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Abstract. Collaborative localization and discrimination of acoustic sources is an important
problem in wireless sensor networks. The two broad approaches for source localization are
signal-based and feature-based methods. The signal-based methods are not suitable for collab-
orative localization because they require transmission of raw acoustic data, which is costly
due to limited bandwidth and power available on wireless sensors. In feature-based methods,
signal features are extracted at each sensor and estimation is done by multisensor fusion of
the extracted features collected from all the sensors. The feature-based methods are suitable
to sensor networks due to its lower bandwidth requirements as compared to the signal-based
methods.
In this paper, we present a feature-based localization and discrimination approach for multiple
acoustic sources in wireless sensor networks. The approach uses beamform and power spectral
density (PSD) from each sensor as the features for multisensor fusion, localization and dis-
crimination. Our approach utilizes a graphical model for estimating the position of the sources
as well as their fundamental and dominant harmonic frequencies. We present simulation and
experimental results that show improvement in the localization accuracy and target discrimi-
nation. Our experimental results are obtained using motes equipped with microphone arrays
and an onboard FPGA for computing the beamform and the PSD.

Keywords: Acoustic source localization, wireless sensor networks, Bayesian estimation, Feature-
level fusion.

1 Introduction

Acoustic source localization is an important problem in many diverse applications such as military
surveillance and reconnaissance, underwater acoustics, seismic remote sensing, communications, en-
vironmental and wildlife habitat monitoring [1]. Recently more innovative applications such as smart
video-conferencing [2], multimodal sensor fusion and target tracking [3] have been proposed to utilize
multimodal source localization.

In wireless sensor networks (WSNs), collaborative source localization is needed where the ob-
jective is to estimate the positions of multiple sources. There are two broad classes of methods for
collaborative source localization. The first class of approaches where the estimation is done using
the sampled signals are called signal-based methods, while the second class of approaches where sig-
nal features are extracted at each sensor and estimation is done using the extracted signal features
collected from all the sensors are called feature-based methods.



Several signal-based methods using a microphone array for source localization have been proposed
[4]. These approaches use time delay of arrival (TDOA) or direction of arrival (DOA) estimation,
beamforming [4, 5] and maximum likelihood estimation [6]. The signal-based methods are not suited
for WSNs because they require transmission of the raw signal, which is costly due to limited band-
width and power. On the other hand, the feature-based methods are appropriate for WSNs due to
its lower bandwidth and power requirements. An example of feature-based method is energy-based
localization (EBL), where signal energy is taken as the feature. EBL has been solved using various
least squares [7, 8] and maximum likelihood [9] formulations. EBL suffers from poor localization reso-
lution for multiple targets, where the resolution is defined as the ability of the localization algorithm
to discriminate two closely spaced targets.

In this paper, we present a feature-based approach to collaborative source localization for multiple
acoustic sources in a wireless sensor network. We use microphone arrays as sensors that compute
beamforms and estimate power spectral density (PSD) as the signal features. The advantage of using
the beamform over signal energy as the feature is that the beamform captures the angular variation
of signal energy, which results in better localization resolution. The use of PSD as another signal
feature allows us to identify multiple sources under our harmonic signal assumption. Target tracking
application in [10] demostrated that the communication bandwidth available in sensor networks is
sufficient to support wireless transmissions of such features.

Localization algorithms based on least squares work on strict Gaussian noise assumption and are
generally not extensible to multiple sources; those based on beamforming have poor performance for
multiple source; while those based on maximum likelihood are not extensible to tracking applications
where data association across time become an issue. A Bayesian approach for source localization can
handle non-Gaussianity and multiple sources, both stationary and moving.

We solve the localization problem using graphical models that are generalization of Bayesian
estimation. Graphical models are graphs in which nodes represent random variables, and the (lack of)
arcs captures conditional independence of random variables. They provide a compact representation
of joint probability density and facilitate the factorization of joint density into conditional densities
[11]. Graphical models require generative models that describe the observed data in terms of the
observation process and the hidden state variables. We present generative models for beamform and
acoustic PSD. We present a localization algorithm based on Gibbs sampling for approximate state
estimation. Finally, we present simulation results for multiple source localization in a grid sensor
network. Our algorithm is able to achieve an average of 25 cm localization error for three targets,
8 cm for two targets, and less than 5 cm for single target in a sensor network of four sensors. We
are able to distinguish between two targets as close as 50 cm using our algorithm. Our results show
that as the separation between targets increases, our algorithm is able to achieve higher localization
accuracy, comparable to single target localization.

The main assumption made in this paper for acoustic sources are that they are (1) stationary
point sources, (2) emitting a stationary signal, (3) with a harmonic power spectral density, and
(4) the cross-correlation between two sources is negligible compared to the autocorrelation. The
assumptions made on sensors are that they are (1) coplanar with the sources, and (2) have 2D array
of microphones. In addition, we also assume that the acoustic signal attenuates at a rate that is
inversely proportional to the distance from the source.

The rest of the paper is organized as follows. In Section 3, we present the acoustic source model
and the acoustic sensor model. Section 4 describes the graphical model. Sections 5 and 6 describe the
source separation and source localization, respectively. In Section 7, we present the Gibbs sampler
and the initialization strategy. We present results for various simulation scenarios in Section 8, and
the outdoor experiment setup and results in Section 9. We conclude in Section 10.



