperiodic).

21

DRAFT



Figure 11: Same interaction results in different runtime configurations based on deployment. This
is done by the code generator, freeing the system developer to focus on the application logic in-
stead.

Intra-Module Interaction For example, Figure 11 summarizes different generation scenarios
for interaction between a periodic publisher and periodic consumer. If the Publisher and Consumer
processes were in different Partitions (OS Processes) i.e. were non-collocated, then the event
transmission maps to an ARINC communication via sampling ports (for Periodic Consumer) or
queuing ports (for Aperiodic Consumer). When the Publisher and Consumer ARINC processes
are in the same Partition (OS Process, i.e. co-located), the event transmission maps to an ARINC

22

DRAFT



Figure 12: Software Assembly and Deployment Diagram used in the case study.

communication via blackboard (for Periodic Consumer) and buffer (for Aperiodic Consumer).
If the Consumer is periodic, the associated ARINC Process is started at a specific rate by the
scheduler. The ARINC process (for Periodic Consumer) reads the associated Sampling port or
Blackboard and operates on the event. In the interaction between asynchronous ports on different
partitions (non-co-located), the Module Manager is responsible for transferring the event generated
and stored in the sampling or queuing port of the publisher to the appropriate sampling or queuing
port of the consumer. It does this whenever any partition finishes its cycle (see Table 3).

Inter-Module Interaction Inter module communication is an area which has not been cov-
ered clearly in the ARINC-653 specification [1]. One way to implement the interactions between
publisher and consumer across modules is to use additional proxy components with a one-way
synchronous interaction between them. The proxy components, shown in bottom section of Figure
11 are automatically generated. However, the timing of message communication depends upon
the deployment of proxy components. For example, if the ProxyHelloWorldClient is collocated
with HelloWorld and ProxyHelloWorld is collocated with HelloWorldClient, then the message
transmission from publisher to consumer port is done immediately, as soon as the message is pub-
lished. However, if the ProxyHelloWorldClient is put in a separate partition on the same module
with HelloWorld and ProxyHelloWorld is is put in a separate partition on the same module with
HelloWorldClient, the real transmission of message from ProxyHelloWorldClient to ProxyHel-
loWorld will be governed by the schedule set for partition1.1. The actual receipt of message at the
consumer port of HelloWorldClient will be governed by the schedule of partition2.2. Thus, it is
possible to obtain a time triggered messaging between modules by setting a synchronized schedule
for partitions of ProxyHelloWorldClient and ProxyHelloWorld.

5 Case Study
Figure 12 shows the assembly discussed earlier in section 1 deployed on a module with two par-
titions. Connections between two ports have been annotated with the (periodicity, deadline) in
milliseconds on the downstream port. Table 6 summarizes all the ports.

Figure 12 also describes the periodic schedule followed by the partitions, overseen by Module
manager. In this example, Partition 1’s phase was 0 milliseconds, while its duration was 1 mil-
lisecond. Partition 2’s phase was set to 1 millisecond. Its duration was also 1 millisecond. This

23

DRAFT



Table 6: Component ports defined in the assembly diagram.
Period(secs) Component Port WCET(secs)

0.004 Sensor data out 0.004
0.004 GPS data in - after processing sends an event to Display 0.004

Sporadic GPS gps data src.GetGPSData 0.004
Sporadic NavDisplay data in - after processing calls GetGPSData 0.004
Sporadic NavDisplay gps data src.GetGPSData 0.004

Table 7: Processes created by the framework for the ports defined in Table 6 and Figure 12.
Partition Process Name Associated port Period Deadline Type

Part 1 Part1 ORB Process Aperiodic Infinite SOFT
Part 1 Sensor.DataOut data out 4msec 4msec HARD
Part 2 Part2 ORB Process Aperiodic Infinite SOFT
Part 2 GPS.DataIn data in 4msec 4msec HARD
Part 2 NavDisplay.DataIn T (trigger) data in Aperiodic Infinite HARD
Part 2 NavDisplay.DataIn data in Aperiodic 4msec HARD
Part 2 NavDisplay.U NavDisplay getGPSData gps data src Aperiodic 4msec HARD
Part 2 GPS.P GPS getGPSData gps data src Aperiodic 4msec HARD

Figure 13: Sequence of Events for the case study. The scale is non-linear.

ensured that both partition got 1 millisecond of execution time every 2 milliseconds. The logical
publish-consume connection between sensor and GPS components is implemented via an ARINC-
653 sampling port. A Channel connects the source sampling port from partition 1 to destination
sampling port in partition 2.

Table 7 shows all the ARINC-653 processes (and the partition they were deployed on) required
to build this example. To implement this particular example, the developer had to write 148 lines
of code, while 1027 lines of code were generated.

