
Towards Two-Level Formal Modeling of Computer-Based
Systems

Gabor Karsai

(Vanderbilt University, Nashville TN
gabor@isis.vanderbilt.edu)

Greg Nordstrom

(Vanderbilt University, Nashville TN
gnordstr@isis.vanderbilt.edu)

Akos Ledeczi

(Vanderbilt University, Nashville TN
akos@isis.vanderbilt.edu)

Janos Sztipanovits

(Vanderbilt University, Nashville TN
sztipaj@isis.vanderbilt.edu)

Abstract: Embedded Computer-based Systems are becoming highly complex and hard to
implement because of the large number of concerns the designers have to address. These
systems are tightly coupled to their environments and this requires an integrated view that
encompasses both the information system and its physical surroundings. Therefore,
mathematical analysis of these systems necessitates formal modeling of both “sides” and their
interaction. There exist a number of suitable modeling techniques for describing the
information system component and the physical environment, but the best choice changes from
domain to domain. In this paper, we propose a two-level approach to modeling that introduces a
meta-level representation. Meta-level models define modeling languages, but they can also be
used to capture subtle interactions between domain level models. We will show how the two-
level approach can be supported with computational tools, and what kind of novel capabilities
are offered.
Category: D.2.2 Tools and Techniques

1 The Need

A Computer-based System (CBS) is essentially a physical system that consists of an
information processing (IP) component, a physical environment (PE), and a sensing
and actuation mechanism that establishes the interface between the two. Figure 1
illustrates this statement. The behavior of the resulting system is determined by all the
components in this ensemble: the hardware and the software of the information
processing component, the interfaces to the physical processes, the physical
environment, and the interaction among all of these. We argue that to develop the
engineering science of these systems one needs an integrated approach, where all
aspects of the design can be analyzed.

Physical
Environment

Information
Processing

System

Sensing

Actuation

Figure 1: A Computer-based System

In any engineering discipline the rigorous analysis of a design artifact happens
through the manipulation and analysis of mathematical objects, called models.
Frequently physical prototypes are also built for experimentation, but still the
analysis—and the understanding—happens with the help of the mathematical objects.
We need a similar approach to CBS, such that we can build models of the systems.
These models, by the very nature of the CBS, have to be able to represent both the IP
and the PE components, together with the interaction between the two.
An illustrative example can be found in the area of digital avionics. Let us consider a
fly-by-wire system that transforms pilot commands and data from environmental
inputs (e.g. from air data computers and motion sensors) into actuator commands that
act on the control surfaces of the aircraft. When designing such a system, one uses the
knowledge of control theory, aircraft dynamics, and other engineering disciplines to
establish the control laws, to calculate the controller gains, etc. The physical
environment: aircraft body dynamics, actuator dynamics, etc. determine how the
information processing component should behave. When implementing such a
component one works with software abstractions: modules, tasks, synchronization,
floating-point and fixed-point variables, task timing, jitter, etc. The essential problem
of CBS is the subtle interaction between the IP and PE of the system. When a
hardware or software implementation decision is made, that will have an impact in
terms of the physical environment. For instance, selecting a particular fixed-point
representation for a physical quantity determines what the expected maximum and
minimum value of that quantity is. The IP will simply not work if these assumptions
are violated by the physical environment. On the other hand, time constants
determined by the physical environment will have an impact on the hardware and
software implementation. This leads to a vicious circle of interaction, where changes
on one side impact the other and vice versa. In order to understand CBS it is not
sufficient to model just the IP or just the PE components, we need techniques for
simultaneous modeling that also support capturing the interactions.
Naturally, we want to analyze, validate, and predict the behavior of the integrated
system from these models. Hence, the modeling language should be rich enough to
capture all these aspects. Additionally, if feasible, we would like to synthesize the
implementation of the system from the model. By synthesis we mean a process that
leads from design models and component libraries to automatically generated
software and hardware components. This last step is made possible by the
development of various design automation algorithms and tools. Design automation is

very successful in the hardware world but recently software synthesis tools have also
become available.
In this paper, we want to address the following questions: What is the right way to
model CBS? What is the “modeling language” to be used? We argue that there is no
single modeling language, which would satisfy the requirements of all CBS. Instead,
we propose a two-level approach, where area-specific modeling tools are used for
creating domain-specific models, and these tools are represented in terms of (and built
from) a higher-level meta-model.