2 Related Work

Signal-based methods for acoustic source localization methods typically make use of time delay of
arrival (TDOA) and direction of arrival (DOA). An overview of theoretical aspects of TDOA acoustic
source localization and beamforming is presented in [6], along with a localization algorithm based
on maximum likelihood (ML) estimation. For multiple acoustic source localization, an approximate
maximum likelihood (AML) algorithm based on alternative projection method is presented. An
empirical study of collaborative acoustic source localization based on an implementation of the AML
algorithm is shown in [1]. Among feature-based methods, energy-based acoustic source localization
methods are presented in [7–9]. A least-squares approach is taken to solve the localization problem
in [7]. Several other least-squares formulations are proposed that are efficient and achieve better
accuracy in [8]. A maximum likelihood formulation with capability for multiple source localization
is presented in [9]. A multiresolution search algorithm and an expectation-maximization (EM) like
iterative algorithm are presented for ML estimation.

Several approaches based on graphical models [3, 12] and Bayesian estimation [13–15] have been
proposed for multiple target localization and tracking. A graphical model based approach for au-
diovisual object tracking is presented that combines the audio and video data in [3]. The paper
presents a graphical model for the audio-video data, and a Bayesian inference algorithm for track-
ing. A graphical model formulation for self-localization of sensor networks is presented in [12]. A
technique called nonparametric belief propagation (NBP) that is a generalization of particle filter-
ing, is proposed for Bayesian inference. The NBP approach has the advantage of being amenable
to distributed implementation, can include a wide variety of statistical models, and can represent
multimodal uncertainty. A Bayesian approach for tracking the direction-of-arrival (DOA) of multiple
targets using a passive sensor array is presented in [13]. The paper includes a constant velocity target
dynamics model, a data model for uniform linear sensor array, and a tracking algorithm based on
particle filtering. The work in [13] is extended in [14] by considering maneuvering wideband acoustic
targets. A Bayesian approach for multiple target detection and tracking, and particle filter-based
algorithms are proposed in [15]. The paper constructs and computes the joint multitarget probability
density (JMPD) for multitarget state estimation. For unknown number of target, the multitarget
state is extended to include a random variable corresponding to the number of target.

3 Multiple Acoustic Source Localization

Consider a wireless sensor network of K acoustic sensors in a planar field. Each acoustic sensor is
a microphone array with Nmic microphones each. Consider M far-field stationary acoustic sources
coplanar with the sensor network. The acoustic wave front incident on sensor is assumed to be planar
for far-field sources. Each sensor receives the signal and runs simple signal processing algorithms to
compute beamform and acoustic PSD. The goal of this work is to estimate the 2D position of all
the sources given the beamform and the PSD from all sensors.

3.1 Acoustic Source Model

The main assumptions made in this paper for acoustic sources are that they are (1) stationary
point sources, (2) emitting stationary signals, (3) the source signals are harmonic, and (4) the
cross-correlation between two source signals is negligible compared to the signal autocorrelations.
Harmonic signals consist of a fundamental frequency, also called the first harmonic, and other higher-
order harmonic frequencies that are multiples of the fundamental frequency. The energy of the signal



is contained in these harmonic frequencies only. The harmonic source assumption is satisfied by a
wide variety of acoustic sources [16]. In general, any acoustic signal originating due to the vibrations
from rotating machinery will have an harmonic structure.

In practice, some of the assumptions made in this model may not be always true and, hence, may
affect its accuracy. For example, the engine sound of a vehicle may not be omni-directional and will
be biased toward the side closer to the engine. The physical size of the acoustic source may be too
large to be adequately modeled as a point source for sensors very close to the source. In an outdoor
environment, strong background noise, including wind gusts, may be encountered during operation.
In addition, the gain of individual microphones will need to be calibrated to yield consistent acoustic
energy readings. Perhaps the most restrictive assumption is that the source signals are harmonic.
In addition to the harmonic components, the engine sound signal may contain other frequency
components, which when not accounted for, may cause localization to deteriorate.

The state for the mth acoustic source is given by, (1) the position, x(m) =
[
x(m), y(m)

]T
,

(2) the fundamental frequency, ω(m)
f , and (3) the energies in the harmonic frequencies, ψ(m) =[

ψ
(m)
1 , ψ

(m)
2 , · · · , ψ(m)

H

]T
, where H is the number of harmonic frequencies.

3.2 Acoustic Sensor Model

The intensity of an acoustic signal emitted omni-directionally from a point sound source attenuates
at a rate that is inversely proportional to the distance from the source [9]. The discrete signal received
at the pth microphone is given by

rp[n] =
M∑
m=1

d0

‖ xp − x(m) ‖
s(m)[n− τ (m)

p ] + wp[n] (1)

for samples n = 1, · · · , L, where L is the length of the acoustic signal, M is the number of sources,
wp[n] is white Gaussian measurement noise such that wp[n] ∼ N (0, σ2

w), s(m)[n] is the intensity of
the mth source measured at a reference distance d0 from that source, and τ

(m)
p is the propagation

delay of the acoustic signal from the mth source to the pth microphone. The microphone and source
positions are denoted by xp and x(m), respectively. We define the multiplicative term in Equation
(1) as the attenuation factor, λ(m)

p , given by

λ(m)
p =

d0

‖ xp − x(m) ‖
(2)