Figure 13 shows the timed sequence of events as they happen during the first frame of operation.
These sequence charts were plotted using the plotter package from OMNeT++ [5]. 0th event marks
the start of the module manager, which then creates the Linux processes for the two partitions.
Each partition then creates its respective (APEX) processes and signals the module manager. This
all happens before the frames are scheduled. After the occurrence of 0th event, module manager
signals partition 1 to start. Upon start, partition 1 starts the ORB process that handles all CORBA-
related functions. It then starts the sensor health manager. Note that all processes are started in

24

DRAFT



Figure 14: Timing chart for all processes and partitions. Time on x-axis is in seconds.

an order based on priority. It starts the periodic sensor process at event number 8. The sensor
process publishes an event at event number 9 and finishes its execution at event number 10. After
1 millisecond since its start, partition 1 is stopped by the module manager at event number 14.
Immediately afterwards, partition 2 is started. Partition 2 starts all its ORB process and health
managers at the beginning of its period. At event 26, partition 2 starts the periodic GPS consumer
process. It consumes the sensor event at event 27. At event 27, GPS publisher process produces
an event and finishes its execution cycle at 28. The production of GPS event causes the sporadic
release of aperiodic consumer process in Navigation Display (event 33). The navigation process
uses remote procedure call to invoke the GPS get data ARINC process. The GPS data value is
returned to navigation process at event 49. It finishes the execution at event 51. Partition 2 is
stopped after 1 millisecond from its start. This marks the end of one frame. Note that these events
do not capture the internal functional logic of the GPS algorithm.

Figure 14 shows the timing diagram for all the processes executed in this example. Note that
partition 1 and partition 2 are temporally isolated. Also, note that when a partition, e.g. partition
1, is put out of context, all running processes in that partition are suspended. Table 8 contains the
absolute jitter statistics for the two partitions and the two periodic processes inside the partition
as measured from the start of the experiment running on Linux kernel 2.6.28 with high resolution
timers. This value was calculated as the shift from pre-calculated schedule. Notice that the standard
deviation is low. This implies that the jitter in the system is low.

That means after the initial shift due to time taken during initialization, the gap between any
two consecutive executions almost remained same.

25

DRAFT



Table 8: Summary of observed jitter. Calculated as shift from pre-calculated schedule.
Process Std (µs) Mean (µs) Max (µs)
Part 1 2.06 8.24 11.31
Part 2 4.10 13.97 22.98

GPS.DataIn 0.84 329.38 329.93
Sensor.DataOut 2.94 130.78 133.95

6 Discussion and Summary

6.1 Differences between ARINC Component Model (ACM) and CORBA
Component Model (CCM) Approaches

The differences between the two approaches exist on three different levels: model, mapping, and
implementation. While CCM supports attributes, ACM does not; ACM allows definition of state
variables (internal to the component by default) which can be observable from outside the compo-
nent. The Ports (or external interfaces) in ACM are extended with additional attributes - period,
deadline, deadline-type, pre-condition, post-condition etc. Further, ACM allows additional func-
tional entities such as Component Triggers (periodic methods internal to the component), monitor
interfaces (to monitor the component’s resource usage), health managers (to detect and react to
anomalous behavior).

Some differences also exist in implementation and mapping of the modeling entities to runtime.
In CCM implementations, the functional logic belonging to an interface port is executed on a new,
dynamically created, or pre-existing but dynamically released worker-thread. In ACM, each port
has a dedicated ARINC process (configured during initialization) where the functional logic is
executed. Due to the restrictions imposed by the ARINC specification, neither dynamic creation
nor re-binding of the ARINC processes to a different port is permitted. Further, the port attributes
(period, deadline etc.) are used to configure the ARINC process as periodic or aperiodic.

The non-availability of dynamic allocation and the requirement for static binding of the com-
ponent ports to ARINC processes in ACM ensures that there is only a single instance of every
Component in the Assembly, created during initialization. Further, the generated code ensures
thread synchronization between the external ports of the components as they are launched on sep-
arate ARINC Process (mapped to OS Thread). Standard CCM implementations permit session-
based configurations where new instances of the Component are created per session. The thread-
synchronization between the multiple interfaces of a component is handled at the object level in
CCM, the dynamically released worker threads need to get access to the component object before
execution. In our implementation, synchronization between component ports is handled by the
generated code using read/write locks implemented using ARINC-653 semaphores.

6.2 Lessons Learned
Conventional component frameworks rely heavily on dynamic threading, and they are typically
not dealing with deadline violations. On the other hand, ARINC-653 relies on statically allocated
Processes whose deadline violations are detectable. These two views are rather hard to reconcile,
and our solution (one statically allocated ARINC Process per component method) is not optimal -
it uses too many Processes.

26

DRAFT



Furthermore, CCM implementations such as MICO are designed for general-purpose use.
Hence, they allow two kinds of component life cycles: service and session. While a service com-
ponent is a singleton, a session component is instantiated for each client request. In an ARINC-653
system, processes cannot be created at run-time. Therefore, we allow only service components,
i.e., session components are not supported. Moreover, framework provides the initialization code
to ensure that the component instance is created at the start of a partition.

A related problem is the use of dynamic memory allocation. The ARINC-653 specification
requires that all run-time memory allocation be made on the stack, and not on the heap. Further-
more, in ARINC-653 each process has a specified stack size limit that cannot be violated. To
enforce these, the use of memory management hardware is needed.

Finally, we restrict only one process to access a component’s state at a time to maintain consis-
tency by using a read/write lock. Mixing remote procedure calls provided by the CCM implemen-
tation in an ARINC-653 environment can lead to a situation where two or more different processes
attempt to acquire the write lock of the same component. This can potentially lead to a deadlock,
which will eventually be detected as a deadline violation. To prevent such deadlocks, we require
that the call graph of all remote procedure calls be a directed acyclic graph with respect to write
lock of all components.

6.3 Extending CCM
Our component model presented in Section 3 is an extension of the standard CORBA Component
Model. We propose that the CCM be extended with one health manager per component, a possible
improvement over ARINC-653’s one health monitor per partition.

