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Abstract— Heterogeneous sensor networks consisting of
resource-constrained nodes as well as resource-intensive nodes
equipped with high-bandwidth sensors offer significant advan-
tages for developing large sensor networks for a diverse set of
applications. Target tracking can benefit from such heteroge-
neous networks that support the use of sensors with different
modalities. Such applications require tight time synchronization
across the heterogeneous sensor network in order to improve
both the estimation and real-time performance. In this paper we
present a methodology for time synchronization in heterogeneous
sensor networks. The synchronization methodology has been
implemented as a network service and tested on an experimental
testbed demonstrating an accuracy in the order of microsec-
onds over a multi-hop network. In addition, we use the time
synchronization method in a multi-modal tracking application
for performing accurate sensor fusion of audio and video data
collected from heterogeneous sensor nodes and we show that our
method improves tracking performance.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of large numbers
of cooperating sensor nodes and have already demonstrated
their utility in a wide range of applications including envi-
ronmental monitoring, transportation, and health care. These
types of applications collect sample data by monitoring the
environment. In order to make sense of the collected samples,
nodes usually send the data through the network to a sensor-
fusion node where it can be analyzed. We call this process
reactive data fusion. One important aspect of reactive data
fusion is the need for a common notion of time among
participating nodes.

In this paper, we consider multi-modal tracking as a re-
active data fusion process where several nodes cooperate
in estimating the position of a target. Target tracking using
multiple sensor modalities is considered to be more robust,
more accurate, more compact, and yields more information
than using a single sensor modality [1]. A typical multi-modal
tracking system consists of heterogeneous sensor nodes with
different modalities, such as audio and video, sensing their
local environment, and communicating with each other and

the sensor fusion node. The local measurements are combined
at the sensor fusion node for estimating the position and
other characteristics of the target. A target tracking application
requires tight synchronization across the heterogeneous sensor
network in order to improve both the estimation and real-time
performance.

Heterogeneous sensor networks (HSNs) consist of resource-
constrained nodes as well as resource-intensive nodes
equipped with high-bandwidth sensors such as cameras and
are a promising direction for developing large sensor networks
for a diverse set of applications [2], [3], [4]. Accurately
synchronizing the clocks of all sensor nodes within a het-
erogeneous network is not a trivial task. Existing WSN time
synchronization protocols (e.g. [5], [6], [7], [8], [9]) perform
well on the devices for which they were designed. However,
these have not been applied to networks of heterogeneous
devices.

Our work focuses on achieving microsecond-accuracy syn-
chronization in HSNs. We consider a multi-hop network
consisting of Berkeley motes and Linux PCs, a dominant con-
figuration for reactive data fusion applications in HSNs. Mote
networks are capable of monitoring environmental phenom-
ena with small energy consumption that allows for extended
lifetime. PCs can support higher-bandwidth sensors, such as
cameras, and can run intensive processing algorithms on the
collected data before routing it to the sensor-fusion node.
Time synchronization in both mote and PC networks has been
studied independently, however, a sub-millisecond software
synchronization method combining these two networks has not
yet been developed to the best of our knowledge.

The contribution of the paper is twofold. First, we developed
a technique for synchronization between a mote and a PC
implemented completely in software. The technique enables
the integration of existing protocols for synchronization of
mote and PC networks. We have implemented a time syn-
chronization service for reactive data fusion applications based
on this methodology and our experimental results show that



we can achieve synchronization accuracy on the order of
tens of microseconds. Second, we use the time synchroniza-
tion method in a multi-modal tracking application. The time
synchronization service allows us to perform accurate sensor
fusion of audio and video data collected from heterogeneous
sensor nodes. Our experimental results show that using an het-
erogeneous sensor network can improve tracking performance.

