
intricately interlinked with their environment, and
which must be used by domain-engineers, the model-
based approach is an important and viable technique.

10 Acknowledgements
The Vanderbilt group was supported, in part, by

Osaka Gas Information Research Institute Co. Ltd,
Osaka, Japan. Their kind support is acknowledged.
The IPCS is currently being commercialized by OGIS-
RI.

References
[1] B. A. Abbott et al.: \Model-Based Approach for

Software Synthesis", IEEE Software, May, 1993,
pg. 42-52.

[2] Booch,G.: Object-oriented Analysis and De-
sign with Applications, 2nd. ed., The Ben-
jamin/Cummings Publishing Company, Inc,
1994.

[3] G2 Reference Manual, Gensym Corporation,
1990.

[4] Karsai,G: \A Con�gurable Visual Programming
Environment", IEEE Computer, March 1995, pg.
36-44.

[5] Moore,M.,Nichols,J.: \Model-Based Synthesis of
a Real-Time Image Processing System", in this
Proceedings.

[6] Padalkar,S. et.al: \On-line Diagnostics Makes
Manufacturing More Robust", Chemical Engi-
neering, Mc-Graw Hill, March, 1995.

[7] Rumbaugh, J., Blaha, M., Premerlani, W.,
Eddy, F., Lorensen, W.: Object-Oriented Model-
ing and Design, Prentice Hall, Englewood Cli�s,
N.J., 1991.

[8] Sztipanovits,J. et al: \MULTIGRAPH: An Ar-
chitecture for Model-Integrated Computing", in
this Proceedings.

[9] Stephanopoulos,G.: \MODEL.LA. A Modeling
Language for Process Engineering, Parts I, II,"
Computers and Chemical Engineering, 14, 495-
539, 1990.

[10] Dee, K. and Westerberg, A.: \CEPHDA: Chemi-
cal Engineering Process Hierarchical Design with
ASCEND", EDRC 06-140-92, Engineering De-
sign Research Center research report, Carnegie
Mellon University, 1992.

[11] Wilkes,M.D. et al. (1993) \The Multigraph and
structural adaptivity", IEEE Transactions on
Signal Processing, pp 2695{2717, August 1993.



values of unmeasured process variables. The applica-
tion utilizes about 10 process variables and predicts 4
other variables. The application was created in a week
by one engineer.

A third application uses balance equations for diag-
nosing process sensors. Material and energy balance
equations are executed using data received from re-
dundant sensors, and because sensors might appear
in multiple balance loops, one can diagnose their fail-
ures. Statistical analysis can detect other sensor fail-
ures, including \stuck" sensors. This application diag-
noses 35+ sensors, and was created by two engineers
in about 2 weeks.[6]

A complex application
A fourth application is being developed, which is

using a very sophisticated external process simula-
tor (running on a remote supercomputer) for dy-
namic modeling and control purposes. The appli-
cation helps in predicting the behavior of a re�ning
train in a polyester intermediates plant. The re�ning
train consists of several distillation columns, and it is
a highly interlinked structure, with non-linear com-
ponents. The behavior of the system is modeled by
about 8,000 nonlinear di�erential equations. The ap-
plication predicts dynamic process behavior upto 100
hours into the future through numerically solving the
equations.

The application works as follows:

1. Real-time plant data is acquired through the use
of the external interface activity models.

2. This data is preprocessed and partially displayed.

3. Some of the data is sent to a remote supercom-
puter, where the simulation is running. The data
provides initial conditions and parameter values
for the di�erential equations. The simulation is
con�gured from IPCS models. The activity model
which interfaces the IPCS internal data
ows with
the simulator, lets the user visually con�gure the
connections between IPCS signals (i.e. process
variables) and simulation variables.

4. The simulation results are \brought back" into
the IPCS data
ow, and are displayed (after some
post-processing) on an operator screen.

5. Eventually, simulation results will be used to
specify setpoints for the controllers on the pro-
cess.

These results indicate that the system o�ers a vi-
able platform for problem solving. Chemical engineers
with minimal training in software engineering were ca-
pable of building relatively complex applications in a
short time.