The CORBA interceptors could be used to implement the runtime monitors that check the pre-
conditions and post-conditions for each port. However, typical CORBA / CCM implementations,
including MICO, do not allow the use of request and response interceptors on the client and the
server side that are attached to specific Components. However, these frameworks allow generic
interceptors that are all called for all incoming method calls. An alternative is to intercept interface
specific requests and execute them in the respective component’s health manager.

The exception-handling mechanism of the CCM implementation needs to be extended to sup-
port resource monitoring and recovery. For example, upon deadline violation, the active Process
must be terminated. However, all locks and resources used by that Process must be released (this
is possible if locks are implemented using APEX semaphores) and all other Processes blocked by
these locks and resources should be notified. All memory resources should be freed. This service
should be made part of the extended CCM specification.

We also need extensions to the IDL grammar. Currently, this grammar does not support the
specification of process attributes such as deadline and periodicity. The extended grammar should
allow specification of all ARINC-653 process properties in the IDL. Moreover, we need the ability
to define whether an interface provided by a component is read-only.

6.4 Problems Identified
During our experiments, we came across issues that are important to emphasize. Foremost, we dis-
covered that in typical CCM implementations like MICO [34] and CIAO [12], the method used by

27

DRAFT



an event source to publish an event is implemented as a two-way blocking call, which is not asyn-
chronous. In other words, the publisher’s thread will invoke the subscriber’s or the event broker’s
consume methods in the same thread. Due to this, we had to implement the event-based com-
munication mechanism through Blackboards and Buffers provided by our APEX library, where
the publisher and the subscriber use separate threads. Inter-partition event-based communication
was mapped to sampling and queuing ports. Inter-module communication was mapped to queuing
ports and one-way calls.

We identified some problems with the ARINC 653 specification as well. For example, ARINC-
653 stipulates that aperiodic processes can extend their deadline using replenish() call, which sets
the current deadline to current time + replenish time request. Potentially, this can lead to a
situation where the current deadline is set to an absolute time, which is earlier than the previous
absolute deadline time.

Finally, ARINC-653 specification does not permit changing the properties of an ARINC pro-
cess (e.g. relative deadline5) at runtime. This decision is primarily governed by the analysis advan-
tages that such static configuration provides. Due to this static configuration constraint, and given
that different ports of an ACM component have different real-time properties, it is not possible to
use a pool of processes and dynamically assign them to the ports. Therefore, we have to create a
new process for each functional logic that needs to run as a separate thread in a component. This
approach results in a large number of processes for a bigger software assembly.

7 Related Research

7.1 Real Time Software Component Frameworks
An approach to objects based on time-triggered (periodic) and event-triggered (aperiodic) methods
has been presented in [26]. The approach described is implemented in the form of object structures,
and many concepts are similar to our work. However, there are two differences: we rely on an
industry standard specification, ARINC-653, as the underlying platform, and we build a framework
on top of that to provide specific services for component interactions and scheduling.

TinyOS [40], ControlShell [36], eCos [20] , Koala [41] are component-based frameworks
geared towards resource constrained embedded devices. They are primarily event-triggered and
rely on design-time checks and tests to ensure correctness of implementation. They do not focus
on spatial and temporal partitioning.

The GENESYS (GENeric Embedded SYStem) [33] research project has developed a cross-
domain component-based architecture for embedded systems. It has been designed for achieving
(1) compositionality to allow system designers to compose systems using independently devel-
oped and tested components (unit of abstraction), (2) robustness to provide fault containment and
selective restart of components upon failure, and (3) energy efficiency by integrating resource man-
agement in the platform design. An important principle followed in GENESYS architecture is the
strict separation of computational components and communication paradigm. This makes it pos-
sible to design and analyze the two systems in separation. The work presented in this paper uses
ARINC-653 as the underlying platform, which provides the temporal and spatial separation be-
tween applications. However, it does not restrict the behavior of the underlying communication

5relative to the start time of the process

28

DRAFT



protocol. In future, we will investigate the use of the Avionics Full-Duplex Ethernet (AFDX),
which is a time-deterministic network defined in ARINC 664 standard [7].

CIAO [12] and PRISM [38] are two component models built upon the real time CORBA imple-
mentations. PRISM employs a static component allocation and configuration policy and supports
publish/subscribe paradigm. CIAO supports both dynamic and static component configurations.
Both CIAO and PRISM have been designed for minimum overhead and priority preemptive sys-
tems. However, the IDL specification and generated code does not specify deadlines. Deadline
violation monitoring is left to application level user supplied code. Our work presented in this pa-
per discusses the enhancements and restrictions required to MICO or CIAO so that it can be ported
to a hard real time operating system that supports temporal and spatial partitioning.

Kuz et al. presented a component model called CAmkES in [27]. They built their system above
the L4 micro kernel. CAmkES does not provide temporal partitioning. Instead, it is designed to
be a low-overhead system that can run on small computing nodes by enforcing static components
(i.e., a singleton and not a session-based component) and static bindings. We had to enforce similar
restrictions in our middleware to keep the component interactions simple and predictable. While
CAmkES has been built and tested on ARM processors, our prototype ARINC-653 and CCM
framework has been developed for x86 architecture as it allows more flexibility in experimenting
with this technology.