Beamforming is a signal processing algorithm for DOA estimation of a signal source. In a typical
delay-and-sum single source beamformer, the 2D sensing region is discretized into directions, or
beams as α = i 2πQ , where i = 0, · · · , Q− 1 and Q is the number of beams. For each beam, assuming
the source is located in that direction, the microphone signals are delayed according to the relative
time delay and summed together into a composite signal as

r[n] =
Nc∑
p=1

rp[n+ tpq(α)] (3)

where α is the beam angle, rp[·] is the received signal at the pth microphone, q is the index of a
reference microphone, and tpq(α) is the relative time delay for the pth microphone with respect to



the reference microphone q, given by

tpq(α) = dpqcos(α− βpq)fs/C (4)

where dpq and βpq are the distance and angle between the pth and qth microphones, and fs and C
are signal sampling rate and speed of sound, respectively. The L2 norm of the composite signal is
the beam energy

B(α) =

(
L∑
n=1

r[n]2
)1/2

(5)

Beam energies are computed for each of the beams, and are collectively called the beamform, B. The
beam with maximum energy indicates the DOA of the acoustic source. In case of multiple sources,
there might be multiple peaks where the maximum peak would indicate the DOA of the highest
energy source. Figure 1(a) shows a beamform for two acoustic sources. Advances in sensor network
hardware and and FPGA integration has allowed us to implement real-time beamforming on micaz
sensor motes [10].
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Fig. 1. (a) Acoustic Beamforms; The beamforms for single sources clearly show peaks at the source location
but the beamform when both sources are present does not show two peaks. (b) Power spectral density
(PSD); The highest PSD values are shown as empty circles. The PSD is compactly represented as pairs of
the highest PSD values and corresponding frequencies.

Acoustic PSD estimation is the estimation of the spectrum of the received acoustic signal, which
describes how the power of the signal is distributed with frequency. We estimate the PSD as the
magnitude of the discrete Fourier transform (DFT) of the signal. The PSD estimate can be written
as

P (ω) = Y (ω) · Y (ω) (6)
where Y (ω) = FFT(r,NFFT ) is the discrete Fourier transform of the signal r[n], NFFT is the length
of the transform, and Y (ω) is the complex conjugate of the transform. For real-valued signals,
the PSD is real and symmetric, hence we need to store only half of the spectral density. In our
implementation, we represent the spectral densities as the frequency–power pairs, (ωj , ψj), for the
NPSD frequencies with the highest power values. Figure 1(b) shows an acoustic PSD estimate for a
received signal when two harmonic sources are present.



4 Overview

Source separation and localization of multiple sources is performed using the graphical model1 shown
in Figure 2. The nodes with clear backgrounds denote hidden state variables; x(m), ω

(m)
f , ψ(m) denote

M

K

mψ

kPkB

m
kθ m

kλ

mx

K

m
fω

Fig. 2. Graphical model

source position, fundamental frequency and harmonic energies for the mth source, respectively. The
nodes with shaded backgrounds denote observed variables; Bk and Pk denote the beamform and the
PSD received at kth sensor, respectively. Finally, the nodes with dotted outlines denote functions
of random variables, or auxiliary random variables, that capture the functional dependence of the
observed variables on the hidden variables. These variables will be utilized in the generative models
for the observed variables. The two auxiliary variables shown in the graphical model are the angle
θ
(m)
k and the attenuation factor λ(m)

k .
Source separation, in the present context, means separating the PSDs of the sources. Source

separation is done using fundamental frequency estimation, also called F0 estimation. For harmonic
sources, estimation of fundamental frequencies is sufficient for source separation, because all the
dominant frequencies in the signal are multiples of the fundamental frequency. A ML estimation
method is used for fundamental frequency estimation. The ML estimate is independent of the source
location, which is intuitive because the dominant frequencies in the source signal are independent
of the source location, as long as the source and sensor are stationary. Source localization, in this
context, means source position estimation. We use the separated source PSDs in Bayesian estimation
for source localization.
1 We use the plate notation to represent the repetition of random variables.



5 Source Separation

Source separation problems in signal processing are those in which several signals have been mixed
together and the objective is to find the original signals. Several approaches based on principal
component analysis (PCA) and independent component analysis (ICA) have been proposed for
source separation in simplified cases. In the present context, source separation means separating
the source PSDs, which is performed by estimating the fundamental frequencies. In this section, we
introduce the generative model for PSD and the ML estimation method for fundamental frequencies.

5.1 PSD generative model

The PSD for the mth source is given by

P (m)
s (ω) =

H∑
h=1

ψ
(m)
h δ(ω − hω(m)

f ) (7)

where ω is the frequency, ω(m)
f is the fundamental frequency, ψ(m)

h is the energy in the hth harmonic,
H is the number of harmonics, and δ(·) is the Dirac delta function. We have the following proposition
for the PSD estimate at a sensor.

Proposition 1. For an arbitrary number of acoustic source signals, the power spectral density of
the signal received at a sensor is given by

P(ω) =
M∑
m=1

M∑
n=1

λ(m)λ(n)
(
P (m)
s (ω)P (n)

s (ω)
) 1

2

cos(Φ(m)(ω)− Φ(n)(ω))

(8)

where M is the number of sources, λ(m) is the attenuation factor, and Φ(m)(ω) is the phase spectral
density, which is given by

Φ(m)(ω) = φ(m)− ‖ x(m) − xs ‖ ω/C

where φ(m) is the phase of the source signal, x(m) and xs are the positions of the source and the
sensor, respectively.

