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Abstract: Embedded Computer-based Systems are becoming highly complex and hard to 
implement because of the large number of concerns the designers have to address. These 
systems are tightly coupled to their environments and this requires an integrated view that 
encompasses both the information system and its physical surroundings. Therefore, 
mathematical analysis of these systems necessitates formal modeling of both “sides” and their 
interaction. There exist a number of suitable modeling techniques for describing the 
information system component and the physical environment, but the best choice changes from 
domain to domain. In this paper, we propose a two-level approach to modeling that introduces a 
meta-level representation. Meta-level models define modeling languages, but they can also be 
used to capture subtle interactions between domain level models. We will show how the two-
level approach can be supported with computational tools, and what kind of novel capabilities 
are offered. 
Category: D.2.2 Tools and Techniques 
 
 
1 The Need 
 
A Computer-based System (CBS) is essentially a physical system that consists of an 
information processing (IP) component, a physical environment (PE), and a sensing 
and actuation mechanism that establishes the interface between the two. Figure 1 
illustrates this statement. The behavior of the resulting system is determined by all the 
components in this ensemble: the hardware and the software of the information 
processing component, the interfaces to the physical processes, the physical 
environment, and the interaction among all of these. We argue that to develop the 
engineering science of these systems one needs an integrated approach, where all 
aspects of the design can be analyzed.  
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Figure 1: A Computer-based System 

In any engineering discipline the rigorous analysis of a design artifact happens 
through the manipulation and analysis of mathematical objects, called models. 
Frequently physical prototypes are also built for experimentation, but still the 
analysis—and the understanding—happens with the help of the mathematical objects. 
We need a similar approach to CBS, such that we can build models of the systems. 
These models, by the very nature of the CBS, have to be able to represent both the IP 
and the PE components, together with the interaction between the two.  
An illustrative example can be found in the area of digital avionics. Let us consider a 
fly-by-wire system that transforms pilot commands and data from environmental 
inputs (e.g. from air data computers and motion sensors) into actuator commands that 
act on the control surfaces of the aircraft. When designing such a system, one uses the 
knowledge of control theory, aircraft dynamics, and other engineering disciplines to 
establish the control laws, to calculate the controller gains, etc. The physical 
environment: aircraft body dynamics, actuator dynamics, etc. determine how the 
information processing component should behave. When implementing such a 
component one works with software abstractions: modules, tasks, synchronization, 
floating-point and fixed-point variables, task timing, jitter, etc. The essential problem 
of CBS is the subtle interaction between the IP and PE of the system. When a 
hardware or software implementation decision is made, that will have an impact in 
terms of the physical environment. For instance, selecting a particular fixed-point 
representation for a physical quantity determines what the expected maximum and 
minimum value of that quantity is. The IP will simply not work if these assumptions 
are violated by the physical environment. On the other hand, time constants 
determined by the physical environment will have an impact on the hardware and 
software implementation. This leads to a vicious circle of interaction, where changes 
on one side impact the other and vice versa. In order to understand CBS it is not 
sufficient to model just the IP or just the PE components, we need techniques for 
simultaneous modeling that also support capturing the interactions.   
Naturally, we want to analyze, validate, and predict the behavior of the integrated 
system from these models. Hence, the modeling language should be rich enough to 
capture all these aspects. Additionally, if feasible, we would like to synthesize the 
implementation of the system from the model. By synthesis we mean a process that 
leads from design models and component libraries to automatically generated 
software and hardware components. This last step is made possible by the 
development of various design automation algorithms and tools. Design automation is 



very successful in the hardware world but recently software synthesis tools have also 
become available. 
In this paper, we want to address the following questions: What is the right way to 
model CBS? What is the “modeling language” to be used?  We argue that there is no 
single modeling language, which would satisfy the requirements of all CBS. Instead, 
we propose a two-level approach, where area-specific modeling tools are used for 
creating domain-specific models, and these tools are represented in terms of (and built 
from) a higher-level meta-model. 
 