Time synchronization in sensor networks has been studied
extensively in the literature and several protocols have been
proposed. Reference Broadcast Synchronization (RBS) [6] is a
protocol for synchronizing a set of receivers to the arrival of a
reference beacon. Timestamp Synchronization (TSS) [5] was
one of the first synchronization protocols to focus directly on
WSNs, proposing the novel concept of time synchronization
on-demand. Elapsed Time on Arrival (ETA) [10] provides a
set of application programming interfaces for an abstract time
synchronization service. RITS [9] is an extension of ETA
over multiple hops. It incorporates a set of routing services
to efficiently pass sensor data to a network sink node for
data fusion. In [11], mote-PC synchronization was achieved by
connecting the GPIO ports of a mote and IPAQ PDA using the
mote-NIC model. Although using this technique can achieve
microsecond-accurate synchronization, it was implemented as
a hardware modification rather than in software.

Multi-modal tracking using audio and video sensors has
been studied mainly for videoconferencing applications. Pin-
gali et al. [1] describe audio-visual tracking to find a speaker
among a group of individuals. They also argue that a joint
AV tracking system is more desirable than each single modal-
ity. Yoshimi [12] presents a distributed multi-modal tracking
system using multiple cameras and microphones to select a
single speaker during a meeting. Zotkin [13] presents sim-
ulation results of a multi-modal tracking system for smart
videoconferencing.

The rest of the paper is organized as follows. Section II
describes the time synchronization problem. In Section III, we
present our methodology, implementation, and experimental
results for time synchronization in heterogeneous sensor net-
works. Section IV outlines our multi-model tracking system
and presents some experimental results. Section V concludes.

II. TIME SYNCHRONIZATION

In this section, we formulate the problem using a system
model for time synchronization and we describe the sources
of synchronization error.

A. System Model

Each sensor node in a WSN is a computing device that
maintains its own local clock. Internally, the clock is a
piece of circuitry that counts oscillations of a quartz crystal,
energized at a specific frequency. When a certain number of
these oscillations occur, a clock-tick counter is incremented.
This counter is accessible from the operating system and its
accuracy (with respect to atomic time) depends on the quality
of the crystal, as well as various operating conditions such as
temperature, pressure, humidity, and supply voltage. When a

sensor node registers an event of interest, it will access the
clock-tick counter and record a timestamp reflecting the time
at which the event occurred.

We use the notation t to represent real (or atomic) time, and
the notation te to represent the time at which an arbitrary event
e occurred. Because each node records a timestamp according
to its own clock, we specify the local time on node Ni at which
event e was detected by the timestamp Ni(te). Although the
two timestamps Ni(te) and Nj(te) correspond to the same
real-time instant te, this does not imply that Ni(te) = Nj(te);
the clock-tick counter on node Ni may still be offset from
Nj . Therefore, from the perspective of node Ni, we define the
clock offset with Nj at real-time t as φi

j(t) = Ni(t) − Nj(t).
It may be the case that the offset changes over time. In other
words, the clock rate of node Ni,

dNi(t)
dt , may not equal the

ideal rate (dNi(t)
dt = 1). We define the ratio between the clock

rates of the two nodes as the relative rate, rri
j = dNi(t)

dNj(t)
.

The relative rate is a quantity directly related to the clock
skew, which is defined as the difference between clock rates,
and is used in our clock skew compensation methods. We
refer to clock offset and clock rate characteristics as the node’s
timescale.

Knowledge of the clock offset and skew can be used to
synchronize a pair of nodes. In this work, we use the timescale
transformation approach. In this approach, references tables
are maintained to keep track of the clock offsets and skew
between a node and its neighbors. Each reference table is then
used to transform a clock value from one timescale to another,
providing each node with a common notion of time [14].
In sensor networks, the timescale transformation approach is
preferable to physically change the value of the clock-tick
counter of a node to match that of another node [14].

B. Sources of Synchronization Error

Synchronization requires passing timestamped messages
between nodes. However, this communication has associated
message delay, which has both deterministic and nondeter-
ministic components that introduce error into the timescale
transformation. We call the sequence of steps involved in com-
munication between a pair of nodes the critical path. Figure
1 illustrates the critical path in a wireless connection. The
critical path is not identical for all configurations, however,
it can typically be characterized by the steps outlined in the
figure (for more details, see for example [7], [6], [8]).