The proof for the proposition is given in appendix.
Since we do not maintain the phase of the signal in the source model (see Section 3), we assume

all the phases to be uniformly distributed. The expected value of the cosine of the difference of
two uniformly distributed angles is zero, i.e. E[cos(Φi − Φj)] = 1. Using this, Equation (8) can be
approximated as

P(ω) ≈

[
M∑
m=1

λ(m)
(
P (m)(ω)

)1/2
]2

(9)



5.2 Data likelihood

The negative log-likelihood at the kth sensor is defined as

`k(Ωf , Ψ,X) =
1
σ2
P

∑
ωj

(Pk(ωj)− Pk(ωj))
2

where the vectors of the unknown parameters are given by

Ωf =
[
ω

(1)
f , · · · , ω(M)

f

]T
Ψ =

[
ψ(1), · · · , ψ(M)

]T
ψ(m) =

[
ψ

(m)
1 , · · · , ψ(m)

H

]T
X =

[
x(1), · · · ,x(M)

]T
Thus, the maximum likelihood parameter estimation of [Ωf , Ψ,X]T can be obtained by minimizing
`k(Ωf , Ψ,X). To minimize `k(Ωf , Ψ,X), the solution must lie where the partial derivatives of the
likelihood w.r.t. to the parameters are zero. The partial derivative w.r.t. the energies is

∂

∂ψ
(m)
h

`k(Ωf , Ψ,X) = 0

which leads to the following

Pk(hω(m)
f ) = Pk(hω(m)

f ) =

(
M∑
m′

λ
(m′)
k ψ

(m′)
hm′

1/2
)2

where

ψ
(m′)
hm′ =

{
> 0 if hm′ = hω

(m)
f /ω

(m′)
f ∈ Z

0 otherwise

If the frequency hω
(m)
f is shared by M ′ sources (or the number of nonzero ψ

(m′)
hm′ is M ′), then we

have

Pk(hω(m)
f ) =

M ′∑
m′

λ
(m′)
k ψ

(m′)
hm′

1/2

2

If we assume the energy contribution of all the sources to be same, i.e. λ(m′)ψ
(m′)
hm′

1/2
= · · · = ψ̄h, we

have
Pk(hω(m)

f ) =
(
M ′ψ̄h

)2 = M ′
2
ψ̄h

2

or

ψ
(m)
h

ML
=

ψ̄2
h

λ
(m)
k

2 =
Pk(hω(m)

f )

M ′2λ
(m)
k

2 (10)



Substituting the solution for the energies in the negative log-likelihood equation, we have a modified
negative log-likelihood

`k(Ωf , Ψ̂ML, X) = `′k(Ωf , X)

=
∑
ωj 6∈H

(P (ωj)− P(ωj))
2

+
∑
ωj∈H

(P (ωj)− P(ωj))
2

where H is the harmonic set, which is the set of all harmonic frequencies for all sources

H =
⋃
m

[
ω

(m)
f , 2ω(m)

f , · · ·
]T

The value of generative model P is zero at the frequencies not in the harmonic set, while it is exactly
equal to the observed PSD at the frequencies in the harmonic set. Hence

`′k(Ωf , X) =
∑
ωj 6∈H

(Pk(ωj))
2 (11)

Equation (11) is the log-likelihood with the constraint of Equation (10) imposed. Equation (11)
implies that the modified likelihood at the ML estimate of energies is independent of the source
locations.

`k(Ωf , ΨML, X) = `′k(Ωf , X) = `′k(Ωf )

Hence, source separation (f0 estimation) can be performed independent of source localization.
The full negative log-likelihood for all sensors, `′(Ωf ) is defined as

`′(Ωf ) =
1
K

K∑
k=1

`′k(Ωf )

Thus, the ML parameter estimation of the fundamental frequencies can be obtained by minimizing
`′(Ωf )

Ω̂ML
f = arg min

Ωf
`′(Ωf ) (12)

Since an exact ML estimation method for Equation (12) is not available we will use an approximate
method described in Section 7 for ML parameter estimation.

6 Source Localization

Source localization is performed by Bayesian estimation in the graphical model shown in Figure 2,
and taking the maximum a-posteriori (MAP) estimate of the source positions. The posterior, p(X|B)
of the source positions conditioned on the observed beamforms and ML estimates for fundamental
frequencies and energies, is given by

p(X|B) ∝
∏
k

p(Bk|X, Ω̂ML
f , Ψ̂ML)p(X) (13)



6.1 Beamform generative model

We start by developing a generative model for a beamform for a two-microphone array, single-source
case. We will show that the beamform for an arbitrary microphone array and an arbitrary number
of sources can be composed from the simple two-microphone array, single-source case.

Proposition 2. Consider a microphone pair separated by distance d and the angle between the x-
axis and the line joining the microphones is β. For an acoustic source at angle θ and range r with
power spectral density P (ω), the beamform B at the microphone pair is given by

B2(α) = 2λ2(Rss(0) +Rss(κα)) + 2Rη(0) (14)

where Rss(τ) = FFT−1(P (ω)) for τ ∈ [−∞,+∞] is the autocorrelation of the source signal, Rss(0)
is the signal energy, Rη(0) is the noise energy, λ is the attenuation factor, and κα = d(cos(α− β)−
cos(θ − β))fs/C, where α ∈ [0, 2π] is the beam angle, fs and C are sampling frequency and speed of
sound, respectively.