Delange et al. recently published their work on POK (PolyORB Kernel) [14]. POK is the
runtime for ARINC-653 Annex of the Architecture Analysis and Design Language (AADL) [22].
AADL provides constructs for modeling software and hardware components. Note that these soft-
ware components are not the same as a reusable software component as described in the CORBA
component Model. Rather here ‘components’ is a term used to refer to various units of software
functions, software data, threads and processes. Hardware components include processors, buses,
memory and devices. AADL models also specify interaction between these components. Proper-
ties such as deadline, worst case execution time, critical for assessing the performance and func-
tionality of the system can also be specified in AADL. POK uses the OCARINA6 framework to
automatically configure and deploy processes and partitions. The main difference between this ap-
proach and our work is the level of abstraction at which system is designed. While in our approach,
system is designed using high-level components and high-level synchronous and asynchronous in-
teractions, in POK systems are designed at the level of individual ARINC-653 processes and all
interactions are specified at the level of native ARINC-653 mechanism.

DIANA [37] is a new project for implementing an avionics platform called Architecture for In-
dependent Distributed Avionics (AIDA) using Java as the core technology. However, the choice of
using JAVA as the core technology increases the runtime complexity. Using Java threading model
requires the system to add another layer of scheduling above the operating system, which makes
the analysis of software assembly very difficult. Another issue with using Java is the complex-
ity in estimating and bounding memory usage per thread, which is a critical requirement in the
ARINC-653 standard.

Lakshmanan and Rajkumar presented a distributed resource kernel framework used to deploy
real time applications with timing deadlines and resource isolation in [28]. Their system consists
of a ‘partitioned’ virtual container built over their Linux/RK platform. They have reported that
their framework provides temporal resource isolation in that they ensure that the timing guarantees

6http://ocarina.enst.fr/

29

DRAFT



provided to each independent application do hold irrespective of the behavior of other applications
by using CPU as a reserved resource. However, to the best of our knowledge they do not support
process and partition management services as specified in ARINC-653. Moreover, their framework
does not support a component model.

7.2 Schedulability analysis for ARINC-653 systems
Schedulability analysis is important for a hard real time system. Audsley et al. presented a dis-
cussion on the ARINC-653 standard and schedulability analysis for such systems in [9]. They
showed that partitions could be analyzed in isolation by aggregating the timing requirements of all
other partitions. Work on a similar problem was recently reported by Easwaran et al. [19]. They
focused on using compositional analysis techniques and took into account the process communi-
cation, jitter, and preemption overheads. Their techniques can be used to verify the schedule of an
ARINC-653 system before deployment.

Lipari and Bini have shown how to compose hierarchical scheduling systems, which have
a global-level scheduler and a per-application local scheduler [30]. However, they restrict their
approach to using a fixed-priority local scheduler. This structure is similar to the one found in an
ARINC-653 system. However, in an ARINC-653 system processes are allowed to alter the priority
of other processes in the same partition.

Burns and Lin [11] describe a way to model-check the properties of a single processor real time
system modeled using a constrained form of timed automata. However, their model is restricted
due to the semantics of timed automata, which does not allow the clock to behave like a stopwatch
[8]. Consequently, they can only validate scheduling for non-preemptive systems with known
computation time for all tasks. Therefore, this method can be used only for analyzing ARINC-653
partitions, which are statically scheduled and cannot be used for analyzing ARINC-653 processes,
which can be suspended during execution by other processes.

All the algorithms mentioned above require the knowledge of the worst-case execution time
(WCET) associated with each task. However, estimating WCET is difficult and therefore it is
possible that deadlines are violated during run-time. Therefore, the ACM middleware actively
monitors all deadlines. Any violation results in the default action of stopping the faulty process.
An API is available to restart the faulty Process after a reset.

7.3 Design by Contract
Formal argument for checking correctness of execution of a computer program based on a first
order logic system was first presented by Hoare in [24]. Later this concept was extended to dis-
tributed systems by Meyer in [31, 25]. A contract implemented by Meyer specified the requires
and ensure clauses as assertions specified by a list of boolean expressions. These assertions were
specified as logic operations upon the value domain of the program variables and were compiled
out in the running system.

Conmy et al. presented a framework for certifying Integrated Modular Avionics applications
build on ARINC-653 platforms in [13]. Their main approach was the use of ‘safety contracts’ to
validate the system at design time. They defined the relationship between two or more components
within a safety critical system. However, they did not present any details on the specification of
these constraints.

30

DRAFT



In ACM, these correctness conditions are specified by pre-conditions and post-conditions,
which can be defined over both the value-domain and temporal domain of program variables as
well as the state variables belonging to the component. We envision that these checks are per-
formed in real time on the system. This is especially necessary because there is a high likelihood
for software defects being present in complex systems that arise only under exceptional circum-
stances. These circumstances may include faults in the hardware system (including both the com-
puting and non-computing hardware); software is very often not prepared for hardware faults [18].

8 Conclusion
In this paper, we described the design and implementation of a framework that enables system
developers to construct real time software as a composition of well-defined components. The facil-
ities discussed in the ARINC component model define specific timing, periodicity and correctness
criteria with each component port. The framework provides well-defined interactions, both syn-
chronous and asynchronous. Mixing these interactions with periodic and aperiodic triggering of
ports provides the system developers a broad range of well-defined compositional semantics. Fi-
nally, the deployment model allows the developers to partition the software system both spatially
and temporally.