2 The vision

Except for trivial cases, CBS are closely related to mature engineering disciplines. An
industrial instrumentation and control system relies on signal processing, control
engineering, and electronics. An on-line problem-solving environment for chemical
manufacturing uses process engineering knowledge. An avionics system employs the
concepts of aerodynamics, control theory, fault tolerant computing, and others.
Arguably, CBS are always used in an engineering context, where the solution
provided by the CBS must fit in.
In order to help design the hardware and the software for a CBS, one must use
domain-specific terminology, concepts, and techniques. By domain, we mean the
larger engineering discipline where the CBS belongs. CBS are often the result of
cooperation between domain engineers and hardware and software designers. We
argue that the common language used by these participants should be that of the
domain, and not necessarily that of computer engineering.
Modeling languages that capture interesting properties of software systems (e.g.
UML) are very rarely suitable for modeling the entire system. Note that the “entire
system” includes not only the hardware and the software, but the environment as well.
While there are some aspects of UML that make it suitable for modeling dynamic,
reactive systems (e.g. state charts), it is inadequate for capturing models in the form of
Laplace transforms or differential equations. Mature engineering disciplines (e.g.
control theory or chemical engineering) have their own languages and forcing the use
of another modeling language is not acceptable.
To summarize, we emphasize the need for domain-specific modeling languages in
order to properly model all aspects of CBS. As CBS are used in widely differing
domains, there is a potentially very large number of modeling languages that can—
and should—be used. To phrase it differently: the modeling languages for CBS
changes from domain to domain.
Another aspect of CBS is their integrated nature. They integrate different disciplines:
hardware design, software engineering, performance modeling and engineering, in
addition to the “base” domain engineering discipline. When one creates models for
these systems, it is unavoidable that these models be integrated. For example, models
of the software architecture should be considered in conjunction with the models of
the hardware system to determine end-to-end timing latencies. Therefore, while an
engineering modeling language dominates the modeling process, one must also
address the issue of integrating these models with models that are closer to the
domain of computer engineering. We argue that integration of models is not only an

opportunity but also a necessity for any kind of analysis and synthesis of complex
CBS.

3 The Solution

The vision presented above seems to introduce significant difficulties. We know that
we need domain-specific modeling approaches. We also need the capability to
integrate models of different disciplines. Obviously, both of these goals can be
achieved by using appropriate tools, but with a very high cost, because the
development of modeling tools and integration solutions is very expensive. Below, we
present an approach to the problem that is based on introducing a second level of
modeling, called the meta-level.
We propose to use a higher-level, meta-level modeling language. The meta-language
is not used for defining domain models, but rather for defining domain-modeling
languages. Thus, “sentences” in the meta-language define specific domain languages,
while “sentences” of the domain language define specific systems.

META-META
MODELS

META-MODELS

DOMAIN MODELS

COMPUTER-BASED SYSTEM

describe

describe

describe

Figure 2: The four layers of modeling

Figure 2 shows the four layers of modeling that one can achieve using this approach.
The real CBS is described in the form of various domain models. The meta-models
describe how the domain models are organized: their ontology, syntax and semantics;
i.e. the language used to define domain models. Additionally, meta-meta models can
define how meta-models are organized, their ontology, syntax and semantics; i.e. the
language used to define meta-models. This final layer, while intellectually interesting,

is rarely used in practical systems. The key to this approach is that a lower layer is
always described in terms of the constructs of the higher layer.
We claim that two-level modeling, as provided by the domain models and the meta-
models, is necessary to build formal models of CBS. The meta-level modeling lets us
define how to build models of CBS for particular domains. Furthermore, if in one
CBS a number of different (domain-) modeling languages are used, meta-level
models can capture the interactions between those domains, which is crucial for
integration.
The meta-level is necessary because of the variety of systems and the dissimilarities
among the domains where they are applied. Using the meta-model one creates a
domain specific formal modeling language that can then be used to create the domain
models of the actual system. Once the domain modeling language is established,
using its syntax and semantics one can build models of the real system. The analysis
and synthesis of the real system should be done in terms of the domain modeling
language, and thus the domain models.
Formally, a modeling language can be defined as a triplet of ontology, syntax, and
interpretation:

L = <O, S, I>
The ontology defines the concepts and their relationships in the language, the syntax
defines all the (syntactically) correct sentences of the language, and the interpretation
defines the semantics: the meaning of those correct sentences. We claim that to
specify a modeling language —its concepts, syntax, and semantics— all components
of the above triplet must be precisely defined. Note that the specification of a
modeling language gives a finite description of all the possible syntactically and
semantically correct models one can create using the language.
We partition the set of modeling languages into two categories: domain-specific
modeling languages and meta-modeling languages. Note that the distinction is slightly
artificial, as a meta-modeling language is also a domain-specific modeling language,
with the domain being that of modeling language specifications (i.e. meta-models).
A domain-specific modeling language consists of domain-specific ontology, syntax,
and interpretation:

LD = <OD, SD, ID>
The syntactically and semantically correct sentences of LD built from instances of
concepts and relationships defined in the domain ontology OD, in compliance with the
rules of SD, and which also have a well-defined semantics in ID, are the domain
models. The domain models represent the CBS: its IP and PE components, together
with the interactions among them. When one defines a domain-specific modeling
language, all three elements of the triplet —ontology, syntax, and interpretation—
should be precisely defined. The general observation on the relationship between the
modeling language and the models (sentences) built using it still applies: the (finite)
definition of a domain-specific modeling language describes a (possibly infinite) set
of domain-specific models that can be expressed in the language.
A meta-modeling language is a modeling language that is used to define other
modeling languages. Because a meta-modeling language can also be considered a
domain-specific modeling language (with the domain being that of “modeling
languages”), it is desirable that the meta-modeling language be powerful enough to
describe itself, in a meta-circular manner.