The proof for the proposition is given in appendix.
The beamform expression in equation (14) is composable for arbitrary microphone-array and

arbitrary number of acoustic sources.

Proposition 3. For an arbitrary microphone-array of Nmic microphones, the beamform is expressed
in terms of pairwise beamforms as

B2(α) =
∑

(i,j)∈pa

B2
i,j(α)−Nmic(Nmic − 2)(Rη(0) + λ2Rss(0)) (15)

where pa is the set of all microphone pairs, Rss(0) is the signal energy, Rη(0) is the noise energy,
λ is the attenuation factor, and Bi,j is beamform for the microphone pair (i, j) (Equation (14)).

The proof for the proposition is given in appendix.

Proposition 4. For an arbitrary number of uncorrelated acoustic sources M , the beamform is ex-
pressed in terms of single source beamforms as

B2(α) =
M∑
m=1

B2
m(α)−Nmic(M − 1)Rη(0) (16)

where Rη(0) is the noise energy and Bm is the beamform for mth acoustic source (Equation (15)).

The proof for the proposition is given in appendix. Substituting Equations (14) and (15) into Equa-
tion (16), and rearranging and simplifying gives the generative model for beamform as following

B2(α) = 2
M∑
m=1

λ(m)2
∑

(i,j)∈P

R(m)
ss (κα)

+Nmic

M∑
m=1

λ(m)2R(m)
ss (0) +NmicRη(0)

(17)



6.2 Data likelihood

The negative log-likelihood is given as

− ln p(Bk|X) = `k(X) =
1
σ2
B

∑
α

(Bk(α)− Bk(α))2

The MAP estimate of the source positions is given by

X̂MAP = arg max
X

p(X|B)

= arg max
X

∏
k

p(Bk|X, Ω̂ML
f , Ψ̂ML)p(X) (18)

Again, since an exact estimation method for Equation (18) is not available we will use the approxi-
mate method described in Section 7 for MAP estimation.

7 Bayesian Estimation using Gibbs Sampling

Due to the non-linearity of the observation model and non-Gaussianity of the probability densities,
the use of exact methods for state estimation is not possible. We use Markov Chain Monte Carlo
(MCMC) sampling algorithms, specifically Gibbs sampling and slice sampling [17] for approximate
state estimation. The MCMC algorithms are more efficient in high-dimensions than Monte Carlo
(MC) methods, also called particle filters, due to the fact that the samples in MC methods are drawn
independently while in samples in MCMC are drawn from a Markov chain. The Gibbs sampler works
on the idea that while the joint probability density is too complex to draw samples from directly, the
univariate conditional densities – the density when all but one of the random variables are assigned
fixed values – are easier to sample.

7.1 Univariate conditional density

Let’s rewrite the state vector such that X =
[
x(1), x(2), · · · , x(D)

]t
, where D is the number of state

variables. The joint density p(Xt|Xt−1, Yt) is sampled using Gibbs sampler by sequentially sampling
univariate conditional densities given by

x
(k,j)
t ∼ p(x(j)|X(k,−j)

t , Xt−1, Yt) (19)

where k is the index of the sample, j = 1, · · · , n is the index of state variable currently being sampled,

and X
(k,−j)
t =

[
x

(k,1)
t , · · · , x(k,j−1)

t , x
(k−1,j+1)
t , · · · , x(k−1,D)

t

]t
is the set of all state variables except

x(j). The choice of algorithm to sample from univariate density in Equation (19) determines the
speed and convergence of the Gibbs sampler. We selected slice sampling [17] for its robustness in
parameters such as step size and applicability toward non-log-concave densities, which is the case in
our problem due to non-Gaussian and multimodal probability densities.

The likelihood in Equation (12) and the posterior density in Equation (18) are sampled using
the Gibbs sampler to the estimate the ML estimate and MAP estimate, respectively.



7.2 Initialization Strategy

A good initialization of the state will ensure faster convergence of the Gibbs sampler. For source
separation, the fundamental frequencies, Ωf are initialized by doing a coarse resolution search to
minimize the likelihood in Equation (12). During the source localization step, the source positions
are initialized using one of the following methods, (1) the least-squares method for a single target,
similar to one described in [8], or (2) the weighted-average of the sensor positions. Finally, the
harmonic energies are initialized according to Equation (10).

8 Simulation Results

The scenarios considered here involve a wireless sensor network deployed in a grid topology. Typically,
localization of an acoustic source is performed by the sensors that are close to the source because
the signal-to-ratio (SNR) is lower for farther sensors. For this reason, we assume that even in a large
sensor network, a source will be surrounded by a small number of sensors that will participate in
the localization of that source.

8.1 Simulation setup and parameters

We consider a small sensor network of 4 acoustic sensors arranged in a grid of size 10m×5m, wherein
each sensor can detect all the sources. We simulate the sources according the acoustic source model
(Section 3), simulate the data according to the observation process (Section 3), and finally check
the output of source localization against the ground truth. The performance of the approach is
measured in terms of localization error, which is defined as the root mean square (RMS) position
error averaged over all the sources

E =
1
M

M∑
m=1

||x(m) − x̃(m)||

where M is the number of source, and x(m) and x̃(m) are the estimated and ground truth positions
for the mth source, respectively. Table 1 shows the parameters used in the algorithm.