Fig. 1. Critical path

In both the mote and PC networks, the Send and Receive
times are the delays incurred as the message is passed between
the application and the MAC layer. These segments are mostly



nondeterministic due to system call overhead and kernel
processing, and delay can reach hundreds of milliseconds.
The Access time is the least deterministic segment in the
critical path. It is the delay that occurs in the MAC layer while
waiting for access to the communication channel. Depending
on network congestion, access time can take longer than
one second. The Transmission and Reception times are the
delays incurred from transmitting and receiving a message
over the physical layer, bit by bit. It can be as high as tens of
milliseconds, however, it is mostly deterministic and depends
on bit rate and message length. The Propagation time is the
time the message takes to travel between the sender and
receiver. This delay is highly deterministic and also the least
significant; a message can travel up to 300 meters in less than
a microsecond.

The mote-PC serial connection is slightly different. The
Send and Receive times are similar to wireless communication,
however Access time is noticeably different. Unlike wireless
networks, in which nodes must compete with a potentially
large number of neighbors for access to the channel, a serial
connection is only shared by two devices. Furthermore, in
duplex mode, simultaneous bidirectional communication is
possible, so Access time will not be affected by congestion.
However, there will be a delay if the receiver is not ready to
accept data. To discover whether data can be sent, the sender
sets the Request-To-Send (RTS) pin high on the serial port.
If the receiver is able to accept data, it will set the Clear-
To-Send (CTS) pin high, and data transfer can begin. Thus,
the Access time is the delay that takes place from the time
the RTS pin is set by the sender to the time the CTS pin
is set by the receiver. The Transmission time starts when the
data on the sender is moved in 16-byte chunks to the buffer
on the UART, and ends after the data is transmitted bit-by-
bit across the serial port to the receiver. Similar to wireless
networks, the Propagation time is minimal. The UART on the
receiver places the received bits into its own 16-byte buffer.
When the buffer is almost full, or a timeout occurs, it sends
an interrupt to the CPU, which notifies the serial driver, and
the data is transferred to main memory where it is packaged
and forwarded to the user-space application.

In addition to the error from message delay nondeterminism,
synchronization accuracy is also affected by clock skew when
a pair of nodes operate for extended periods of time without
correcting their offset. For example, suppose at real-time t,
nodes N1 and N2 exchange their current clock values at
local times N1(t) and N2(t), respectively. At some later time,
an event e occurs that is detected and timestamped by both
nodes, and N1 sends its timestamp N1(te) to N2. If the clock
rates on each node were equal, N2 would simply be able to
take the previously calculated offset and use it to transform
the event timestamp N1(te) to the corresponding local time
N2(N1(te)) = N1(te)+φ1

2(t). However, because of the clock
skew, an attempt to convert N1(te) to the local timescale can
potentially result in an error, especially if the interval between
the last synchronization and the event was large.

Given the estimated clock offset and relative rate, a

timescale transformation, which converts an event timestamp
Nj(te) from the timescale of node Nj to the timescale of Ni,
can be defined as

Ni(Nj(te)) = Ni(ts) + rri
j(ts)[(Nj(te)−Nj(ts)]

where Ni(ts) and Nj(ts) are the respective local times at
which nodes Ni and Nj exchanged their most recent syn-
chronization message, s.

III. TIME SYNCHRONIZATION IN HSNS

This section presents our methodology, implementation, and
experimental results for time synchronization in heterogeneous
sensor networks.

A. Synchronization Techniques

Our goal is to provide accurate time synchronization to
reactive data fusion applications in HSNs. Doing so requires an
understanding of how the various components in the network
interact. We refer to the combination of these components as
a configuration. Our configuration consists of Mica2 motes
and Linux PCs. There are two physical networks, the B-
MAC network formed by the motes and the 802.11 network
containing the PCs. The link between the two is achieved
by connecting a mote to a PC with a serial connection. This
mote-PC configuration is chosen because it is representative of
HSNs containing resource-constrained sensor nodes for mon-
itoring the environment and resource-intensive computational
nodes.