To implement this framework we combined CCM with ARINC-653, which provides partition-
ing capability. We created an ARINC-653 emulator using Linux processes and POSIX threads
for purely experimental purposes. However, the principles and techniques developed are portable
to ‘real’ ARINC-653 implementations. During this effort, we have recognized several compati-
bility issues between CCM and ARINC-653. These differences lead us to recognize that further
developments are needed that integrate components with a hard real time platform.

The work presented in this paper uses ARINC-653 as the underlying platform, which provides
the temporal and spatial separation between applications. However, it does not restrict the behavior
of the underlying communication protocol. In future, we will investigate the use of the Avionics
Full-Duplex Ethernet (AFDX), which is a time-deterministic network defined in ARINC 664 [7].

Acknowledgments
This paper is based upon work supported by NASA under award NNX08AY49A. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Aeronautics and Space Administration.
The authors would like to thank Paul Miner, Eric Cooper, and Suzette Person of NASA LaRC for
their help and guidance on the project.

References
[1] Arinc specification 653-2: Avionics application software standard interface part 1 - required services.

Technical report.
[2] Model-Driven Architecture, www.omg.org/mda.
[3] Model-Integrated Computing, http://www.isis.vanderbilt.edu/research/mic.

31

DRAFT



[4] The ISIS Model Integrated Computing (MIC) Toolsuite.
[5] OMNeT++ Network Simulator.
[6] Joint advanced strike technology program, avionics architecture definition appendix B. Technical

report, August 1994.
[7] R. L. Alena, J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa. Communications for integrated

modular avionics. In Proc. IEEE Aerospace Conference, pages 1–18, 3–10 March 2007.
[8] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,

1994.
[9] N. Audsley and A. Wellings. Analysing APEX applications. In RTSS ’96: Proceedings of the 17th

IEEE Real-Time Systems Symposium, page 39, 1996.
[10] K. Balasubramanian, N. Wang, and D. C. Schmidt. Towards composable distributed real-time and

embedded software. Object-Oriented Real-Time Dependable Systems, IEEE International Workshop
on, 0:226, 2003.

[11] A. P. Burns and T. M. Lin. An engineering process for the verification of real-time systems. Formal
Aspects of Computing, 19(1):111–136, March 2007.

[12] CIAO. http://download.dre.vanderbilt.edu/.
[13] P. Conmy, J. McDermid, and M. Nicholson. Safety analysis and certification of open distributed

systems. In International System Safety Conference,, Denver, 2002.
[14] J. Delange, L. Pautet, and P. Feiler. Validating safety and security requirements for partitioned ar-

chitectures. In Ada-Europe ’09: Proceedings of the 14th Ada-Europe International Conference on
Reliable Software Technologies, pages 30–43, Berlin, Heidelberg, June 2009. Springer-Verlag.

[15] N. Diniz and J. Rufino. ARINC 653 in space. In Data Systems in Aerospace. European Space Agency,
May 2005.

[16] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan. Towards a real-time component framework
for software health management. Technical Report ISIS-09-111, Institute for Software Integrated
Systems, Vanderbilt University, Nov 2009. www.isis.vanderbilt.edu/sites/default/
files/TechReport2009.pdf.

[17] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan. A real-time component framework: Experi-
ence with ccm and arinc-653. Object-Oriented Real-Time Distributed Computing, IEEE International
Symposium on, pages 143–150, 2010.

[18] A. Dubey, G. Karsai, and N. Mahadevan. Towards model-based software health management for real-
time systems. Technical Report ISIS-10-106, Institute for Software Integrated Systems, Vanderbilt
University, August 2010.

[19] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A compositional framework for avionics (ARINC-
653) systems. Technical Report MS-CIS-09-04, University of Pennsylvania, Feb 2009. http://
repository.upenn.edu/cis_reports/898/.

[20] eCos. http://ecos.sourceware.org/.
[21] V. Fay-Wolfe, L. C. DiPippo, G. Copper, R. Johnston, P. Kortmann, and B. Thuraisingham. Real-time

corba. IEEE Trans. Parallel Distrib. Syst., 11(10):1073–1089, 2000.
[22] P. Feiler, B. Lewis, S. Vestal, and E. Colbert. An overview of the sae architecture analysis design

language (aadl) standard: A basis for model-based architecture-driven embedded systems engineering.
In Architecture Description Languages, volume 176 of IFIP International Federation for Information
Processing, pages 3–15. 2005.

[23] A. Goldberg and G. Horvath. Software fault protection with ARINC 653. In Proc. IEEE Aerospace
Conference, pages 1–11, March 2007.

[24] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
1969.

[25] J.-M. Jézéquel and B. Meyer. Design by contract: The lessons of ariane. Computer, 30(1):129–130,
1997.

32

DRAFT

www.isis.vanderbilt.edu/sites/default/files/TechReport2009.pdf
www.isis.vanderbilt.edu/sites/default/files/TechReport2009.pdf
http://repository.upenn.edu/cis_reports/898/
http://repository.upenn.edu/cis_reports/898/


[26] K. Kim. Object structures for real-time systems and simulators. Computer, 30(8):62–70, Aug 1997.
[27] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmkES: A component model for secure microkernel-based

embedded systems. Journal of Systems and Software, 80(5):687–699, 2007.
[28] K. Lakshmanan and R. Rajkumar. Distributed resource kernels: OS support for end-to-end resource

isolation. Real-Time and Embedded Technology and Applications Symposium, IEEE, 0:195–204,
2008.