2 The vision 
 
Except for trivial cases, CBS are closely related to mature engineering disciplines. An 
industrial instrumentation and control system relies on signal processing, control 
engineering, and electronics. An on-line problem-solving environment for chemical 
manufacturing uses process engineering knowledge. An avionics system employs the 
concepts of aerodynamics, control theory, fault tolerant computing, and others. 
Arguably, CBS are always used in an engineering context, where the solution 
provided by the CBS must fit in. 
In order to help design the hardware and the software for a CBS, one must use 
domain-specific terminology, concepts, and techniques. By domain, we mean the 
larger engineering discipline where the CBS belongs. CBS are often the result of 
cooperation between domain engineers and hardware and software designers. We 
argue that the common language used by these participants should be that of the 
domain, and not necessarily that of computer engineering. 
Modeling languages that capture interesting properties of software systems (e.g. 
UML) are very rarely suitable for modeling the entire system. Note that the “entire 
system” includes not only the hardware and the software, but the environment as well. 
While there are some aspects of UML that make it suitable for modeling dynamic, 
reactive systems (e.g. state charts), it is inadequate for capturing models in the form of 
Laplace transforms or differential equations. Mature engineering disciplines (e.g. 
control theory or chemical engineering) have their own languages and forcing the use 
of another modeling language is not acceptable.  
To summarize, we emphasize the need for domain-specific modeling languages in 
order to properly model all aspects of CBS. As CBS are used in widely differing 
domains, there is a potentially very large number of modeling languages that can—
and should—be used. To phrase it differently: the modeling languages for CBS 
changes from domain to domain. 
Another aspect of CBS is their integrated nature. They integrate different disciplines: 
hardware design, software engineering, performance modeling and engineering, in 
addition to the “base” domain engineering discipline. When one creates models for 
these systems, it is unavoidable that these models be integrated. For example, models 
of the software architecture should be considered in conjunction with the models of 
the hardware system to determine end-to-end timing latencies. Therefore, while an 
engineering modeling language dominates the modeling process, one must also 
address the issue of integrating these models with models that are closer to the 
domain of computer engineering. We argue that integration of models is not only an 



opportunity but also a necessity for any kind of analysis and synthesis of complex 
CBS. 
 
 
3 The Solution 
 
The vision presented above seems to introduce significant difficulties. We know that 
we need domain-specific modeling approaches. We also need the capability to 
integrate models of different disciplines. Obviously, both of these goals can be 
achieved by using appropriate tools, but with a very high cost, because the 
development of modeling tools and integration solutions is very expensive. Below, we 
present an approach to the problem that is based on introducing a second level of 
modeling, called the meta-level. 
We propose to use a higher-level, meta-level modeling language. The meta-language 
is not used for defining domain models, but rather for defining domain-modeling 
languages. Thus, “sentences” in the meta-language define specific domain languages, 
while “sentences” of the domain language define specific systems. 
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Figure 2: The four layers of modeling 

Figure 2 shows the four layers of modeling that one can achieve using this approach. 
The real CBS is described in the form of various domain models. The meta-models 
describe how the domain models are organized: their ontology, syntax and semantics; 
i.e. the language used to define domain models. Additionally, meta-meta models can 
define how meta-models are organized, their ontology, syntax and semantics; i.e. the 
language used to define meta-models. This final layer, while intellectually interesting, 



is rarely used in practical systems. The key to this approach is that a lower layer is 
always described in terms of the constructs of the higher layer.  
We claim that two-level modeling, as provided by the domain models and the meta-
models, is necessary to build formal models of CBS. The meta-level modeling lets us 
define how to build models of CBS for particular domains. Furthermore, if in one 
CBS a number of different (domain-) modeling languages are used, meta-level 
models can capture the interactions between those domains, which is crucial for 
integration. 
The meta-level is necessary because of the variety of systems and the dissimilarities 
among the domains where they are applied.  Using the meta-model one creates a 
domain specific formal modeling language that can then be used to create the domain 
models of the actual system. Once the domain modeling language is established, 
using its syntax and semantics one can build models of the real system. The analysis 
and synthesis of the real system should be done in terms of the domain modeling 
language, and thus the domain models.  
Formally, a modeling language can be defined as a triplet of ontology, syntax, and 
interpretation: 

L = <O, S, I> 
The ontology defines the concepts and their relationships in the language, the syntax 
defines all the (syntactically) correct sentences of the language, and the interpretation 
defines the semantics: the meaning of those correct sentences. We claim that to 
specify a modeling language —its concepts, syntax, and semantics— all components 
of the above triplet must be precisely defined. Note that the specification of a 
modeling language gives a finite description of all the possible syntactically and 
semantically correct models one can create using the language.  
We partition the set of modeling languages into two categories: domain-specific 
modeling languages and meta-modeling languages. Note that the distinction is slightly 
artificial, as a meta-modeling language is also a domain-specific modeling language, 
with the domain being that of modeling language specifications (i.e. meta-models).  
A domain-specific modeling language consists of domain-specific ontology, syntax, 
and interpretation: 