Mote Network: Existing protocols that minimize synchro-
nization error can be classified as sender-receiver, in which
one node synchronizes with another, or receiver-receiver, in
which multiple nodes synchronize to a common event [15].
Several sender-receiver synchronization protocols [7], [8], [9]
have been developed for the Berkeley Motes and similar
small-scale devices, and provide microsecond accuracy. This
is possible because often these embedded devices support
operating systems that are tightly integrated with the radio
stack, enabling timestamping directly at the network interface,
and thus bypassing the majority of nondeterministic message
delay in the critical path. For example, in RITS, sender-
side synchronization error is essentially eliminated by taking
the timestamp and inserting it into the message after the
message has already begun transmission. On the receiver
side, a timestamp is taken upon message reception, and the
difference between these two timestamps estimate the clock
offset. RITS was shown to synchronize a pair of nodes with an
average error of 1.48 µs and an accumulated error of 0.5 µs per
hop [9]. The accuracy of a receiver-receiver synchronization
protocol such as RBS (discussed below) is comparable to
sender-receiver synchronization in a mote network. However,
it has greater associated communication overhead, which can
shorten the lifetime of the network. Therefore, we selected
RITS to synchronize the mote network in our HSN.



PC Network: Synchronization of PC networks has been
studied extensively over the past four decades, however, pop-
ular sender-receiver algorithms such as the Network Time
Protocol (NTP) [16] only provide millisecond accuracy. This is
generally acceptable because PC users typically do not require
greater synchronization precision for their applications. RBS is
a popular receiver-receiver protocol that was found to achieve
synchronization accuracy in the order of microseconds over
802.11 networks. Rather than synchronizing clocks to each
other, participating nodes timestamp the arrival of a special
message broadcast over the network. By exchanging these
timestamps, neighboring nodes are able to maintain reference
tables for timescale transformation. Receiver-receiver synchro-
nization minimizes error by taking advantage of the broadcast
channel found in most networks. Messages broadcast at the
physical layer will arrive at a set of receivers within a tight
time bound due to the almost negligible propagation time of
sending an electromagnetic signal through air. This removes
the send and access time nondeterminism from the critical
path. The only remaining significant source of nondeterminism
is due to the receive time, the majority of which can be
removed by timestamping the arrival of the reference beacon
in the kernel interrupt function. Because receiver-receiver syn-
chronization provides greater accuracy in 802.11 PC networks,
we selected RBS as our synchronization mechanism for our
Linux PCs.

Mote-PC Connection: There are two ways the interface
between the mote and PC networks can be modeled. In the
first, the gateway mote acts as a network interface controller
(NIC) for the PC it is connected to. This generally implies
there is no separate critical path between the gateway mote
and PC, but instead a unique critical path exists between the
mote network and mote-PC pair. The second model places the
critical path between the gateway mote and PC. We chose the
latter because it gives us greater control over minimizing the
nondeterministic message delay. We selected Elapsed Time on
Arrival (ETA) [10], the underlying synchronization mechanism
used in RITS. On the mote, a timestamp is taken upon transfer
of a synchronization byte and inserted into the outgoing mes-
sage. On the PC, a timestamp is taken immediately after the
UART issues the interrupt, and the PC regards the difference
between these two timestamps as the PC-mote offset, φpc

mote.
The mote timestamp is taken at the latest time possible in the
critical path, and the PC timestamp at the earliest. A timestamp
is taken by the mote upon successful transmission over the
serial connection of a synchronization byte and appended to
the end of the message. Simultaneously, as the synchronization
byte is received at the PC, a timestamp is taken in the
serial driver at the kernel level. Serial communication bit rate
between the mote and PC is 57600 baud, which approximately
amounts to a transfer time of 139 microseconds per byte.
However, the UART will not issue an interrupt to the CPU
until its 16-byte buffer nears capacity or a timeout occurs.
Because the synchronization message is six bytes, reception
time in this case will consist of the transfer time of the entire
message in addition to the timeout time and the time it takes

to transfer the date from the UART buffer into main memory
by the CPU. This time is compensated for by the receiver, and
the clock offset between the two devices is determined as the
difference between the PC receive time and the mote transmit
time.