Table 1. Parameters used in simulations

Sampling frequency (fs) 100kHz

Speed of sound (C) 350 m/sec

Downsampling factor 25

Audio data length (time) 1 sec

Maximum harmonic frequency (ωmax) 1000Hz

SNR (dB) 25

Number of beams 36

Size of Fourier transform (NFFT ) 4000

Number of Gibbs sample 40



8.2 Simulation scenarios

We study three simulation scenarios. In the first scenario, we increase the number of sources present
in the sensing region gradually to see the effect on accuracy of detection. In the second scenario, we
increase the average source SNR of two sources present in the sensing region. In the third scenario,
we increase the separation between two sources present in the sensing region.

Figure 3(a) shows the localization error for the first scenario when the number of sources is
increased from 1 to 4. The localization error increases approximately exponentially with the number
of sources. Figure 3(b) shows the average localization error for the second scenario when source SNR
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Fig. 3. Localization error with (a) Source density, (b) Source SNR, and (c) Source separation. (d) Localiza-
tion error as a percentage of source separation.

for the two sources is increased from 7dB to 52dB. As expected, the localization error decreases with
increasing SNR and remains approximately constant above 20dB. Figures 3(c) and 3(d) show the
localization error for the third scenario when the source separation between two sources is increased
from 0.1m to 8m. For small source separations (0.1m and 0.2m), the localization error is of the
same order as the separation. This indicates that the two sources cannot be disambiguated at such



separations. For higher source separations (above 0.5m), the localization error is a small fraction of
the separation. This indicates that the two sources are successfully localized and disambiguated. In
fact, for larger source separations (above 5m), the average localization error for two sources is same
as that for the single sources.

9 Outdoor Experiments

We implemented the beamforming and PSD estimation described in section 3 on an Xilinx XC3S1000
FPGA chip onboard the micaz sensor motes. Both processes run at 4Hz. Beamforming utilizes
166 msec of audio data each cycle, while the PSD estimation module utilizes 1 sec of data with 75%
overlap. The angular resolution of beamforming is 10 degrees while frequency resolution of PSD
estimation is 1Hz. The PSD estimation module returns 30 PSD values.

We deployed a small sensor network of 3 micaz-based acoustic sensor nodes in an equilateral
triangle of side length 9.144m (15ft). Figure 4(a) shows the experimental setup and the location
of the sources. We collected the sensor data and ran the algorithm offline. Figure 4(b) shows the
localization error with source separation. The results follow the similar trend as that in Figure
3(c). For smaller source separations, the average error remains low but the algorithm is not able to
disambiguate the two sources. For larger separations, the localization error decreases.
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Fig. 4. (a) Outdoor experimental setup. Source 1 is kept at the same location while source 2 is placed at
different locations. (b) Localization error with source separation.

10 Conclusion

In this paper, we proposed a feature-based fusion method for localization and discrimination of
multiple acoustic sources in WSNs. Our approach fused beamforms and PSD data from each sensor.
The approach utilized a graphical model for estimating the source positions and the fundamental
frequencies. We subdivided the problem into source separation and source localization. We showed in



simulation and outdoor experiments that the approach can discriminate multiple sources using the
simple features collected from the resource-constrained sensor nodes. As part of an ongoing work,
we are working on target dynamics models to extend the approach for multiple source tracking. In
the future, the use of graphical models will allow us to extend the approach to multimodal sensors.
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A Appendix

A.1 Proof of Proposition 1

Proof. We prove Proposition 1 by derivation. Let there be M sources emitting source signals sm[n],
for m = 1, 2, · · · ,M . Using Equation (1), the received signals at a microphone is given by

y[n] =
M∑
m=1

λmsm[n− τm] + w[n]

where τm is the propagation delay, and λm is the attenuation factor. Taking FFT of the received
signal, we have

Y (ω) = FFT
(
y[n]

)
= FFT

(
M∑
m=1

λmsm[n− τm] + w[n]

)

=
M∑
m=1

λmFFT
(
sm[n− τm]

)
+ FFT

(
w[n]

)
=

M∑
m=1

λmSm(ω) +W (ω) (20)

where Sm(ω) is the Fourier transform of mth source signal, and W (ω) is the Fourier transform of
noise. The power spectral density (PSD) of a signal is given by

P (ω) = Y (ω) · Y (ω)

=

(∑
m

λmSm(ω) +W (ω)

)
·

(∑
m

λmSm(ω) +W (ω)

)

=

(∑
m

λmSm(ω) +W (ω)

)
·

(∑
m

λmSm(ω) +W (ω)

)
=
∑
m

∑
n

λmλmSm(ω) · Sn(ω) +
∑
m

λmSm(ω) ·W (ω)

+
∑
m

λmSm(ω) ·W (ω) +W (ω) ·W (ω)
(21)

The Fourier transform S(ω) can also be written in terms of the PSD (P (ω)) and phase spectral
density (Φ(ω)), as

S(ω) = P (ω)1/2e+iΦ(ω) (22)

which gives

Sm(ω) · Sn(ω) =
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω))

Sm(ω) ·W (ω) =
(
Pm(ω)Pη(ω)

)1/2
e+i(Φm(ω)−Φη(ω))

Sm(ω) ·W (ω) =
(
Pm(ω)Pη(ω)

)1/2
e−i(Φm(ω)−Φη(ω))

W (ω) ·W (ω) =
(
Pη(ω)Pη(ω)

)1/2 = Pη(ω)



where Pη(ω) and Φη(ω) are PSD and phase spectral density of the noise signal. Rewriting Equation
(21), we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω)) +

