
Towards Specification of Program Synthesis
in Model-Integrated Computing

Gabor Karsai, Janos Sztipanovits
Measurement and Computing Lab

Vanderbilt University
PO-Box 1824

Nashville, TN 37205,USA
{ gabor,sztipaj} @vuse.vanderbilt.edu

Hubertus Franke
IBM T.J.Watson Research Center

PO-Box 218
Yorktown Heights, NY 10598,USA

frankeh@watson.ibm.com

Abstract

Model-integrated computing offers unique benefits for
building computer-based systems. The tight integration of
physical and information processess typical in CBSs is
naturally addressed using this approach. However, the
creation of model-integrated programming environments is a
non-trivial task, which requires various skills on behalf of the
system implementor. This paper addresses one particular
issue of these environments: the specification and generation
of model interpreters that are the tools responsible for
translating models into components of the executable system.

1. Introduction

One of the most significant developments in the last
decade has been the proliferation of large-scale, complex
computer integrated systems. In these systems, functional,
performance and reliability requirements mandate a tight
integration of physical and other processes with information
processing. Important examples for systems where
embedded information technology is critical for the overall
system performance are weapon systems, manufacturing
systems, vehicles from cars to aerospace systems, patient
management systems, transportation systems, and power
generation and distribution systems.

The increasing role of information technology in
complex systems necessitates a substantial change in the
engineering approach characterized by a shift from the
conventional “discipline” and “ life-cycle” orientation to an
integrated “product/domain orientation”. This shift needs to
be facilitated with new theories, methods, and tools to
accelerate the progress in this important system category.

The practice of using models in the full lifecycle of
computer-based systems has been increasingly accepted.
Multiple-aspect models are extensively used in requirement
specification. Models are created and refined during design,
and they are used in the verification of the design. Systems
engineering tools use models for performance, reliability

and safety analysis. It is a general trend that design-time
models are increasingly used during system operation for
model-based monitoring, control and diagnostics.

The tight integration of "physical" and "information"
processes makes the application of a common description of
these processes not only practical but also mandatory. The
common description means that software components are
modeled as parts of the overall system, using concepts,
relations and model structuring principles that are
meaningful for the design and analysis of the whole system.
Since computer-based systems are very multifarious, and
software components play a rapidly increasing role in their
operation, the modeling paradigms offered by conventional
programming environments are not satisfactory. Typical
programming environments support hierarchical structure
and homogeneous decomposition [1] which is far from the
heterogeneity and semantic richness of representations
routinely used in many engineering domains. The challenge
is to adopt domain specific, established modeling paradigms
for representing software components, while preserving the
capability of translating these models into executable code.

The long-term goal of our research at the Measurement
and Computing Systems Laboratory of Vanderbilt
University has been the development of a broadly applicable
software technology for the design and implementation of
complex, computer-integrated systems. The specific
applications driving our research during the past decade
have been: (a) on-line problem-solving environments for
chemical plants, (b) fault detection, isolation and recovery
(FDIR) systems for aerospace systems, (c) real-time facility
monitoring and signal analysis for propulsion system
testing, and (d) information systems for discrete
manufacturing. Based on our experience, the recurring
features in all these systems have been (1) the tight
conceptual relationships between the computer applications
and their environment, (2) the need for adapting the
application/system to changing end-user requirements and
operating conditions, (3) cost sensitivity, and (4) the

stringent reliability and dependability requirements of
military and industrial applications. Often these systems
consist of various subsystems that have to be integrated with
each other and with external interfaces (e.g. data acquisition,
real-time databases, operator interfaces, etc.). This
integration process is often expensive and error prone.

The users of the technology would be developers who
create these environments. Model-integrated approaches
have been used in building monitoring and control systems
in chemical plants, monitoring and analysis systems for
discrete manufacturing plants, high-performance signal
processings systems for aerospace testing. To use a common
framework for generating programming environments for
these vastly different domains would greatly decrease the
cost of building these systems through a high-degree of
reuse.