B. Clock Skew Compensation

Independent of synchronization protocol, there are several
options for clock skew compensation. In some applications,
event detection and synchronization always occur so close
together in time that clock skew compensation is unneces-
sary. However, when it does become necessary, nodes must
exchange timestamps periodically to ensure their clocks do
not drift too far apart. In resource-constrained WSNs, this may
be undesirable because it can result in high message overhead.
To keep message overhead at a minimum, nodes can exchange
synchronization messages less frequently and instead maintain
a history of their neighbor’s timestamps. Statistical techniques
can then be used to produce an accurate estimate of clock
offset at any time instant.

Linear Regression: A linear regression fits a line to a set
of data points such that the square of the error between the
line and each data point is minimized overall. By maintaining
a history of n local-remote timestamp pairs {Ni(t1), Nj(t1)},
{Ni(t2), Nj(t2)}, . . . , {Ni(tn), Nj(tn)}, node Ni can derive
a linear relation Ni(t) = α + βNj(t) and solve for the
coefficients α and β. Here, β represents an estimation of
rri

j(tk), and can be calculated by

β(tk) =
∑n

k=1 (Ni(tk)−Ni(tk))(Nj(tk)−Nj(tk))∑n
k=1 (Nj(tk)−Nj(tk))2

where Ni(tn) is the average of {Ni(t1),...,Ni(tn)}. One
disadvantage of linear regression is that outliers have a strong
impact on the result because data points are weighted by the
square of their error to the fitted line. In some instances,
however, these outliers can be removed beforehand. Another
problem arises when attempting to improve the quality of the
regression by increasing the number of data points. This can
result in high memory overhead, especially in dense networks.
However, it has been shown in [8] that sub-microsecond clock
skew error can be achieved with as few as six timestamps in
mote networks.

Exponential Averaging: Exponential averaging solves the
problem of high memory overhead by keeping track of only
the current relative rate and the most recent neighbor-local
synchronization timestamp pair. When a new timestamp pair
is available, the relative rate is updated by

rri
j(tk) = α ∗ Ni(tk)−Ni(tk−1)

Nj(tk)−Nj(tk−1)
+ (1− α) ∗ rri

j(tk−1),

where α is a small weight constant (typically close to 0.1)
that gives higher significance to the accumulated average.
The value of α affects the convergence time. In addition,
because each relative rate estimate is partially derived from
its previous value, there will be a longer convergence time
before an accurate estimate is reached. This can be reduced by



providing the algorithm with an initial relative rate, determined
experimentally.

Phase-Locked Loop: Phase-locked loops (PLL) is a
mechanism for clock skew compensation used in NTP [17].
The PLL compares the ratio of a current local-remote times-
tamp pair with the current estimate of relative rate. The PLL
then adjusts the estimate by the sum of a value proportional
to the difference and a value proportional to the integral of
the difference. PLLs generally have a longer convergence time
than linear regression and exponential averaging, but have low
memory overhead. A diagram of our PLL implementation is
illustrated in figure 2. There are three main components. The
Phase Detector calculates the relative rate between two nodes
and compares this with the output of the PLL, which is the
previous estimate of the relative rate. The difference between
these two values is the phase error, which is passed to the
second-order Digital Loop Filter. Because we expect there to
be some amount of phase error, we choose a filter with an
integrator, which allows the PLL to compensate for it such that
there is no remaining steady-state phase error. To implement
this behavior in software, a digital accumulator is used, and is
represented by y(t) = (K1 + K2)u(t) − 10K2K1u(t − 1) +
10K2y(t − 1). The resulting static phase error is passed to
the Digitally Controlled Oscillator (DCO). The DCO sums the
previous phase error with the previous output, which produces
the current estimate of relative clock rate, and is fed back into
the PLL. Techniques for selecting the gains are presented in
[17].