∑
m

λm
(
Pm(ω)Pη(ω)

)1/2
e+i(Φm(ω)−Φη(ω))

+
∑
m

λm
(
Pm(ω)Pη(ω)

)1/2
e−i(Φm(ω)−Φη(ω)) + Pη(ω)

(23)

Assuming that PSD for noise is negligible compared to actual source signals, we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω)) (24)

We know that PSD of real-valued signals is real-symmetric, hence the imaginary component in
Equation (24) is zero. Hence, we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2 cos (Φm(ω)− Φn(ω)) (25)

ut

A.2 Proof of Proposition 2

Proof. We prove Proposition 2 by derivation. Let the source be present at an angle θ emitting a
source signal s[n]. Using Equation (1), the received signals at the microphones are given by

rp[n] = λps[n− τp] + wp[n]

for p = 1, 2, where τp is the propagation delay, and λp is the attenuation factor. For far-field case,
the distances between the source and the closely-spaced microphones will be approximately same
for all microphones, hence λ1 ≈ λ2 = λ.

Using Equation (3), the composite microphone signal for the beam angle α is given by

r[n] = r1[n] + r2[n+ t12(α)]
= λs[n− τ1] + λs[n+ t12(α)− τ2] + w1[n] + w2[n+ t12(α)]

where t12(α) = t2(α)− t1(α) = d cos(α− β)fs/C is relative sample delay. The beam energy is given
by

B2(α) =
∑
n

r[n]2

=
∑
n

(λs[n− τ1] + λs[n+ t12 − τ2] + w1[n] + w2[n+ t12])2

= λ2
∑
n

s[n− τ1]2 + λ2
∑
n

s[n+ t12 − τ2]2 +
∑
n

w1[n]2 +
∑
n

w2[n+ t12]2

+ 2λ2
∑
n

s[n− τ1]s[n+ t12 − τ2] + 2
∑
n

w1[n]w2[n+ t12]

+ 2λ
∑
n

(w1[n] + w2[n+ t12])(s[n− τ1] + s[n+ t12 − τ2])



Rewriting the above expression in terms of signal and noise autocorrelation and cross-correlation,
we have

B2(α) = λ2Rss(0) + λ2Rss(0) +Rw1w1(0) +Rw2w2(0)

+ 2λ2Rss(t12 − τ2 + τ1) + 2Rw1w2(t12) + 2λRw1s(−τ1) + 2λRw2s(t12 − τ1)
+ 2λRw1s(t12 − τ2) + 2λRw2s(τ2)

Now, assuming that the noises at the microphones are statistically same (i.e. Rw1w1(0) = Rw2w2(0) =
Rη(0)) and the noises are uncorrelated (i.e. Rw1w2 [m] = 0), and the noise and signal are also
uncorrelated (i.e. Rwks[m] = 0), we have

B2(α) = 2λ2Rss(0) + 2Rη(0) + 2λ2Rss(t12 − τ12)

Denoting κα = t12 − τ12 = d(cos(α− β)− cos(θ − β))fs/C and rearranging, we have

B2(α) = 2λ2
(
Rss(0) +Rss(κα)

)
+ 2Rη(0)

ut

A.3 Proof of Proposition 3

Proof. We prove Proposition 3 by derivation. Let the source be present at an angle θ emitting a
source signal s[n]. Using Equation (1), the received signals at the microphones are given by

rp[n] = λps[n− τp] + wp[n]

for p = 1, 2, · · · , Nmic, where τp is the propagation delay, and λp is the attenuation factor. For far-
field case, the distances between the source and the closely-spaced microphones will be approximately
same for all microphones, hence λ1 ≈ λ2 ≈ · · · = λ.

Using Equation (3), the composite microphone signal for the beam angle α is given by

r[n] =
Nmic∑
p=1

rp[n+ t1p(α)]

=
Nmic∑
p=1

λs[n+ t1p(α)− τp] + wp[n+ t1p(α)]

where t1p(α) = tp(α) − t1(α) = d1p cos(α − β1p)fs/C is relative sample delay between the pth and
1st microphone. Let’s denote φp = n+ t1p(α)− τp and ψp = n+ t1p(α) for clarity and brevity. The



beam energy is given by

B2(α) =
∑
n

r[n]2

=
∑
n

[∑
p

λs[φp] + wp[ψp]

]2

=
∑
n

(∑
p

λs[φp]

)2

+

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q

λs[φp]wq[ψq]


=
∑
n

(∑
p

λs[φp]

)2

+
∑
n

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q,q 6=p

∑
n

λs[φp]wq[ψq]︸ ︷︷ ︸
Rwqs(τ)=0

(26)

The last term is signal-noise cross-correlation which is zero for uncorrelated signal and noise. The
first two term in Equation (26) are expanded to

∑
n

(∑
p

λs[φp]

)2

= λ2
∑
n

∑
p

s2[φp] + 2λ2
∑
n

∑
p

∑
q,q 6=p

s[φp]s[φq]

= λ2
∑
p

(∑
n

s2[φp]

)
︸ ︷︷ ︸

Rss(0)

+ 2λ2
∑
p

∑
q,q 6=p

(∑
n

s[φp]s[φq]

)
︸ ︷︷ ︸

Rss(φp−φq)

= λ2NmicRss(0) + 2λ2
∑

p,q,p6=q

Rss(φp − φq) (27)

and ∑
n

(∑
p

wp[ψp]