LD = <OD, SD, ID> 
The syntactically and semantically correct sentences of LD built from instances of 
concepts and relationships defined in the domain ontology OD, in compliance with the 
rules of SD, and which also have a well-defined semantics in ID, are the domain 
models. The domain models represent the CBS: its IP and PE components, together 
with the interactions among them. When one defines a domain-specific modeling 
language, all three elements of the triplet —ontology, syntax, and interpretation— 
should be precisely defined. The general observation on the relationship between the 
modeling language and the models (sentences) built using it still applies: the (finite) 
definition of a domain-specific modeling language describes a (possibly infinite) set 
of domain-specific models that can be expressed in the language.  
A meta-modeling language is a modeling language that is used to define other 
modeling languages. Because a meta-modeling language can also be considered a 
domain-specific modeling language (with the domain being that of “modeling 
languages”), it is desirable that the meta-modeling language be powerful enough to 
describe itself, in a meta-circular manner.   



Formally, a meta-modeling language 
LM = <OM, SM, IM> 

consists of the ontology used for defining (domain-level) modeling languages, the 
correct syntax of those domain-language definitions, and their interpretation. The 
meta-models —the syntactically and semantically correct sentences of LM built from 
instances of concepts and relationships defined in the meta-ontology OM— define any 
arbitrary LD in terms of <OM, SM, IM>. This implies that a meta-language should allow 
us to define ontologies, syntax, and interpretation. 
The relationship among meta- and domain-specific modeling languages and meta-
models and domain-models is illustrated in Figure 3. 
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Figure 3: Relationship between meta- and domain modeling languages, and meta- 
and domain-models 

Using this two-level modeling approach has various advantages, chiefly that the 
domain modeling language can be specified in a mathematically precise way. While 
this may seem an inconvenience, the long-term benefits of the precise definition 
outweigh the difficulties.  
Having an explicit meta-specification of the domain modeling languages also enables 
in integrating models of different domains. On the meta-level one can express the 
relationships and dependencies among different domain-specific concepts, thus 
specifying the rules for combining different domain models. Formally, a meta-model 
<OM, SM, IM> may define more than one LD, and may include <ODi,j, SDi,j, IDi,j> that 
captures ontology, syntax and interpretation for the crossing of domains: Di and Dj. 
Obviously, the explicit specification of these interdependencies can also be used to 



constrain the domain specific modeling language to only those constructs where the 
integration is meaningful. 
Another important outcome of our approach is the ability to evolve the modeling tools 
over time in a formally verifiable manner. Just as domain experts evolve a particular 
CBS by updating its domain models and regenerating the CBS, the modeling tools are 
evolved through modifying the metamodel and regenerating the domain-specific 
modeling tools. Also, by having both the pre- and post-evolution metamodels, a 
framework for model migration (evolution of existing models created with the “old” 
modeling environment into the “new” modeling environment) is established. 
To summarize, we advocate a two-step process for modeling CBS. In phase one, a 
domain-specific modeling language is described, in terms of a meta-modeling 
language. We call this development the meta-model of the domain. To support 
reusability, meta-models of proven domain modeling approaches (e.g. finite state 
models, data flow models, etc.) should be available in a meta-model library to allow 
rapid composition of metamodels. In phase two, the domain-specific modeling 
language is used to build the models of the actual system. 
 
 
4 The implementation 
 
While conceptually clear, the approach described above is useful only if appropriate 
tools are available. The Institute for Software-Integrated Systems at Vanderbilt 
University has been engaged in developing the supporting infrastructure for the two-
level modeling approach since 1994. The detailed results of this research have been 
reported elsewhere [Sztipanovits 97]. Here we give a summary the technical 
approach. 
As mentioned earlier, the domain-level language LD = <OD, SD, ID> used to specify 
CBS models is defined using concepts provided by the ontology component OM of the 
meta-level language LM = <OM, SM, IM>. Below we describe the capabilities of the 
components of LM. 
 