This paper discusses the technology used in Model-
Integrated Program Synthesis (MIPS). In MIPS, domain-
specific, multiple-view models represent the software, its
environment and their relationships. Model interpreters
translate the models into the input languages of static and
dynamic analysis tools, and/or into executable code to
become components in software applications. Our
framework for model-integrated program synthesis, the
Multigraph Architecture (MGA), is discussed in Section 2,
together with a summary of related efforts in model-based
software synthesis. Section 3 describes a general method for
writing model interpreters, while Section 4 discusses a
possible approach for the automatic synthesis of these
components. Looking at future research goals concludes the
paper.

2. Multigraph Architecture

Model-integrated program synthesis requires domain
specific tools for: (1) building, testing, and storing models,
(2) transforming the models into executable applications

and/or extracting information for system engineering
analysis tools, and (3) integrating applications on
heterogeneous parallel/distributed computing platforms
[2,3]. The high development cost of these tools would make
their application prohibitive in many computer-based system
applications. Therefore we have followed an architecture-
based approach, which separates the generic and
domain/application-specific components, and defines
interfaces for expandability. The MGA has the following
three levels of abstraction (see Figure 1):

2.1. Application Level

The Application Level represents the synthesized
software applications. The executable programs are
specified in terms of the Multigraph Computational Model
(MCM). The MCM is a macro-dataflow model, which
represents the synthesized programs as attributed, directed,
bipartite graph [3]. The MGK (Multigraph Kernel) is a
runtime system for the model, and provides a unified system
integration layer above heterogeneous computing
environments including open system platforms, high
performance, parallel/distributed computers and signal
processors [2,4]. The elementary computations, which are
scheduled by the MGK, are carefully defined, reusable code
components that are part of application-specific run-time
libraries. The MGK is implemented as an overlay above
operating and communication systems. The MGK is
supported on standard platforms (UNIX, Windows NT,
Windows95, etc. operating systems and TCP/IP, MPI
communication systems).

2.2. Model-Integrated Program Synthesis (MIPS) Level

The MIPS Level includes generic, customizable,
domain-specific tools for model building, model analysis,
and application synthesis. The generic components of the

Figure 1: Abstraction Levels and of MGA (Multigraph Architecture)

architecture are the following: (1) customizable Graphical
Model Builder (GMB) [5], (2) Object-Oriented Database
(OODB) for storing and accessing models. The current
version of GMB (called XVPE) is customized through the
EDF (Editor Definition Facility) language [5], which defines
the modeling paradigm and the related graphical notations.
The OODB is configured by means of the Object
Description Language (ODL) of ODMG-93 database
interface standard. The domain specific components consist
of (3) MGA analysis tools and external analysis tools, and
(4) model interpreters that synthesize applications
(executable models), or translate models into input data
structures of the analysis tools (analysis models). Internal
tools are designed for specific MGA-MIPS environments,
and typically include a model interpreter, analysis
algorithms and user interface. External tools are research
tools that perform some static or dynamic analysis based on
a domain independent abstract model. For example, the
Stochastic Petri Net Package (SPNP) uses a domain
independent modeling concept (Generalized Stochastic Petri
Net) and analysis algorithms for performance analysis. An
MGA model interpreter translates domain specific models
into the input language of SPNP [6].

The MIPS level components are modular, and connected
through standard interfaces (Figure 1). We have adopted the
ODMG-93 standard for interfacing the model database to
the GMB and to the model interpreters. This standard allows
the use of OODB packages as model database. The
Common Model Interface (CMI) is the specification of the
object types of the given modeling paradigm forming a
unified Tool-Software-Bus. (Technically, the CMI defined
by the C++ header file generated by the schema translator of
the OODB. This header file includes the class definition of
the model objects accessible as persistent objects in the
Model Database.) The MGA allows concurrent access to the
Model Database by the GMB, and by various systems
engineering analysis tools (and program synthesis tools).
This is a necessity in large-scale engineering problems
where several engineering groups work concurrently on
various aspects of the same system. From the operational
point of view, the MIPS-level architecture is designed as a
distributed object system, where the communicating "macro
objects" are: GMB, OODB, and the Model Interpreters. For
intertool communication, we have selected the CORBA
standard.