[29] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments. Computer, 34(11):44–51, 2001.

[30] G. Lipari and E. Bini. A methodology for designing hierarchical scheduling systems. J. Embedded
Comput., 1(2):257–269, 2005.

[31] B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, 1992.
[32] D. Morgan. Pave pace: system avionics for the 21st century. Aerospace and Electronic Systems

Magazine, IEEE, 4(1):12 –22, Jan. 1989.
[33] R. Obermaisser and H. Kopetz, editors. Genesys An Artemis Cross-Domain Reference Architecture

For Embedded Systems. Sudwestdeutscher Verlag fur Hochschulschriften AG, 2009.
[34] A. Puder. MICO: An open source CORBA implementation. IEEE Softw., 21(4):17–19, 2004.
[35] J. Rushby. Modular certification. Technical report, Sept. 2001.
[36] S. Schneider, V. Chen, J. Steele, and G. Pardo-Castellote. The controlshell component-based real-time

programming system, and its application to the marsokhod martian rover. SIGPLAN Not., 30(11):146–
155, 1995.

[37] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier, and M. Richard-Foy. Use of PERC Pico in
the AIDA avionics platform. In JTRES ’09: Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems, pages 169–178, 2009.

[38] M. Schulte. Model-based integration of reusable component-based avionics systems - a case study. In
ISORC 2005, pages 62–71.

[39] V. Subramonian, G. Deng, C. D. Gill, J. Balasubramanian, L.-J. Shen, W. Otte, D. C. Schmidt, A. S.
Gokhale, and N. Wang. The design and performance of component middleware for qos-enabled de-
ployment and configuration of dre systems. Journal of Systems and Software, 80(5):668–677, 2007.

[40] Tinyos. http://webs.cs.berkeley.edu/tos/.
[41] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala component model for

consumer electronics software. Computer, 33(3):78–85, 2000.
[42] M. Wallace. Modular architectural representation and analysis of fault propagation and transformation.

Electron. Notes Theor. Comput. Sci., 141(3):53–71, 2005.
[43] N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba component model. Component-based

software engineering: putting the pieces together, pages 557–571, 2001.
[44] C. Watkins and R. Walter. Transitioning from federated avionics architectures to integrated modular

avionics. In Digital Avionics Systems Conference, 2007. DASC ’07. IEEE/AIAA 26th, pages 2.A.1–1
–2.A.1–10, oct. 2007.

A ARINC-653 Emulator on Linux
Current implementation has been tested on 2.6.9 and above kernels. Table 9 lists the implemented services. However,
we have noticed that the scheduling jitter is less if the emulator is used on a kernel older than 2.6.21. This is because
of the introduction of high resolution timers and tick-less kernel since that version. Some issues that we discovered
during this work are:

• Linux real time priorities range from 1 to 99. However, ARINC-653 priorities range from 1 to 63.

• Running FIFO Scheduler needs real-time privileges. The simplest way to achieve this is to use the root account.

33

DRAFT



• Default message queue size in Linux is typically limited to 10. Creating a queue with size greater than 10 will
cause problems. This is easily remedied by changing the sys config parameters.

• One of the ARINC-653 API is the STOP call, which can stop an ARINC process from execution and return
it to the entry point of the function being executed in the process. The only way to achieve this in Linux
with Pthreads is to terminate the thread and relaunch a new thread with the same entry point as before. This
specifically becomes a problem if the executing function does not include interrupt points such as pthread
cancel.

Table 9: List of ARINC-653 services implemented in the ARINC Emulation Layer. Refer to [1]
for further detail on these interfaces.

Category of
Services

Provided Service Description

Event CREATE EVENT Create an event
Management SET EVENT Set and event to notify a waiting process
Services RESET EVENT Clear the state of the event

WAIT EVENT Block on an event and wait for notification
GET EVENT ID Retrieve the identifier for an event using a unique name
GET EVENT STATUS Determine the number of processes waiting on an event

Semaphore CREATE SEMAPHORE Create a semaphore for synchronization
management WAIT SEMAPHORE Block on the semaphore
services SIGNAL SEMAPHORE Post to the semaphore

GET SEMAPHORE ID Determine the platform identifier for it
GET SEMAPHORE STATUS Get the number of resources available and number of waiting pro-

cesses
Partition
management

GET PARTITION STATUS Determine if the partition is in the Normal State or Idle State

services SET PARTITION MODE Set the Partition to Normal upon initialization
Process CREATE PROCESS Create an ARINC process and set its real-time properties.
management SET PRIORITY Set the priority of a specific process.
services SUSPEND SELF Suspend self and yield resources.

SUSPEND Suspend a specific process
RESUME Resume a previously suspended process
STOP SELF Set self-state to dormant. After this the process will not run until

restarted.
START Start a given process.
DELAYED START Start a process after the specified delay.
GET PROCESS ID Determine the unique identifier for a process.
GET MY ID Determine your own identifier.
GET PROCESS STATUS Determine the state of a process, whether it is running or not.