 
4.1 Metamodel ontology: OM 
 
First, a metamodeling language must allow the definition of the modeling concepts 
used to define systems within the domain. Modeling concepts include not only the 
actual concepts of the domain (e.g. data streams and stores, processes, dataflow 
networks, compound process blocks in a real-time software modeling domain), but 
also standard modeling abstractions that are directly supported by the tools. 
Modeling abstractions define patterns that provide a prototypical solution to a 
modeling problem, often related to managing complexity in the modeling process. 
Many such modeling abstractions exist in engineering but they are often focused on a 
particular solution space or sub-domain. For instance, hierarchical process flow 
diagrams in the real-time software modeling domain are a convenient, standard 
abstraction. Frequently, these modeling techniques are a domain-specialization (or 
superposition) of a few a core basic modeling abstractions. For instance, hierarchical 
process flow diagrams use the abstractions of (part-whole) “hierarchy” and  



”module interconnectivity” and apply them in the domain of processes and dataflows. 
Similarly, containment hierarchy is universally accepted as a method to hide or reveal 
detail, while inheritance is often used to represent object specialization and 
refinement. We claim that a core set of these fundamental modeling abstractions 
exists and they are largely adequate to express the design concepts, notions, and 
artifacts used across engineering domains. Table 1 lists the elements of this set. 
 

1. Classes 
 

 

Specific classes of entities that exist in a given system 
or domain. Domain models are entities themselves 
and may contain other entities. Entities are instances 
of classes. Classes (thus entities) may have 
attributes. 

2. Associations Binary and n-ary associations among classes (and 
entities).  

3. Specialization Binary association among classes with inheritance 
semantics.  

4. Hierarchy Binary association among classes with “aggregation 
through containment” semantics. Performs 
encapsulation and information hiding. 

5. Module inter-
connection 

A specific pattern of relationships among classes. 
Classes can be associated with each other by 
connecting their ports (specially marked atomic 
entities contained in the classes). 

6. Constraints A binary expression that defines the static semantic 
correctness of a region of the model: if the objects of 
the region are “correct”, the expression evaluates to 
“TRUE”. 

7. Multiple 
aspects 

Allows partitioning a complex model according to part 
categories. Used for visibility control, but may also be 
used for aggregating specific properties of models 
with respect to specific concerns. 

Table 1:Fundamental standard modeling abstractions 

We have chosen a metamodeling approach where some of the above abstractions are 
first-class concepts (i.e. they can be instantiated), while the remaining abstractions are 
supported through special embellishments on the basic metamodeling constructs. In 
our metamodeling language, the ontology supports the construction of metamodel 
objects that are instances of the first four modeling abstractions. We have used the 
industry standard Unified Modeling Language (UML) [UML 97b] to facilitate this. 
For specifying constraints, we have used the Object Constraint Language (OCL) 
[OCL 97]. This choice was made for several reasons: UML directly supports the 
fundamental modeling abstractions 1-4, and OCL supports 6, as described above; the 
UML/OCL syntax and semantics are well defined [UML 97a]; UML/OCL is an OMG 
standard that enjoys widespread use in the industry. The abstractions: 1,2,3, and 4 
directly map to the abstractions available in the class diagram sub-language of UML 
under the same name (“hierarchy” maps to “aggregation through containment”), while 
constraints are supported through OCL expressions. The remaining fundamental 



modeling abstractions are supported through special (visual) syntactical constructs. 
These abstractions are directly supported by our generic modeling tool [GME 00].  
To summarize, the core of our metamodeling language is the class diagram portion of 
UML adorned with OCL constraint equations. Our UML constructs are (visually) 
decorated to indicate the use of other fundamental modeling abstractions [GME 
00][Nordstrom 99b]. 
 
4.2 Metamodel syntax: SM 
 
Our metamodel syntax is essentially the same as that of UML class diagrams and 
OCL expressions. Additional, non-UML syntactical constructs are used for two 
purposes: (1) indicate the use of other fundamental modeling abstractions (e.g. 
module interconnection), and (2) control how the domain model is to be visualized. 
Their specific capabilities and concrete syntax is discussed elsewhere [Nordstrom 
99b]. 
 