The domain specific MIPS environments are integrated
tool suites supporting model building, model analysis, and
program synthesis. In our experience, computer-based
systems (e.g. aircrafts, manufacturing systems, chemical
plants) are frequently dominated by some mature
engineering discipline such as aerospace engineering,
mechanical engineering, or chemical engineering. The
modeling paradigms used for representing structural and
behavioral aspects of these systems are "non-negotiable".
The modeling tools must accommodate to the domain,
otherwise they lose relevance - and customers.

Domain specific MIPS environments may differ from
each other to a great extent. For example, the modeling
paradigm (concepts, relationships, model composition
principles and model integrity constraints) used in modeling
the fault detection, isolation and recovery properties of the
International Space Station Alpha (ISSA) (one of the MGA
applications, described [7]) is completely different from
that one used in modeling chemical plants, processes, and
problem solving activities [8]. Similarly, the model
interpreter used for synthesizing real-time diagnostic
systems is quite different from the one synthesizing an
embedded process simulation. MIPS environments change
not only across domains, but they must evolve inside a
domain as well. For example, as the modeling effort
progressed in the ISSA program, accumulated insight and
increased understanding triggered several major revisions in
the modeling paradigm. The environment and the models
must evolve with these changing concepts, because the
models represent a significant investment. Our challenge
has been to create a software infrastructure, which enables
the inexpensive construction of reliable domain specific
MIPS environments, and provides efficient support for their
evolution.

2.3. Meta-Level

The third level of the MGA is a metaprogramming
interface providing: (a) support for the specification of
domain-specific modeling paradigms and model interpreters
using a declarative language, (b) meta-level translators to
generate configuration files for the GMB and OODB from
the modeling paradigm specification, and (c) tools for
writing model interpreters.

The metaprogramming interface introduces an additional
level of abstraction in MGA. The central concepts are
meta-models (models of models), which are the
specifications of modeling paradigms and model
interpreters. The meta-models define the semantics of
domain specific modeling language [5]. The semantics of
modeling paradigms are defined by the constraints within
the domain models with respect to the concepts, relations,
model composition principles and domain-specific integrity
constraints. In this approach, applications are "executable
instances" of domain models and the domain models are
"instances" of meta-models.
 Currently MGA has a simple, preliminary version of the
metaprogramming interface, which is not satisfactory due
to the following problems: (1) we use a declarative
language for defining modeling paradigms. This language
is not rich enough to provide a rigorous, cCurrentlyMGA
has a simple, preliminary version of the metaprogramming
interface, which is not satisfactory due to the following
problems: (1) we use a declarative language for defining
modeling paradigms. This language is not rich enough to
provide a rigorous, concise specification for complex
model semantics (2) The currently used formalism does

not support the validation of complex paradigms. (3) There
is no support for the formal specification of the semantics
of the model interpreters and execution environments.
Consequently, validation and verification of model
interpreters and execution environments is relatively
difficult and requires in-depth knowledge of the
technology. Finding solutions for these problems is one of
our active research areas.

2.4. Model-based program synthesis

A key characteristic of the MGA is its support for the
synthesis of applications from models. The model
interpreters perform program synthesis. Figure 2 shows the
elements of the model interpretation process with a single
interpreter. Complex systems consisting of several,
integrated applications are typically generated by multiple
model interpreters - one for each component application -
but using the same integrated model set.