7 Other domains
While IPCS has demonstrated the viability of the

approach in the �eld of chemical engineering, the ques-
tion remains how these approaches can be applied in
other domains. The answer lies in the underlying tech-
nology that has been used to develop The Multigraph

Architecture is a 
exible toolset for creating domain-
speci�c problem-solving environments; and its 
exibil-
ity is achieved through the use of generic tools (e.g.
con�gurable visual model builder, execution environ-
ment, etc.).

To demonstrate the 
exibility of these generic com-
ponents here are some examples:

� The con�gurable visual model builder[4] has
been used for building environments for high-
performance parallel instrumentation[1], fault-
modeling in aerospace systems, and real-time
image processing[5]. The con�guration is done
through a special language and a program gener-
ator. Typically, a visual model builder for a new
domain can be developed with a few man-day ef-
fort.

� The execution environment[11] has implementa-
tions for di�erent platforms, for instance: mul-
tiprocessor networks built from high-speed DSP
chips (used in the parallel instrumentation appli-
cation), networked workstations (used in IPCS),
and others.

In the case of IPCS, the generic tools constitute
a considerable part of the system; the rest is speci�c
to the chemical engineering domain. While there is

exibility and generality in MGA, to develop tools for
a new domain still requires considerable expertise and
the intricate knowledge of the tools. We are currently
working on technologies to support this process.

8 Related work
The use of problem solving environments for chem-

ical process industries is not a new idea: ASCEND[10]
and MODEL.LA[9] are two examples for problems
solving environments in an chemical engineering set-
ting: the �rst is a high-quality design environment
(with sophisticated solvers, languages, etc.), the sec-
ond is a general modeling approach and framework for
representing processes in chemical industries.

In IPCS we took a slightly di�erent approach: in
addition to modeling the processes, we provide facil-
ities for representing (or \coding") the problem solu-
tion strategies as well. Very complex applications can
be built using this approach, and through the use of
the activity models, vastly di�erent problem solving
strategies can be integrated. For instance: real-time
plant data can be acquired, and compared against
ideal models (through the use of a simulator). Next,
if failures are detected, a process diagnostics can be
started which identi�es the faulty equipment. This
detection process may result in changing the setpoints
of controllers, and/or changing the monitoring strat-
egy used for observing the process.

9 Summary
IPCS is a problem solving environment that uses

embedded models and model-based software synthesis
to achieve its goals. This system was found useful by
practicing plant engineers in solving their problems,
using their own terminology and language. We be-
lieve, that for complex computer systems, that are



� Types: Models (if they satisfy certain require-
ments) may be converted to model types, which
are library components. Types can be re-used in
many model con�gurations, and they are stored
in a single, shared copy.

The application of these model organization principles
makes possible the creation of very complex models for
large-scale plants.

5 Model interpretation
The task of the model interpretation process is to

map the (plant and activity) models into executable
code, which provides solution to problems. This pro-
cess might be considered as software synthesis, since
an executable system is generated from high-level
speci�cations[1].

In IPCS the model interpretation process is per-
formed in two steps.

1. At system integration time the model database is
traversed and analyzed for procedural code that
needs to be compiled. This happens by descend-
ing on the various model hierarchies and compil-
ing the code fragments required by the individual
models. This approach is used, for example, in
compiling algorithmic activity codes, and in com-
piling the equations for process models. Finally,
the system integrator tool links the application
code with the run-time model interpreters and
other support libraries and creates the executable.

2. At run-time the \real" model interpreters per-
form their task of traversing the hierarchies and
creating the run-time objects.

The run-time model interpretation process is per-
formed as follows. (Note that this is completely trans-
parent to the end-user, and it is fast enough to be
hardly noticeable.) There are various model inter-
preters for each model category. These interpreters
are encapsulated in the form of Builder objects,
that are created according to model objects in the
model database. One model object may have multiple
builder objects created from it. Builder objects are
organized into hierarchies, and this hierarchy mirrors
the model object hierarchy. Once the builder objects
are created, their hierarchy is traversed, possibly in
multiple passes, such that the objects create the run-
time objects. Run-time objects constitute the �nal,
executing system. Note that once run-time objects
are built, the model and builder objects are no longer
necessary and they can be discarded. Figure 3 shows
the relationship between model, builder, and run-time
objects.