Fig. 2. Phase-locked loop

C. Experimental Setup

Our testbed consists of seven Crossbow Mica2 motes and
four stationary ActiveMedia Pioneer robots with embedded
Linux PCs, as illustrated in figure 3. In addition we employ
an OpenBrick-E Linux server to transmit RBS beacons.

A PC-based reference broadcast node transmits a reference
beacon containing a sequence number once every ten seconds.
The arrival of these messages are timestamped in the kernel
and stored in a reference table. Simultaneously, a designated
mote broadcasts event beacons, once every four seconds. Six
hundred event beacons are broadcast per experiment. The
motes timestamp the arrival of the event beacon, and place the
timestamp into a message. The message is routed over three
hops in the mote network to the mote-PC gateways using RITS

Fig. 3. Our sensor network testbed. Arrows indicate communication flow.

to convert the timestamp to the local timescale with each hop.
The message is next transferred from the mote network to PC
network over the mote-PC serial connection, and the event
timestamp is again converted to the timescale of the gateway
PC. The gateway PCs forward the message two additional hops
to the sensor-fusion node.

In the PC network, the event message includes additional
fields, specifically the most recent reference broadcast arrival
timestamp and sequence number. These allowed us to reduce
the message overhead of RBS. PCs receiving these messages
are able to convert the event timestamp into their local
timescale by comparing the sender PC reference broadcast
timestamp with their own, adjusting the event timestamp by
the offset, and compensating for clock skew. The experiment
was repeated using the different clock skew compensation
techniques described in Section II.

The implementation used in these experiments was bundled
into a PC-based time synchronization service for reactive data
fusion applications in HSNs. The service accepts timestamped
event messages on a specific port, converts the embedded
timestamp to the local timescale, and forwards the message
toward the sensor-fusion node. The mote implementation
uses the TimeStamping interface, provided with the TinyOS
distribution [18].

D. Experimental Results

Mote-PC Synchronization: To evaluate synchronization
accuracy between the mote and the PC, GPIO pins on the mote
and PC were connected to an oscilloscope, and set high upon
timestamping. The resulting output signals were captured and
measured. The test was performed over 100 synchronizations,
and resulting error was 7.32µs on average. The results are
displayed in figure 4. The majority of the error is due to
nondeterministic message delay resulting from jitter, both in
the UART and the CPU.

HSN Synchronization: Figure 5 summarizes the syn-
chronization error for each type of clock skew compensation
technique. The results were obtained as follows: Two nodes,
N1 and N2, simultaneously timestamp the occurrence of an
event, such as a reference beacon. These timestamps are then
transformed to the timescale of node N3, and the absolute
value of their difference, |N3(N1(te)) − N3(N2(te))|, repre-
sents the error in the timescale transformation. In the case



Fig. 4. Mote-PC error.

when no clock skew compensation was used, the average
difference between the source timestamps was 85.66µs, with
a maximum of 689µs. Linear regression was implemented
with a history size of 8 local-remote timestamp pairs for
each neighbor, and the relative rate was initialized to 1. As
expected, there was a notable improvement in synchronization
accuracy, with an average of 6.89µs error, with a maximum
of 55µs. Using exponential averaging gives error similar to
linear regression. For exponential averaging, we chose a value
of 0.10 for α, and initialized the average relative rate to 1.
The average error recorded was 7.45µs, with a maximum of
47µs. The average synchronization error using phase-locked
loops was 7.85µs, with a maximum of 574µs. For the digital
loop filter, we used gains of K1 = 0.1 and K2 = 0.09.

Fig. 5. HSN synchronization error.

Each experiment was run under both high and low network
congestion and I/O load conditions. To simulate a high net-
work load, an extra mote and PC (not pictured in figure 3)
were introduced, each broadcasting messages of random size
every 100 milliseconds. The results for each type of clock skew
compensation in the presence of network congestion and I/O
load show that synchronization accuracy is not overtly affected
by these strenuous conditions in the network.

The majority of synchronization error in the HSN comes
from RBS synchronization in the PC network. This was prin-
cipally caused by a small number of synchronization attempts
in which prolonged operating system interrupt operations

occurred. Although these were difficult to avoid, they did not
occur frequently, and the worst-case synchronization error for
each type of clock skew compensation technique was sufficient
for most kinds of HSN reactive data fusion applications.