During application synthesis, the model interpreter
traverses the model database from the root of the model
hierarchy. It incrementally builds the actual executable
system in the MGK environment using the "Builder
Interface" of the MGK by creating and connecting the
elementary components of the MGK processing network
(actor and data nodes) [2]. Parallel with the executable
system, the model interpreter also creates a "builder object
network". The relationship between the builder object
network and the models is determined by the model
composition principles. For example, in modeling
paradigms employing a hierarchical module interconnection
composition method, there is one builder object for each
compound and primitive module in the model hierarchy.
The builder objects have three roles. (1) They store
references to the appropriate objects and levels in the model
database. (2) They store references to all the components of
the MGK processing network (actor and data nodes) that are
relevant to the given level of the hierarchy. (3) They
maintain connections to the processing network for
receiving events that trigger reconfiguration.

In most of our applications, the model database, model
interpreters and the builder object network are in one
process (and computing node), while the component
applications are synthesized in separate processes (running
on the same, or different computing nodes). The execution
environment is decoupled from the modeling environment
to maintain real-time behavior. The model interpreter
accesses the model database through the transaction
mechanisms of the OODB (as defined by the ODMG’93
standard).

After the synthesized application started, it runs under
the control of MGK. The MGK schedules the elementary
computations according to the graph topology defined, and
according to the control principle (if-any or if-all) of the
elementary nodes. Re-synthesis can be triggered by the user
(after changing the model some way) or by the application

(after detecting a significant event requiring changes in the
structure of the executing system). User-initiated changes
are typically the result of incremental changes in the models,
and therefore correspond to evolutionary system behavior.
The changes triggered by events in the execution system are
typically fast reactions to detected changes in the
environment (e.g. sensor failure), therefore this behavior can

be considered structural adaptation [3]. During re-synthesis
of the application, the model interpretation re-starts from a
particular level of the model hierarchy (identified by a
builder object). The interpreter builds a new version of the
processing network through the builder interface (without
suspending the rest of the application) and the builder object
network. Using an MGK control protocol [2], the interpreter
switches over from the old version of the processing
network to the new computational structure. The
programming language used for implementing the
elementary computation modules (i.e. the run-time library
for the execution environment) has impact on the capability
for reconfiguration. In static languages, such as C and C++,
the MGK, and all relevant low-level computation primitives
are linked together and form an MGK-C or MGK-C++
process. Through the builder interface, the model
interpreters are able to modify data structures and the graph
topology using the pre-linked primitives, but cannot
dynamically add computational primitives. Using dynamic
languages supporting late binding and dynamic
linking/loading, MGK processes can be created that allow
the upgrading of the low-level primitives as well. In earlier
MGA implementations this capability was provided in LISP
environments. It is one of our goals to create and evaluate
the performance of an MGK environment using one of the
modern dynamic languages, such as Java or Dylan.
 Related efforts to model-integrated computing include
approaches like: domain-specific software architectures[11],
application generators, object-oriented design techniques,
hardware-software codesign[12]. Except for the last one, all
of the approaches are related (and restricted) to software
design. In MIC, just like in codesign a much broader area of
CBSs is addressed.

Figure 2: Model interpretation in MGA

 3. A general method for model interpretation

Obviously, the success of a MIPS greatly depends on how
easy is it to build the model interpreters. In this section we
present a systematic way for implementing model
interpreters. As an illustration for a non-trivial, model-
integrated system, we briefly describe an on-line problem-
solving environment developed for the chemical industry,
called Intelligent Process Control System (IPCS)[8]. IPCS
includes a rich modeling paradigm for representing plant
models and operation support activities related to the plant
The models built using the paradigm (or modeling
“ language”), are then used to synthesize applications, that
solve various monitoring, control, simulation, diagnostic,
and other problems in the plant.
 The modeling paradigm of IPCS has three model
categories, and models in each category have multiple
aspects. The categories have been defined in conjunction
with prevailing engineering practice. Models are the
complex entities that describe the plant, and the (computer-
based) activities that need to be performed. The aspects
define a partition (or a “view”) of the models, which shows
the relevant components of the model at editing time. The
table below lists the categories, models available in each
category, and their aspects.