The run-time objects are con�gured according to
the models. This con�guration happens on two lev-
els: (1) models determine the behavior of individual
objects (e.g. an algorithmic activity), and (2) mod-
els determine the interactions among the objects (the
data
ows, data dependencies, etc.). Thus, the model
interpreters con�gure the individual objects (by pass-
ing parameters to their constructors, setting their data

MODEL
OBJECTS

BUILDER
OBJECTS

RUNTIME

OBJECTS

MULTIGRAPH KERNEL

Figure 3: Objects related to model interpretation

members, etc.), but also the network of computations
built from these objects.

These computational networks are speci�ed in
terms of the Multigraph Computational Model
(MCM). The MCM is a macro-data
ow model pro-
viding a uni�ed system integration layer above hetero-
geneous computing environments including open sys-
tem platforms, high performance, parallel/distributed
computers and signal processors [1] [11]. The run-time
support of the MCM is the Multigraph Kernel, which
schedules the computations. The elementary compu-
tations are carefully de�ned reusable code components
that are part of application speci�c run-time libraries.
The MGK is implemented as an overlay above operat-
ing and communication systems. A unique capability
of the MGK is its support of the dynamic recon�gu-
ration of the executing system [11].

6 Generated applications
IPCS has been successfully used in various, practi-

cal applications, which solved actual problems. One
applicationmonitors 16, business{critical process vari-
ables, and continuously displays them. Some of the
variables calculated, some are directly obtained from
the plant data acquisition system. The system con-
tains 10 activity models, and the entire application
was created by one engineer, without any previous ex-
perience with IPCS, in a few days.

Another application uses an external, remote sim-
ulation process (running on a supercomputer), that
utilizes process models and on-line data to predict the



Paradigm Model Aspects

Plant Stream model Process 
ow
Process model Process 
ow

Finite states
Equations
Failure
propagations
Proc./equipm.
associations

Equipment model Structure
Finite states
Faults

Activity Algorithmic Signal 
ow
Timer Signal 
ow
Finite-state machine Signal 
ow
Operator interface Signal 
ow
External interface Signal 
ow
Simulation Signal 
ow
Compound Signal 
ow

Table 1: Modeling Paradigms in IPCS

valve) or a complex assembly (like a distillation col-
umn). An equipment model represents a part of the
plant's hardware.

The aspects of equipment models describe (1) how
the equipments are hierarchically organized, (2) what
are the discrete states for an equipment, and (3) what
kind of faults are anticipated for the equipment.

Activity models describe computations which im-
plement the desired monitoring, control, simulation,
and diagnostics problem solving functions. They are
hierarchically organized data
ow diagrams, each node
representing a (simple or complex) activity performing
some kind of data processing.

The various models in the Activity paradigm, are
for speci�c, frequently used problem solving activities.
An algorithmic activity is a piece of procedural code,
that executes a user- (or library-) de�ned function. A
timer activity represents a block which implements a
delay function. A �nite-state machine activity imple-
ments a state-machine, which is triggered by events,
and performs state transitions. An operator interface
activity provides a window for the operator, equipped
with slide-bars, plotters, etc. An external interface ac-
tivity connects the datastreams of the activity model
with the plant's data acquisition system. The simula-
tion activities provide ways for con�guring a built-in
simulator, and incorporating it into the datastreams
of the problem solving activities. A compound activity
contains other activities, making possible the organi-
zation of activity hierarchies.

Activities are typically model-based, meaning that
they utilize engineering knowledge captured in the
form of plant models. This utilization occurs with the
help of reference objects, which may appear in activity
models, and refer to objects in the plant models. For
example, a simulation activity is con�gured by spec-
ifying what processes one wants to simulate. This is
done by placing reference objects into simulation ac-
tivity models, which objects point to the equations

present in the Equations aspect of process models.
Essentially, activities represent two di�erent things:

1. On the conceptual level they represent problem
solving strategies. (For example, acquire data,
�lter data, calculate something, use data to run
a simulation, compare the simulation results with
plant data, interpret the results, etc.).