IV. TIME SYNCHRONIZATION FOR MULTI-MODAL
TRACKING

In this section, we briefly describe the our multi-modal
target tracking system. We also present the software architec-
ture which includes time-synchronization methods introduced
in the paper. Finally, we present experimental results that
demonstrate the improvement on the tracking performance.

Our multi-modal target tracking system is shown in Figure
6. We employ 5 audio sensors in a 36.5×15ft grid and 3 video
sensors deployed on either side of a road. The objective of the
system is to detect and track vehicles and people using both
the audio and video data. The detection and tracking results
are available at the sensor fusion center, which can then be
made available to other applications.

A. Audio Sensing

Beamforming methods have been successfully applied to
detect single or even multiple acoustic sources in noisy and
reverberant areas. Beamforming takes advantage of the fact
that the distance from the source to each microphone in a
beamforming array is different, which means that the signals
recorded by each microphone will be phase-shifted replicas
of each other. The amount of phase-shift at each microphone
in the array is dependent on the microphone arrangement and
location of the source. A typical delay-and-sum beamformer
divides the sensing region into beams. For each beam, as-
suming the source is located in that direction, the microphone
signals are delayed according to the phase-shift and summed
together to get a composite signal. The square-sum of the
composite signal is the beam energy. Signal energies are
computed for each of the beams, called the beamform and the
maximum energy beam indicates the direction of the acoustic
source.

The data-flow diagram of the beamformer used in our
system is shown in Figure 7. The amplified microphone signal
is sampled at 1MHz to provide high resolution for the delay
lines, required by the closely placed microphones. The raw
signal is filtered to remove unwanted noise components and
provide a band limited signal for down sampling in a later
stage. The signal is then fed to a tapped delay line (TDL),
which has M different outputs to provide the required delays
for each of the M beams. The signal is down sampled and
M beams are formed by adding the four delayed signals
together. From the data streams blocks are formed and an FFT
is computed for each block. A frequency selection component
is used to select the frequencies of interest. The selected signal
is then summed to compute the block power value µi, which
is then smoothed by exponential averaging into beam power
λi:

λi(k) = αλi(k − 1) + (1− α)µi.
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Fig. 6. Experimental setup

Fig. 7. Data-flow diagram of the audio beamforming algorithm

As an example, Figure 8 shows the normalized beam power
of the audio signal generated by a person speaking a few
meters from the sensor as measured on a street. The direction
of the speaker is clearly detected, but it is also visible that
the detection is not very sharp (due to the small number of
microphones in the array).

The audio sensing is implemented on a sensor node with
an array of four microphones shown in Figure 9. The sensor
node is based on a MicaZ mote and on an onboard FPGA chip
that is used to implement the beamformer [19].

B. Video Sensing

We use a moving object detection algorithm for video
sensing. The dataflow in Figure 10 illustrates the algorithm and
its components. The first step of moving object detection is
background-foreground segmentation of the currently captured
frame (It) from the camera. We use the algorithm described
in [20] for background-foreground segmentation which is
based on an adaptive background mixture model for real-time
tracking. The mixture method models each background pixel
by a mixture of K Gaussian distributions.

The foreground image (Ft) from the segmentation process
is passed through a median filter which reduces speckle
noise present in the foreground and smooths the foreground
image. The foreground then goes through opening and closing
morphological operations. Opening removes small features
present in the foreground, while the closing operation fills
small holes. Finally, the enhanced foreground image undergoes
image segmentation to find connected components. Each of the
connected components is enclosed by a rectangular bounding
box which represent a moving object (Ot).

We have implemented the moving object detection algo-
rithm in OpenCV by Intel [21]. In our application, OpenBrick-
E Linux servers are running the video-based detection at 8
frames-per-second using video with 320×240 pixel resolution.