 
4.3 Metamodel construction and semantics  
 
We have created a metamodeling tool that supports the visual construction of 
metamodels [Ledeczi 99]. The metamodeler uses this tool to first construct the core 
metamodel (using UML class diagram) and then embellishes it with special “markers” 
to specify other properties of the domain modeling language that couldn’t be 
expressed using the class diagram. Additionally, the metamodeler can specify 
constraints (using OCL expressions) that capture assertions that must be true for the 
domain models to be semantically correct.  
The meaning (i.e. the semantics) of a metamodel is defined through a domain-
modeling tool. We use the following pragmatic definition for the semantics of a 
metamodel: A metamodel is a program that, when “executed”, configures a generic 
modeling environment to support a domain-specific modeling language. The domain-
specialized instance of the generic modeling environment allows only the creation of 
syntactically and semantically correct domain models, as defined by the metamodel. 
This concept is illustrated on Figure 4 below. Interestingly, this principle and 
approach makes possible a very high degree of reuse in the modeling tools. In fact, we 
are using the same generic modeling environment as the foundation tool for 
metamodeling and domain modeling. We have a meta-metamodel that configures the 
environment to support metamodeling. Thus, we can perform “second-order” 
modeling as well: we can extend our metamodeling language (if so desired), although 
this typically necessitates changes in the generic modeling environment as well. 
It is worthwhile to see how metamodeling concepts map into the specific capabilities 
of the domain-modeling environment. Embellished UML classes are turned into 
atoms (primitive, iconic components of a drawing that have no structure, only 
attributes), models (complex diagrammatic constructs that have structure and 
attributes, and contain atoms, models, and connections), and connections (attributed 
connectors on the diagrams that relate precisely two atoms or models). There are a 
few other modeling constructs: references, conditionals, etc., and the interested reader 
is referred to the detailed documentation of our tools [GME 00]. The metamodel 



specifies the composability constraints on these objects. If a metamodel class 
embellished as a “model” aggregates another class embellished as an “atom”, that 
means that the domain models may contain atoms of that type. This semantics is 
enforced in the domain-modeling environment when the user attempts to add an atom 
to a model. Connections are derived from associations on the UML diagram: a 
connector is legal between any two domain objects (model or atom), whose original 
classes in the UML class diagram are connected (i.e. associated). Further details of 
the interpretation of the UML class diagram as a configurator for domain-modeling 
can be found in [Nordstrom 99b]. 
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Figure 4: Metamodeling and Domain Modeling 

The constraints specified in metamodels (using OCL) are checked at domain model 
construction time. An OCL expression is a predicate that can be evaluated in the 
context of the current domain model being constructed. When the predicate evaluates 
to FALSE, it is an indication of a violation of the static semantics of the domain 
modeling language by the model under construction. 
This technique is best illustrated by a simple example. Consider the following 
metamodel (Figure 5) of a Hose, where the attribute threadSize is used to model 
the size of the male and female connectors at the ends of the Hose. A Hose can be 
connected to others to form a chain via HoseConnections. Obviously, the 
connection has a source and a destination hose. 
When connected together, each end of a Hose plays the role of src or dst. Since 
the multiplicity of each association end is zero or one, this implies that each end of a 
Hose can connect to at most one other Hose. Let us assume that we have two 
additional constraints on connecting Hoses together. First, both Hoses must have 
the same threadSize, and second, a Hose can’t connect to itself. Note that neither 



of these constraints can be stated using only UML class diagrams. We specify these 
constraints using OCL, as shown below: 
 
HoseConnection.allInstances-> 

forAll(c|c.src.threadSize = c.dst.threadSize) 
 

HoseConnection.allInstances->forAll(c|c.src <> c.dst) 
 
When the domain modeler edits a domain model, these expressions are evaluated, and 
an error is signaled when they fail. 
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Figure 5: Metamodel of Hoses and HoseConnections 

 
 
4.4 Metamodel semantics and domain model semantics:  IM  and  ID 
 
The semantics of a metamodel as discussed above is limited to an interpretation in the 
context of the generic modeling environment. This allows us build domain-specific 
models that are syntactically and semantically correct, but not much else. We want to 
build a system from the domain models and determine properties of that system via 
various engineering tools. The domain models play a crucial role, as they are the 
subject of (or input to) various analysis and synthesis procedures. These procedures 
assign a dynamic semantics to the domain models.  
Specifically, the dynamic —or operational— semantics of a domain model is 
determined in two steps in our systems [Sztipanovits 97][Sztipanovits 95]. To begin 
with, we assume that an execution platform is available, which has an “instruction 
set” with clearly defined semantics. The platform can be an analysis engine (e.g. a 
simulator package), or an execution environment (e.g. a real-time operating system), 
or any other operational computational system. In step one, the domain models are 
processed by a software component called the model interpreter that transforms the 
models into the “instruction set” of the execution platform. In the second step, the 



execution platform executes that output of the first step. Thus, the domain model 
semantics, ID, is realized by a transformation engine and an execution engine. This 
process is illustrated on Figure 6. 
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Figure 6: Assigning semantics to domain models 