Category Models Aspect
Functionality Stream Structural

Process Structural
Discrete states
Mathematical
equations
Failure propagation
Equipment
associations

Equipment Equipment Structural
Discrete states
Fault states

Activity Algorithmic Structural
Finite-state machine Structural
Timer Structural
Simulation Structural

External interface Structural
Operator interface Structural

With respect to the interpretation, models of each category
are stored in a different partition of the model database,
and each model type corresponds to a class of objects in
the database. When the models are created, the user builds
a network of persistent objects in the database, to be
traversed by the interpreters. The schema for the model
database contains about 200 different classes, one each for
models and their contituent parts.
 The models listed above use several model organization
techniques, including:
• Hierarchy (models containing other models,

recursively)

• Module interconnections (models that have “ links” to
be connected to other models)

• References (parts in models that “point” to other parts
in distant models in a hierarchy)

These techniques influence how the interpreters should be
implemented and how they operate.
 The objective of the system is to build applications that
are generated from the models by the interpreters. The
integrated application typically consists of several
subsystems:
• Monitoring and control component that implements

the specified monitoring and control functionality,
• External interface that couples the application to the

plant instrumentation,
• A real-time fault diagnostics system that monitors

alarms and informs the operator about causes of
cascading fault events,

• A simulation run-time system, which includes various
equation solvers, and

• The overall run-time system for integrating and
scheduling of activities (MGK).

Figure 3: Cascade Filter activity with two pr imitive
Filter activities.

To illustrate the interpretation process in more detail we
show the Cascade Filter model shown in Figure 3 as an
example for a simple activity model. This activity model
consistes of two instances of the Filter model, connected
as on the drawing. The lower-level activites have two
inputs (x1 and x2), and one output, while the higher level
activity consists of the two filters, two inputs, one output,
and a local signal for connecting the first filter to the
second. This model clearly shows two modeling
techniques: the use of hierarchy, and the use of model
interconnectivity.
 When the model interpreter is executed, first it creates a
set of builder objects, one for each model in the original
model. As the top of Figure 4 shows, each builder object
maintains a list of consituent objects (e.g. Cascade
contains In1, In2, Filter1, tmp, Filter2, and Out), which are
stored in a symbol table. The structure of the builder
objects mirrors the hierarchical composition of models in
the database.
 At the bottom, Figure 4 shows the run-time objects that
are created by the builder objects. In this particular
paradigm, the task of the model interpreters is to generate a
set of run-time objects that are executed under the control
of the MGK. Note that this model interpreter can be

described using a simple recursive algorithm that descends
on the model hierarchy, creates the builder objects, and
creates the run-time objects. The algorithm can be
implemented as a method of the builder object class that
performs the following actions on each level of the model
hierarchy:
• Create a builder object for the parent (e.g. “Cascade

Filter”)
• Create a builder object for all subparts (e.g. “Filter1” ,

“Filter2” , “ In1” , “ In2” , etc.)
• Resolve the connectivity in the context of the parent

(e.g. “ In1” connects to “Filter1”)
• Invoke the interpreter on the subparts (not in this

example)
 This recursive algorithm is capable of processing
hierarchical models that use module interconnectivity.
Run-time objects are either created as their builder objects
are created, or they might be created during a later pass,
when all the builder objects are visited.