C. Sensor Fusion

The objective of our sensor fusion algorithm is to combine
the detection values from both audio and video sensors.
The acoustic sensors provide beam power values λj , j =
0, 1, ...,M , λj corresponding to directions φj = j 2π

M , where
M is the resolution of the sensor. The video sensors provide



Fig. 8. The normalized power of an audio signal
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detection angle ranges [αl, βl] for each detected object l,
l = 0, 1, ..., L, where L is the number of perceived objects
by the given sensor.

In order to perform sensor fusion, we define a detection
function Ξ(φ) that formalizes the object detection for both
types of sensors. For the acoustic sensors, we have

Ξ(φ) = λj , j : |φj − φ| mod 2π <
π

M

while for the video sensors

Ξ(φ) =
{

1 if αl < φ < βl, for any l, l = 0, 1, ..., L
0 otherwise .

Using the detection functions and the known locations and
orientations of the sensors, the proposed algorithm computes
a consistency function defined over the search space (2-dim

Gaussian 
Bg/Fg Segmentation

Opening & 
Closing

Segmentation & 
Bounding Boxes

It

Bt

Ot
Ft Median 

Filter

Fig. 10. Data-flow diagram of real-time moving object detection

plane in our case). Let K be the number of sensors placed
on the plane at positions (xk, yk), k = 1, ..,K. The search
space is divided into N rectangular regions with center points
(Xi, Yi) and side lengths of ∆xi and ∆yi, i = 1, ..., N as
illustrated in Figure 11. The consistency function for each
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Fig. 11. Multi-modal sensor fusion. The sensing region is divided into
rectangular regions and the consistency function is calculated for each region
using acoustic and video data.

region i is defined as

Ci = ΣK
k=1w

(k,i)Ξ(k,i)

where w(k,i) is a weighting factor discussed later and the
Ξ(k,i) value is the contribution of the sensor k in the ith

rectangular region. The value of the consistency function
for a region is a measure of the likelihood that an object
is present at that region. Therefore, our tracking algorithm
estimates the position of the object (or multiple objects) by
computing the peaks of the consistency function and returning
the corresponding coordinates.

D. System Architecture

Figure 12 shows the audio-visual sensor fusion system
architecture. The audio sensors are periodically sending their
timestamped detection functions to the base station. The base
station for each of the audio nodes and the video sensor
nodes send their timestamped detection functions to the sensor
fusion node through a time-synchronization daemon. The
daemon uses the timescale transformation approach presented
in the previous section for converting the timestamps to the
local clock and stores the values of the detection function to
appropriate buffers, one for each sensor in the system.

A sensor fusion scheduler triggers periodically and gener-
ates a timestamp. The trigger is used to retrieve the detection
function values from the sensor buffers which are closest
to the generated timestamp. The retrieved detection function
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Fig. 12. Multi-modal tracking system architecture

values are then used to compute the consistency function for
the sensing region. The maxima of the consistency function
indicate the presence of a target. Note that the scheduler in
this architecture decouples the tracking rate, at which the
consistency function is computed, and the audio/video sensing
rates.

E. Experimental Results

We have performed a series of experiments tracking people
and/or vehicles and we present a few representative results.
We show the consistency function in the sensing region (dark
regions indicate higher value) for three scenarios. For each
scenario, we plot the consistency function obtained only by
the audio sensors and by both audio and video sensors to
illustrate the advantages of multi-modal tracking. Figure 13
shows the results for experiment where a speaker was inside
the network. Figure 14 shows results for an experiment with
a speaker outside the network. Figure 15 shows the results
for multiple speakers. The results demonstrate that using the
video sensors results in a drastic decrease in the variance of the
estimated position (the regions with high-consistency values
are much smaller).

V. CONCLUSION

We have developed a methodology for accurate time syn-
chronization in heterogeneous sensor networks. The synchro-
nization methodology has been implemented as a network
service and used in a multi-modal tracking application for
performing fusion of audio and video data collected from
heterogeneous sensor nodes. In our future work, we intend to
explore more advanced tracking algorithms that use recursive
and/or distributed methods as well as consider mobile sensor
nodes in the network.
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