2. On the physical level they represent software con-
�gurations which solve the problem.

The central idea in IPCS is that the plant models and
the activity models are integrated, such that the au-
tomatically generated application will perform the re-
quired problem solving activity, and the plant models
involved will contribute to this process.

The variants of activity models indicate the vari-
ants of available problem solving strategies: computa-
tions (algorithmic), time-based (timer), discrete con-
trol (�nite-state machine), data collection (external in-
terface), operator communication (operator interface),
simulation (simulation), etc. There are built-in activi-
ties which are not explicitly modeled, though their re-
sults can be incorporated into the data
ow networks
of activities: plant state tracking (through the use of
the �nite state models of processes and equipments),
and fault diagnostics (through the use of failure prop-
agation models of processes). The fault diagnostics[6]
detects incoming alarms, and using the propagation
information embedded in the models, tries to come up
with a plausible explanation for the current alarm pat-
tern. The \output" of this activity (i.e. the identi�ed
fault cause) can be used as input to other activities.

There are many organizational principles used in
the models to reduce model complexity. The principles
include:

� Hierarchy: Models represent entities on various
levels of abstraction.

� Multiple aspects: Models may contain many ob-
jects (icons, connections, etc.), but only those
are shown simultaneously which are relevant in a
given aspect. Aspects partition a complex model
into manageable pieces. The modeling paradigm
de�nes what aspects are available, what objects
they contain, and how they interact with each
other.

� References: Models can contain \pointers", i.e.
references to other models. For example, activity
models (i.e. computations) must often be tightly
coupled to plant models (e.g. alarm limits may be
dependent on equipment size), and this can be ex-
pressed by including a reference to an equipment
parameter in the activity model for the alarm de-
tection operation.

� Conditionals: Model components may be condi-
tionalized based on the \activeness" of other com-
ponents. For example, depending on what state
a process is in (e.g. shutdown, startup, or run-
ning), di�erent mathematical models describing
the process must be used.



Mode ls

G r a p h i c a l

Model Bui lder

Model

Va l i d a t i o n

To o l

S y s t e m
I n t e g r a t i o n

To o l

IPCS

APPLICATION

IPCS

OPINT

OPERATOR

ENGINEER

PROCESS

PLANT DATA

EXTERNAL SIM,
ETC.

Figure 2: IPCS System Components

ated a system integrator tool builds an executable ap-
plication code from the models, that, together with
the model database, constitutes a particular, prob-
lem solving system (e.g. a custom simulation, etc.)
This executable, when started, goes through a model
interpretation phase, which creates various run-time
objects as prescribed by the models, and starts \run-
ning" those under the control of an internal scheduler,
the Multigraph Kernel (MGK)[11]. The application is
using a generic operator interface package (con�gured
according to the models) for run-time user interaction,
and is interfaced with the plant's data acquisition sys-
tem and possibly other software packages (e.g. process
simulators). The individual components of the system
and their interrelationships can be seen on Figure 2.

The individual components were designed with the
following justi�cations in mind:

� The visual model builder had to be graphically
oriented, because diagrams are the \natural" lan-
guage for process engineers. It also had to sup-
port text manipulation, because that method is
more obvious for entering, e.g. equations, than
the graphical one.

� Model complexity and the sheer size of models
necessitated the use of an object database. Other,

e.g. relational databases lack the necessary level
of support for storing complex models.

� The system had to be built that way, that it pro-
vided prede�ned concepts which are common in
all process engineering applications (e.g. Process
variable), so domain engineers could use it im-
mediately.

� The abstract, high-level models had to be trans-
lated into actual problem solving code. The
model interpretation process (together with the
system integration) accomplished this task. Run-
time libraries provide a set of \skeleton" problem
solving activities (e.g. simulation), which are in-
stantiated according to the models.

� Interfaces to the plant data and human operators
had to be provided, because process engineering
typically involves both. These interfaces had to
be made as simple and usable as possible.

Naturally, the key to the usability of the system is
determined by the modeling paradigm provided. We
discuss that next.