Figure 4: Objects of the model interpreter when
interpreting “ Cascade Filter ”

 The implementor of a model interpreter should focus on
two issues: (1) how to traverse the model database and
create the builder objects, and (2) how to map the builder
objects into run-time objects. The database traversal will
be complicated by the fact that many modeling paradigms
use references. References are pointers that relate to distant
models, in the same or a different hierarchy. This implies
that the creation of builder objects should be followed by a
phase where these references are resolved. Another
difficulty is that multiple run-time system components can
be built from the same set of models, thus again a multi-
phase approach has to be used in model interpretation.
Regarding the creation of run-time objects the task is
easier, but the activities here might involve (again)

multiple traversals of the builder object network, and the
execution of custom actions. Furthermore, the
interpretation process itself can be implemented as
distributed algorithm, in a message-passing style, where
the builder objects communicate with messages and
synchronize their operations.
 Our first approach was based on an algorithmic
specification of the method of interpretation [9]. It
automated the generation of a builder object network, the
maintenance of the symbol tables and the synchronization
of interpretation in distributed/parallel systems. Due to the
use of references (either in one hierarchy or into another
hierarchy) builder objects must be built in some
interdependent order. The method specification allowed
the definition of building phases, which meant that the
builder object network was traversed several times. The
interpretation is specified with the help of an abstract
machine, whose operations were to be specified by the
implementor. In each operation, the implementor had to
describe what was to be done to fully interpret the
corresponding model. However the global sequencing of
these operations was determined from the description of
the modeling paradigm. Given the definition of the
modeling paradigm (i.e. what model contains what parts,
connectivity definitions, etc.), the sequence was calculated
and a code fragment (containing calls to the operations)
was generated. The interesting feature of this approach was
that the model interpreter was running as a set of
coroutines, where each thread was assigned to a builder
object. Naturally, the method was also useful for
specifying distributed interpreters.

4. Automatic synthesis of the model interpreter

Experience with the system mentioned above has taught us
that writing a model interpreter for a complex paradigm
can be a complex and daunting task, even if a systematic
approach is used. Fortunately, many of the interpreter
functionalities can be automatically synthesized from the
description of the modeling paradigm, and only the
generation portion of the interpretation process should be
hand-written.
 Suppose we have specified a modeling paradigm using a
declarative language, as shown on Figure 5. The
specification defines what atomic components we have,
and how models are built using these components (by
aggregation and connections).
 From this specification one can deduce the necessary
model classes and builder object classes. Each atom and
model should have a separate class, and each connection
type should have a class. Each class should have a
corresponding builder object class. The top-down building
process can be easily created as well: in a first pass the
builder objects are created, in a second pass references are
resolved (to remote builder objects, if there are any), and
in the third pass the connections are resolved. The result of

the building process is a network of builder objects that are
created according to the structure of the models. However,
this is not sufficient: each builder object has to be visited
in a sequence, and some problem-specific actions need to
be performed to create run-time objects. We can specify
these activities by borrowing techniques from the compiler
techniques. These techniques are collected under the name
“attribute grammars” [10], but here we propose to use them
in a slightly different context.

Figure 5: Specification of a simple modeling paradigm

Suppose, for each builder object we specify a set of
attributes that carry specific values. A builder object either
provides (i.e. calculates) the value of an attribute, or it
obtains the value from another builder object. Thus, the
attributes determine a data-dependency graph among the
builder objects. Furthermore, these data dependencies
among the attributes determine an order in which the tree
of builder objects should be traversed to calculate all the
attributes. If the attributes and their composition satisfy
certain properties, it can be shown that the traversal is well
defined and it terminates [10].
 Figure 6 shows an example for how to specify a full
model interpreter for the paradigm given above. The
“signal” objects have one attribute that they provide, called
“$node” , which is a data node: an MGK run-time object. A
“block” provides an attribute called “$build” , that is
constructed by taking all the inputs and outputs and
returning their “$node” attributes. We can say that a block
is built, when all its input and output data nodes are
available. A “compound” provides a “$build” attribute,
which is constructed by the following steps:
1. constructing the “$build” attribute of the superclass of

the “compound” (“block”),

2. constructing the “$node” attribute of all “signals” that
are among the “ locals” ,

3. constructing the “$map” attributes of all “dataflow”
connections, and, finally,

4. constructing the “$build” attributes of all the blocks
that are beneath the current compound.