Time TIMED WAIT Wait or suspend execution for the specified time.
management PERIODIC WAIT Wait till the next periodic cycle of the process.
services GET TIME Find current system time in nanoseconds

REPLENISH Extend the deadline for the current process
Blackboard CREATE BLACKBOARD Create an intra-partition blackboard
management DISPLAY BLACKBOARD Write to the blackboard. This overwrites past value.
services READ BLACKBOARD Read the entry from the blackboard. If the blackboard is empty,

reader can choose to be blocked for the specified time.
continued on next page

34

DRAFT



continued from previous page
Category of
Services

Provided Service Description

CLEAR BLACKBOARD Erase the contents of the blackboard.
GET BLACKBOARD ID Determine the identifier for a blackboard.
GET BLACKBOARD STATUS Get status, number of bytes written and number of processes

waiting.
Buffer CREATE BUFFER Create a buffer.
management
services

SEND BUFFER Write to a buffer. Process blocks for the specified time if the
buffer is full.

RECEIVE BUFFER Read from the buffer. Process blocks for the specified time if the
buffer is empty.

GET BUFFER ID Get Buffer identifier.
GET BUFFER STATUS Get Buffer Status

Sampling CREATE SAMPLING PORT Create a Sampling Port.
Port WRITE SAMPLING MESSAGE Write to the sampling port. This overwrites past data.
management
services

READ SAMPLING MESSAGE Read the data from the port. The call also returns a flag stating if
the data is stale.

GET SAMPLING PORT ID Get the port identifier.
GET SAMPLING PORT STATUS Get status of sampling port.

Queuing CREATE QUEUING PORT Create a queuing port.
Port man-
agement

SEND QUEUING MESSAGE Write to the port. This call blocks for the specified time if the
queue is full.

services RECEIVE QUEUING MESSAGE Read from the port. This call blocks for the specified time if the
queue is empty.

GET QUEUING PORT ID Get the port identifier.
GET QUEUING PORT STATUS Get the port status.

B Code Generation Templates for Component Ports

B.1 Code Template for Publishers
This subsection describes the code template that is used to generate the publisher logic. Upon the start of a cycle, the
process tries to acquire a write lock to the component. This is necessary to ensure that at a time only one thread is
active in the component. Each publisher is statically given a list of ports on which it publishes. The partition scheduler
triggers this process periodically and monitors it for deadline violation. During each cycle, the publisher process calls
the user provided functional code USER FILL PUBLISHER NAME DATA(data) and then publishes the data.
The pre-conditions and post-conditions are validated based on provided specifications to ensure that the publisher is
working correctly. Aperiodic publishers are also bound to one ARINC process. The generated code for aperiodic
publisher is similar to the periodic publisher. The only difference is that we also generate a wrapper function call that
can be called from any other process inside the component.

Given: Name {Name of the publisher}
Given: E {Set of All Event Ports. An event port is an abstract concept. It maps to either a sampling port or a queuing

port depending whether the consumer is periodic or aperiodic.}
Given: COMP {implementation class for the component}
Begin PeriodicPublisher {Partition Scheduler starts the deadline violation monitor}
1: COMP→writelock(DeadlineT ime,return code)
2: if return code is TIMEOUT then
3: RAISE (LOCK TIMEOUT ERROR)
4: return
5: end if
6: Check pre-conditions

35

DRAFT



7: if pre-conditions not met then
8: RAISE (pre-condition Violation)
9: return

10: end if
11: Initialize(data) {data to be published}
12: USER FILL PUBLISHER NAME DATA(data) {User function details are filled in by the system developer.

Name is replaced with the actual value upon code generation.}
13: if user exception occurred then
14: RAISE (user exception)
15: return
16: end if
17: Initialize(failedpubs)
18: for e ∈ E do
19: e.publish(data,return code)
20: if return code is not NO ERROR then
21: failedpubs.insert(e)
22: end if
23: end for
24: if failedpubs.size() is not 0 then
25: RAISE (failedpubs)
26: return
27: end if
28: Check Post-conditions
29: if Post-conditions not met then
30: RAISE (Post-conditions Violation)
31: return
32: end if
33: COMP→unlock()
34: return
End PeriodicPublisher {Partition Scheduler stops the deadline violation monitor}

B.2 Code Template for Periodic Consumer
The generated code for periodic consumers looks similar to the code generated for periodic publisher. A periodic
consumer is bound to an ARINC-653 sampling port. Upon reading a data item, the process checks its validity and
raises an error if the data is stale (i.e. invalid). Then, control is transferred to the user code using USER HANDLE
CONSUMER NAME DATA(data). The software developer supplies the function body.

Given: Name {Name of the consumer}
Given: SP { A Sampling port.}
Given: COMP {implementation class for the component}
Begin Periodic Consumer {Partition Scheduler starts the deadline violation monitor}
1: COMP→writelock(DeadlineT ime,return code)
2: if return code is TIMEOUT then
3: RAISE (LOCK TIMEOUT ERROR)
4: return
5: end if
6: Initialize(data) {data to be read}
7: SP.read(data) {SP is a sampling port}
8: validity← age(data) ≤ validity period
9: if validity==false then

10: RAISE (Validity Violation)
11: return

36

DRAFT



12: end if
13: Check pre-conditions
14: if pre-conditions not met then
15: RAISE (pre-condition Violation)
16: return
17: end if
18: USER HANDLE CONSUMER NAME DATA(data) {User function details are filled in by the system developer.

Name is replaced by the actual name upon generation}
19: if user exception occurred then
20: RAISE (user exception)
21: return
22: end if
23: Check Post-conditions
24: if Postconditions not met then
25: RAISE (Post-conditions Violation)
26: return
27: end if
28: COMP→unlock()
29: return
End Periodic Consumer {Partition Scheduler stops the deadline violation monitor}

B.3 Code template for aperiodic consumer and its associated trigger method
For aperiodic consumers, an additional ARINC Process is created to wait for new events and trigger the actual Con-
sumer Process (when a new event is available).