4 Modeling paradigm
The modeling paradigm in a model-based system

speci�es what kind of models can be built, what they
represent and how can they be structured. In IPCS
there are two major modeling paradigms used: one is
used for modeling the plant, the other one is used for
modeling the problem solving activities. Each mod-
eling paradigm de�nes a set of models what the user
can instantiate. When the user creates a new model
instance, he/she must specify its attributes, parts, and
connections among the parts. Models may contain
other models, thus hierarchical organization is sup-
ported. Each model can be looked at from a set of as-
pects, which de�ne a partition over the model's parts
and connections. This method also helps reducing (vi-
sual) model complexity. The paradigms, their models,
and their aspects are summarized in Table 1.

Process models are used for representing function-
alities in the plant. They are hierarchically organized
diagrams, each block in the hierarchy describing a ma-
terial, energy or information transfer process. A pro-
cess represents an identi�able sub-functionality of the
plant.

The aspects of process models describe (1) the
process 
ows (how processes interact through various
streams, and how they are organized hierarchically),
(2) what are the mathematical models that describe
the process, (3) what are the �nite, discrete states
what the process can be in, (4) what failure modes
are expected for a process and how they propagate
in the process network, and (5) what equipments are
used by the process.

Stream models represent the material, energy, or
information 
ows, connecting processes.

Equipment models describe what the plant's hard-
ware is and how it is constructed. These models are
also hierarchical diagrams, each node representing a
piece of hardware, be it a simple component (like a



code might be attached as well. The problem solving
strategies must be explicitly coded in the form of rules.
This method has some serious drawbacks: engineers
should be trained to become knowledge engineers, the
possibility of using frames and rules does not o�er any
support for how to use them, and they lack the prede-
�ned concepts prevailing in the application domain.

While there are many practical systems and envi-
ronments which try to solve problems using the above
approaches, one can anticipate that, as the system's
complexity increases, their shortcomings will become
more prevalent. This does not mean, however, that
these approaches are not valuable: they have their
own place and application.

A better approach might be to use the \model-
based programming" technique for building such
domain-speci�c problem solving environments. The
approach itself is described in a di�erent paper[1], here
we merely summarize it from our standpoint, as fol-
lows:

� The central idea is to use models, which are ab-
stract representations of concepts and entities rel-
evant to the problem solving process. A model,
technically speaking, is merely a data object
which represents something meaningful. Exam-
ples for models will be given below.

� We use a visual model-building environment [4]
for creating models of the plant, and the prob-
lem solving activity to be used. This environment
has built-in concepts from the application domain
(e.g. Process, Process variable, Equipment,
Failure mode), and some concepts for typi-
cal problem solving activities (e.g. Operator
interface, Simulation, Event, etc.). The prob-
lem solving activities are con�gured through a vi-
sual language, although procedural code might be
embedded as well. We store these models in a
model database.

� A system component, called the model interpreter
is responsible for interpreting the models, con-
�guring networks of active, \executable" objects
which implement prede�ned (or user-speci�ed)
problem solving strategies. This process is auto-
matic, and corresponds to the compilation step in
traditional approaches. The result of this step is
a network of active objects, which are interfaced
to the data streams in a plant, and/or possibly
other software components (e.g. process simula-
tors), etc.

� A run-time support component schedules the
computations (i.e. activates the objects) as data
arrives and/or user interaction mandates it. This
component acts as a \run-time system integra-
tor" which couples the computational activities
and essentially runs the system.

The steps of this model-based approach can be seen
on Figure 1.

This approach has the following advantages: (1)
domain-engineers can work with their own concepts

VISUAL

MODEL EDITOR

MODEL

DATABASE

MODEL

INTERPRETER

EXECUTION ENVIRONMENT

RUN-TIME

OBJECTS

I/O

STEP 1:
MODEL BUILDING

STEP 2:
MODEL
INTERPRETATION

STEP 3:
MODEL EXECUTION

Figure 1: Model-based system development

and language, there is no need to learn a new lan-
guage, (2) problem solving activities can utilize knowl-
edge that was formalized and represented, and (3) the
problem solving strategies themselves are formulated
in a way which is close to the thinking of domain-
engineers. While, admittedly, there are drawbacks in
this approach with respect to e�ciency, they are out-
weighed by the advantages gained.

A model-embedded problem solving environment
has been implemented for chemical engineering appli-
cations, that system is described next.