Figure 6: Attr ibute grammar style specification of the
model interpreter

 Note that in the last step the “$node” attributes of the
inputs and the outputs of the underling block are
constructed by looking them up in the connection map.
The “$map” attribute of a dataflow connection is simply a
pair consisting the builder objects of the source and
destination points of the connection. A primitive provides
“$build” attribute,
(1) which requires the “$build” attribute of its superclass

(“block”), which entails checking that the input and
output “$node”-s are available,

(2) the generation of an actor node (an MGK run-time
object), and

(3) Connecting the input and output data nodes to the
actor node, thus establishing the “wiring” of the run-
time objects.

 The Cascade Filter example shown in the previous
section will be interpreted as follows. To start the
interpretation, one can request the “$build” attribute from
the toplevel object. This will result in requesting the
“$build” attribute from the base class, which, because
these attributes are not available, will execute a sequence
of “new datanode()” operations for each inputs (i.e. In1
and In2). Next, the “$node” attribute is requested from all
“ locals” , thus an additional “new datanode()” will create
that object. Next, each “dataflow” connection, will create

� � � � � � � � � � � 	
 � � � � � � 	 � � � � � � � � � � � � �
� � � � 	 � � 	 � � � � � �
� � 	 � � � � � � ��� � � � � � � � � � � � 	 � � � � � � � �
� � 	 �
� � 	 	 �
� � 	 � 	 � � � � � � � � � � � � � � � � � �
� � � 	 � � � 	 � � � � � �
 	 � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � � 	 � � �
� 	 � � � � � � � 	 � � � � � � � � � � � � � � � � ! � "
� � # � � � � � � � �
"
 	 � � � � � � � � � $ � � � � 	 � � � � � � � � � � � � $ � 	 � � � % � � & � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � ' � � "
"
 	 � � � � 	 � 	 � � � � � � 	 � � � � � � � 	 � � � ' 	 � � � � � % � (� 	 � � � � � 	 � & � � � � 	 � � �
� 	 � � � � � � 	 � � �)� � � � � 	
 � � � 	 � � � � � � 	 � �
� � � � � � 	
 �
� � � � � � � � * � � 	 � � � � � � � � � � � � 	 � � � 	 � � � � � � � * � � 	 � � � � � � � � � �
� � 	 � � � 	 � � � � � � � * 	 � � � � � � "
"
� � � � � �
� 	 � � � � � � 	 � � � � � � � � � � � � � + �
 � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � �
� � 	 � � � � � � 	 � �
"
"

signal {
 $node = “new datanode();” ;
}
block {
 $build = inputs.$node , outputs.$node;
}
compound {
 $build = super.$build,
 locals.$node,
 dataflow.$map,
 blocks.$build with b {
 b.inputs.$node = find_all(b.inputs,dataflow.$map).$node,
 b.outputs.$node =
find_all(b.outputs,dataflow.$map).$node
 } ;
}
dataflow {
 $map = cons(src,dst);
}
primitive {
 $build = super.$build,
 “actornode a = new actornode();” ,
 foreach i in inputs.$node do “connect ($i,a,index($i));” ,
 foreach o in outputs.$node do “connect(a,$o,index($o));” ;
}

pair of builder objects (based on their model objects), these
constitute the connection’s “$map” . Finally, each
contituent block will be requested to provide its “$build”
attribute. But here, the proper “$node”-s of the inputs and
outputs are “handed down” to those blocks. In each of
these blocks, that are “primitives” , the “$build” is
constructing by (1) checking that the input and output
“$node”-s are available, (2) allocating a new actor node,
and (3) wiring that to the proper data nodes.
 What this approach shows is how to describe
complicated computations on a tree structure. We envision
that this approach can be widely applied to all kinds of
interpreters and provide a systematic and structured way to
write model interpreters.
 A tool that generates the full interpreter code can
process the modeling paradigm specification and the
model interpreter specification. The interpreter will include
a component that creates the network of builder objects
(this is derived from the paardigm spec), and another one
that is the translation part of the interpreter (this is
generated from the attribute specifications). Note that the
control structure of the translator portion is computed from
the dependencies among the attributes of the builder
objects.