Given: QP { A Queuing port.}
Given: COMP {implementation class for the component}
Begin Aperiodic Consumer Trigger Process {This is an infinite deadline process}.
1: loop
2: Initialize(data) {data to be read}
3: QP.read(data) {Poll the port. This call will block if there is no data in the queuing port}
4: validity← age(data) ≤ validity period
5: if validity==false then
6: RAISE (Validity Violation) {Aperiodic Consumer is still called. But it knows data is invalid}
7: end if
8: Set CurrentData← data
9: APEX::Start(AperiodicConsumer Process) {Process management call}

10: end loop
End Aperiodic Consumer Trigger Process

Given: Name {Name of the consumer}
Given: CurrentData { Current Data variable filled in by the trigger.}
Given: COMP {implementation class for the component}
Begin Aperiodic Consumer {Partition Scheduler starts the deadline violation monitor}
1: COMP→writelock(DeadlineT ime,return code)
2: if return code is TIMEOUT then
3: RAISE (LOCK TIMEOUT ERROR)
4: return
5: end if
6: Read CurrentData
7: Check pre-conditions
8: if pre-conditions not met then
9: RAISE (pre-condition Violation)

37

DRAFT



10: return
11: end if
12: USER HANDLE CONSUMER NAME DATA(data) {User function details are filled in by the system developer.

Name is replaced by the actual name upon generation}
13: if user exception occurred then
14: RAISE (user exception)
15: return
16: end if
17: Check Post-conditions
18: if Post-conditions not met then
19: RAISE (Post-conditions Violation)
20: return
21: end if
22: COMP→unlock()
23: return
End Aperiodic Consumer {Partition Scheduler stops the deadline violation monitor}

B.4 Code Template for provided interface methods and associated server
side skeleton

Each method in the interface supported by the Synchronous ports (provides and requires) has its separate ARINC
process. This is required because each method inside an interface can have different real time properties. Following
paragraph describes the template that is used to generate the code for a provided interface method. We implement the
skeleton generated by the MICO CCM IDL compiler for the provided method as shown in the first part. This function
runs inside an ORB worker thread, which has infinite time deadline. Upon receipt of a service call, the corresponding
ARINC process is started. Note that the ARINC services prevent more than one concurrent service calls to a provided
method by ensuring that a process cannot be started unless it is in the ready state i.e. not already started [1].

Given:
Begin Implementation of skeleton of the provided interface method. {This provides implementation for the provided

method}
1: Store input data in shared variable
2: APEX::Start(Provided interface method ARINC process) {This is one of the process management calls imple-

mented by the ARINC Emulation Layer}
3: Retrieve result from the shared variable

End Server side skeleton

Given: Interface Name {Name of the provided interface}
Given: Method Name {Name of the provided method in the interface}
Given: CurrentData { Current Data variable filled in by the trigger.}
Given: COMP {implementation class for the component}
Begin Provided Interface Method {Partition Scheduler starts the deadline violation monitor}
1: COMP→writelock(DeadlineT ime,return code)
2: if return code is TIMEOUT then
3: RAISE (LOCK TIMEOUT ERROR)
4: return
5: end if
6: Read CurrentData
7: Check pre-conditions
8: if pre-conditions not met then
9: RAISE (pre-condition Violation)

10: return
11: end if
12: USER HANDLE PROVIDED INTERFACENAME METHODNAME(data) {User function details are filled in

38

DRAFT



by the system developer. The Interface name and method name are tokens and are replaced with real values upon
generation.}

13: if user exception occurred then
14: RAISE (user exception)
15: return
16: end if
17: Check Post-conditions
18: if Post-conditions not met then
19: RAISE (Post-conditions Violation)
20: return
21: end if
22: COMP→unlock()
23: return
End Provided Interface Method {Partition Scheduler stops the deadline violation monitor}

39

DRAFT


	Introduction
	Background
	ARINC-653 Platform Specification
	CORBA Component Model
	Model-Integrated Computing

	A Component Model for Hard Real Time Systems
	ACM Metamodel
	Correctness Contracts
	Semantics of Component Interactions
	Asynchronous Interactions
	Synchronous Interactions


	Implementation of a Framework for Enabling ARINC-653 Component Model
	ARINC component middleware: Merging CCM with ARINC653
	APEX Services Emulation Library
	MICO ORB Library

	Layers Instantiated for Running a Software Assembly on ARINC Component Middleware
	APEX Module Manager
	APEX Partition Scheduler
	Object Request Broker (ORB)
	Component and Process Layers

	The Modeling Environment used for Design Specification
	Generating Runtime Layers from Models


	Case Study
	Discussion and Summary
	Differences between ARINC Component Model (ACM) and CORBA Component Model (CCM) Approaches
	Lessons Learned
	Extending CCM
	Problems Identified

	Related Research
	Real Time Software Component Frameworks
	Schedulability analysis for ARINC-653 systems
	Design by Contract

	Conclusion
	ARINC-653 Emulator on Linux
	Code Generation Templates for Component Ports
	Code Template for Publishers
	Code Template for Periodic Consumer
	Code template for aperiodic consumer and its associated trigger method
	Code Template for provided interface methods and associated server side skeleton