)2

=
∑
n

∑
p

w2
p[ψp] + 2

∑∑
p

∑
q,q 6=p

wp[ψp]wq[ψq]

=
∑
p

(∑
n

w2
p[ψp]

)
︸ ︷︷ ︸

Rwpwp (0)

+ 2
∑
p

∑
q,q 6=p

(∑
n

wp[ψp]wq[ψq]

)
︸ ︷︷ ︸

Rwpwq [φp−φq ]=0

= NmicRη(0) (28)

The second term in Equation (28) is zero due to uncorrelated noises on different microphones.
Substituting Equation (27) and Equation (28) back into Equation (26), we have

B2(α) = λ2NmicRss(0) + 2λ2
∑

p,q,p6=q

Rss(φq − φp) +NmicRη(0) (29)

Rearranging the terms and denoting κpq = φq − φp = tpq(α)− τpq

B2(α) = Nmic(λ2Rss(0) +Rη(0)) + 2λ2
∑

p,q,p6=q

Rss(κpq) (30)



Adding and subtracting the term 2Nmic(Nmic−1)
2 (λ2Rss(0) +Rη(0)), we have

B2(α) = Nmic(λ2Rss(0) +Rη(0)) + 2λ2
∑

p,q,p6=q

Rss(κpq] + 2
Nmic(Nmic − 1)

2
(λ2Rss(0) +Rη(0))︸ ︷︷ ︸

− 2
Nmic(Nmic − 1)

2
(λ2Rss(0) +Rη(0))

=
∑

p,q,p6=q

2
(
λ2Rss(κpq) + λ2Rss(0) +Rη(0)

)︸ ︷︷ ︸
B2
pq(α) from Proposition 2

−Nmic(Nmic − 2)(λ2Rss(0) +Rη(0))

=
∑

(p,q)∈P

B2
pq(α)−Nmic(Nmic − 2)(λ2Rss(0) +Rη(0))

ut

A.4 Proof of Proposition 4

Proof. We prove Proposition 4 by derivation. Let there be M sources present at angles θm emit-
ting source signals sm[n], for m = 1, 2, · · · ,M . Using Equation (1), the received signal at the pth

microphone is given by

rp[n] =
M∑
m=1

λmpsm[n− τmp] + wp[n]

where p = 1, 2, · · · , Nmic, τmp is the propagation delay, and λmp is the attenuation factor. For far-
field case, the distances between a source and the closely-spaced microphones will be approximately
same for all microphones, hence λm1 ≈ λm2 ≈ · · · = λm.

Using Equation (3), the composite microphone signal for the beam angle α is given by

r[n] =
Nmic∑
p=1

rp[n+ t1p(α)]

=
Nmic∑
p=1

M∑
m=1

λmsm[n+ t1p(α)− τmp] + wp[n+ t1p(α)]

where t1p(α) = tp(α) − t1(α) = d1p cos(α − β1p)fs/C is relative sample delay between the pth and
1st microphone. Let’s denote φmp = n + t1p(α) − τmp and ψp = n + t1p(α) for clarity and brevity.



The beam energy is given by

B2(α) =
∑
n

r[n]2

=
∑
n

[∑
p

∑
m

λmsm[φmp] + wp[ψp]

]2

=
∑
n

(∑
p

∑
m

λmsm[φmp]

)2

+

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q

∑
m

λmsm[φmp]wq[ψq]


=
∑
n

(∑
p

∑
m

λmsm[φmp]

)2

+
∑
n

(∑
p

wp[ψp]

)2

︸ ︷︷ ︸
NmicRη(0) using Equation (28).

+ 2
∑
p

∑
q

∑
m

∑
n

λmsm[φmp]wq[ψq]︸ ︷︷ ︸
Rwqsm (τ)=0

(31)

The first term in Equation (31) is expanded to

∑
n

(∑
p

∑
m

λmsm[φmp]

)2

=
∑
n

(∑
m

∑
p

λmsm[φmp]

)2

=
∑
n

∑
m

(∑
p

λmsm[φmp]

)2

+ 2
∑
m1

∑
m2

λm1sm1 [φm1p]λm2sm2 [φm2p]


=
∑
m

∑
n

(∑
p

λmsm[φmp]

)2
+ 2

∑
m1

∑
m2

∑
n

λm1sm1 [φm1p]λm2sm2 [φm2p]︸ ︷︷ ︸
Rsm1sm2

(τ)=0

=
∑
m

∑
n

(∑
p

λmsm[φmp]

)2


︸ ︷︷ ︸
substitute from Equation (27)

=
∑
m

λ2
m

NmicRsmsm(0) +
∑

p,q,p6=q

Rsmsm(φmp − φmq)

 (32)

Denoting κmpq = φmq − φmp = tpq(α)− τmpq, and substituting Equation (32) in Equation (31), we
have

B2(α) =
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm(κmpq)

+NmicRη(0)



Adding and subtracting the term
∑
mNmicRη(0), we have

B2(α) =
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm(κmpq)

+
∑
m

NmicRη(0)−
∑
m

NmicRη(0) +NmicRη(0)

=
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm[κpq]

+NmicRη(0)

︸ ︷︷ ︸
B2
m(α), using Equation (30)

−MNmicRη(0) +NmicRη(0)

=
∑
m

B2
m(α)−Nmic(M − 1)Rη(0)

ut