5. Conclusion and future research issues

We have shown how a model-integrated system is built
and how the model interpreter component can be
implemented in a systematic way. We have also proposed
a higher-level approach for the specification of the
interpreter algorithm, that can be used to synthesize the
interpreter program, whithout having to deal with low-
level issues. Naturally, significant work remains in refining
the notation and implementing the synthesis process. But
the approach seems to be viable, and could significantly
ease the work of the implementor.
 In the automatic synthesis of model interpreters a large
number of research isseus remain. Some interesting
problems are listed here:
• How to integrate the paradigm specification with the

interpreter specification?
• How to validate that the interpreter specification?
• How to synthesize distributed code (with message

passing) for a distributed model interpreter?
• What kind of information can be obtained from the

interpreter specification?
• How to create “ template libraries” that contain typical

interpretation strategies (e.g. hierarchical traversal,
etc.)

• How to evolve the models and the modeling
paradigm?

 It is expected that by addressing these issues a better
technology can be created for supporting the non-trivial
work of writing model interpreters.

Acknowledgements

The DARPA/ITO EDCS program (F30602-96-2-0227),
The Boeing Company, Saturn Corporation, and the Arnold
Engineering Development Center of USAF has supported
the activities described in this paper.

References

[1] Michael Jackson: "The World and the Machine,"
Proc. of the 17th International Conference on
Software Engineering, pp. 283-292, Seattle, WA.
April 23-30, 1995.

[2] Abbott, B., Bapty, T., Biegl, C., Karsai, G.,
Sztipanovits, J.: "Model-Based Approach for
Software Synthesis," IEEE Software, pp. 42-53, May
1993.

[3] Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C.,
Lynd, L: "The Multigraph and Structural Adaptivity,"
IEEE Transactions on Signal Processing, Vol. 41,
No. 8., pp. 2695-2716, 1993.

[4] Karsai, G., Sztipanovits, Padalkar, S., Biegl, C., J.,
Okuda, K., Miyasaka, N: "Model-Based Intelligent
Process Control for Cogenerator Plants," Journal of
Parallel and Distributed Computing, Vol. 15, No. 6.

[5] Karsai, G.: "A Visual Programming Environment for
Domain Specific Model-Based Programming," IEEE
Computer, pp. 36-44 March 1995.

[6] Childers, C.A., Apon, A.W., Hooper, W.H., Gordon,
K.D., Dowdy, L.W.: "The Multigraph Modeling
Tool", Proc. of the 7th International Conference on
Parallel and Distributed Systems, Las Vegas,
Nevada, October 5-8, 1994.

[7] Carnes, R.J., Misra, A., Sztipanovits, J.: "Model-
Integrated Toolset for Fault-Detection, Isolation and
Recovery (FDIR)", Proc. of Conf. on Computing in
Aerospace 9, 1994,IEEE Press.

[8] Karsai, G., Sztipanovits, J., Franke, H., Padalkar, S.,
Decaria, F: "Model-Embedded Problem Solving
Environment for Chemical Engineering," Proc. of
IEEE IECCS’95, pp. 227-234, Florida, 1995.

[9] Franke, H.: “PREMOS: Tools for Model-based
Programming,” Ph.D. Thesis, Department of
Electrical Engineering, Vanderbilt University, 1992.

[10] William M. Waite, Gerhard Goos.Waite, W. M.:
Compiler construction, Springer, 1982.

[11] Bass, L. et al: Software Architecture in Practice,
Addison-Wesley, 1997.

[12] Rozenblit,J. and Buchenrieder, K.: Codesign, IEEE
Press, 1995.