It seems natural that the semantics of domain models should also be captured in the 
metamodel of the domain. That is, IM is to map a particular metamodel into a specific 
ID that determines exactly how a model interpreter works and how the execution 
platform processes the result of the transformation phase. As discussed above, the 
metamodel should not only specify the ontology, syntax, and static semantics of the 
domain models, but also their interpretation: their dynamic semantics. In our 
approach, the latter involves the formal specification of the execution platform and 
that of the transformation of domain models into the “instruction set” of the execution 
platform. 
Currently, we are conducting research activities to address the formal specification of 
the dynamic semantics of domain models. The above two-phase scheme has been 
applied in many applications, by hand-crafting the model interpreters for specific 
execution platforms. However, this is a difficult and error-prone process. Developing 
a formal language for capturing the properties of the model transformation and the 
execution platform, and developing the semantics of that language (i.e. IM) will allow 
us to speed up the development of domain-specific modeling languages and make 
their interpretation mathematically precise. Some of our preliminary work on the 
theoretical foundations of formalizing these specifications can be found in [Karsai 
98]. 
 
 
5 Comparison with other approaches 
 
Many concepts and techniques in our approach are based on groundwork done by a 
large community of modeling experts, academic and industrial researchers. The use of 
metamodels for defining modeling concepts and domains can be found in many 



proposed engineering standards. For example, CDIF [CDIF 00] proposes the use of 
the four-layer modeling approach. The static semantics of UML [UML 97b] is 
specified using a similar approach, using UML and OCL as its own metalanguage. 
Metamodeling is an idea that has been addressed in many research workshops and 
programs (e.g. [Metamodeling 95] and [Asilomar 99]). Some of the relevant research 
activities and industry efforts are related to integrating data from various sources (e.g. 
MetaData coalition [MDC 00]).  
In comparison, our effort has focused on developing meta-level tools —modeling 
techniques, modeling environments, metamodel interpreters, etc.— that associate a 
highly pragmatic and operational semantics to the metamodel. Furthermore, our 
research is addressing the specific needs of CBS, where domain-specific modeling 
languages are often given, and we have to integrate them with other domain-specific 
modeling approaches.  
 
6 Conclusions and future work 
 
The field of CBS is already very large but growing, and it requires new tools and 
more formal techniques for the analysis and synthesis of these systems. Typically, a 
number of formal domain-specific modeling languages are needed for the precise 
specification and efficient design and implementation of computer-based systems. 
Our two-level approach to the specification of domain-specific modeling languages 
(DSML) and modeling environment generation has several advantages. By specifying 
the entities, relationships, attributes, and constraints at the metamodeling level, the 
DSML can be described with mathematical precision, can be safely evolved over 
time, and can be used to configure a generic modeling environment for use in 
designing CBS within a particular domain. Once configured, the domain modeling 
environment ensures valid model creation through the use of constraint specifications 
obtained from the metamodel, enforcing the formal static semantics of the domain at 
model editing time. Furthermore, if the metamodel captures the specification of the 
mapping of domain models into the “instruction-set” of an execution platform, it can 
be used to automatically synthesize a transformation engine to facilitate that mapping.  
Using the metamodeling technology described in this paper domain-specific modeling 
tools have been created, and have been in constant use for many years, in many 
engineering application areas and domains [ISIS 00]. The tools typically feed various 
analysis and synthesis components that perform design-time analysis and/or 
synthesize executable systems.  Our current work focuses on a more efficient method 
for mapping the abstract syntax of a metamodel onto the graphical idioms of the 
generic modeling environment and editing mechanisms within this environment. As 
indicated in the paper, the metamodel should contain specifications of model 
interpretation along with the syntax and ontology specifications. Active research is 
ongoing into the formation, representation, and interpretation of such specifications.  
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