3 Overview of the system
IPCS (short for Intelligent Process Control System)

is a model-embedded problem solving environment for
chemical engineering applications. The system is built
on the framework provided by the Multigraph Archi-
tecture (MGA), described in a separate paper[8].

The system's purpose is to provide an environment
for problem solving that can be used by chemical engi-
neers working in plants in their various activities. The
system is model-based, meaning that the users interact
with the system via di�erent kinds of models. Models
are created using a visual model builder[4], which sup-
ports model editing in the form of diagrams. Some
model attributes (e.g. equations) are entered textu-
ally, for compactness. Models are stored in a model
database, which is an object-oriented database pack-
age. Optional model validation tools can analyze and
check the models, if needed. Once models are cre-



Model-embedded On-line Problem Solving Environment for

Chemical Engineering

Gabor Karsai, Janos Sztipanovits,Hubertus Franke�,

Samir Padalkary,

Department of Electrical and Computer Engineering

Vanderbilt University

Nashville, TN 37235

Frank DeCaria

Old Hickory Plant,DuPont DeNemours

Old Hickory, TN 37216

Abstract
The building of custom monitoring, control, simula-

tion and diagnostics applications for complex chemical
plants necessitates the integration of models into the
problem solving process. This paper describes a system
and its practical applications that supports this activ-
ity. It is based on the Multigraph Architecture, which
is a generic framework for building these model-based
systems. The paper discusses the modeling paradigms
used, how the applications are generated, and some
practical, existing applications.

1 Introduction
Today's chemical plants are enormously complex

systems, whose monitoring and control is a highly non-
trivial task. This is especially true if higher level mon-
itoring and control functionalities are required: while
low-level loops are relatively easy to handle with tradi-
tional techniques, higher-level functionalities (like op-
timization) require fusion of information from di�erent
sources, and a high degree of system integration with,
for instance, process simulators, optimization pack-
ages, etc.

In many cases, these higher level functionalities
evolve with the plant, and they are created and main-
tained not by software engineers, but plant engineers
who like to use their own language and terminology in
formulating and solving problems. Note that the cre-
ation of these higher level functionalities is part of a
larger problem solving process, where plant engineers
need to solve speci�c problems related to the plant's
operation. (E.g. \What is the e�ect of a rate change
on the e�ciency of the operation?"). Note also that
these problem solving activity is highly context sensi-
tive, i.e. the developed \solution" (i.e. the software)
must be executed in the context provided by the entire
plant.

We can conclude that the kind of problem solv-
ing activity mentioned above has two important char-

�Currently with IBM TJ Watson Research Center
yCurrently with Quant Trading, Inc.

acteristics: (1) it should be performed by domain-
engineers, and (2) its is highly context sensitive. These
problems are not easy to handle within the framework
of traditional software engineering.

In this paper we present an approach and a prac-
tical system which addresses these issues and o�ers
solutions to these problems. First we review other
approaches, next we give a brief overview of the sys-
tem, after which we describe two main components:
the modeling paradigms used and the system genera-
tion process. Finally, some practical applications are
discussed.

2 Background
Creating domain-speci�c problem solving tools can

be approached from many, di�erent directions. One
can identify at least three distinct methods: (1) object
oriented software design, (2) application generators,
and (3) expert system environments.

The approach using object-oriented design can
be summarized as follows: The user (plant engi-
neer) should learn the design techniques of object-
oriented programming, preferably with nice notation
(e.g. Booch[2] or OMT[7]), and use these techniques
to create solutions to the problems. This approach
results in well-structured, high-quality computer so-
lutions, but at a very high cost. Domain-engineers
should be trained in OOD techniques, and they have
to learn how to translate their \language" into that of
OOD.

Application generators (e.g. Matrix-X) o�er excel-
lent solutions to a part of the problem. For exam-
ple, they support the block-diagram oriented model-
ing (and building) of control systems. However, they
do not o�er ways for capturing the engineer's knowl-
edge or physical data (e.g. size) about the plant. They
are typically very easy to use and appealing, but they
seem to lack the rich semantics required for domain-
speci�c systems.

Expert system environments (e.g. G2[3]) support
the knowledge-based approach: knowledge is encoded
in the form of frames and rules, although procedural