Formally, a meta-modeling language
LM = <OM, SM, IM>

consists of the ontology used for defining (domain-level) modeling languages, the
correct syntax of those domain-language definitions, and their interpretation. The
meta-models —the syntactically and semantically correct sentences of LM built from
instances of concepts and relationships defined in the meta-ontology OM— define any
arbitrary LD in terms of <OM, SM, IM>. This implies that a meta-language should allow
us to define ontologies, syntax, and interpretation.
The relationship among meta- and domain-specific modeling languages and meta-
models and domain-models is illustrated in Figure 3.

Meta-Modeling Language
LM = <OM, SM, IM>

(Formal spec)

MetaModel for LD

(Physical)

A Domain Model in LD

(Physical)

Domain-Modeling Language
LD = <OD, SD, ID>

(Formal spec)

a sentence of

a sentence of

represents

CBS
IP + PE

represents

metamodel of

Figure 3: Relationship between meta- and domain modeling languages, and meta-
and domain-models

Using this two-level modeling approach has various advantages, chiefly that the
domain modeling language can be specified in a mathematically precise way. While
this may seem an inconvenience, the long-term benefits of the precise definition
outweigh the difficulties.
Having an explicit meta-specification of the domain modeling languages also enables
in integrating models of different domains. On the meta-level one can express the
relationships and dependencies among different domain-specific concepts, thus
specifying the rules for combining different domain models. Formally, a meta-model
<OM, SM, IM> may define more than one LD, and may include <ODi,j, SDi,j, IDi,j> that
captures ontology, syntax and interpretation for the crossing of domains: Di and Dj.
Obviously, the explicit specification of these interdependencies can also be used to

constrain the domain specific modeling language to only those constructs where the
integration is meaningful.
Another important outcome of our approach is the ability to evolve the modeling tools
over time in a formally verifiable manner. Just as domain experts evolve a particular
CBS by updating its domain models and regenerating the CBS, the modeling tools are
evolved through modifying the metamodel and regenerating the domain-specific
modeling tools. Also, by having both the pre- and post-evolution metamodels, a
framework for model migration (evolution of existing models created with the “old”
modeling environment into the “new” modeling environment) is established.
To summarize, we advocate a two-step process for modeling CBS. In phase one, a
domain-specific modeling language is described, in terms of a meta-modeling
language. We call this development the meta-model of the domain. To support
reusability, meta-models of proven domain modeling approaches (e.g. finite state
models, data flow models, etc.) should be available in a meta-model library to allow
rapid composition of metamodels. In phase two, the domain-specific modeling
language is used to build the models of the actual system.

4 The implementation

While conceptually clear, the approach described above is useful only if appropriate
tools are available. The Institute for Software-Integrated Systems at Vanderbilt
University has been engaged in developing the supporting infrastructure for the two-
level modeling approach since 1994. The detailed results of this research have been
reported elsewhere [Sztipanovits 97]. Here we give a summary the technical
approach.
As mentioned earlier, the domain-level language LD = <OD, SD, ID> used to specify
CBS models is defined using concepts provided by the ontology component OM of the
meta-level language LM = <OM, SM, IM>. Below we describe the capabilities of the
components of LM.

4.1 Metamodel ontology: OM

First, a metamodeling language must allow the definition of the modeling concepts
used to define systems within the domain. Modeling concepts include not only the
actual concepts of the domain (e.g. data streams and stores, processes, dataflow
networks, compound process blocks in a real-time software modeling domain), but
also standard modeling abstractions that are directly supported by the tools.
Modeling abstractions define patterns that provide a prototypical solution to a
modeling problem, often related to managing complexity in the modeling process.
Many such modeling abstractions exist in engineering but they are often focused on a
particular solution space or sub-domain. For instance, hierarchical process flow
diagrams in the real-time software modeling domain are a convenient, standard
abstraction. Frequently, these modeling techniques are a domain-specialization (or
superposition) of a few a core basic modeling abstractions. For instance, hierarchical
process flow diagrams use the abstractions of (part-whole) “hierarchy” and

”module interconnectivity” and apply them in the domain of processes and dataflows.
Similarly, containment hierarchy is universally accepted as a method to hide or reveal
detail, while inheritance is often used to represent object specialization and
refinement. We claim that a core set of these fundamental modeling abstractions
exists and they are largely adequate to express the design concepts, notions, and
artifacts used across engineering domains. Table 1 lists the elements of this set.

1. Classes

Specific classes of entities that exist in a given system
or domain. Domain models are entities themselves
and may contain other entities. Entities are instances
of classes. Classes (thus entities) may have
attributes.

2. Associations Binary and n-ary associations among classes (and
entities).

3. Specialization Binary association among classes with inheritance
semantics.

4. Hierarchy Binary association among classes with “aggregation
through containment” semantics. Performs
encapsulation and information hiding.

5. Module inter-
connection

A specific pattern of relationships among classes.
Classes can be associated with each other by
connecting their ports (specially marked atomic
entities contained in the classes).

6. Constraints A binary expression that defines the static semantic
correctness of a region of the model: if the objects of
the region are “correct”, the expression evaluates to
“TRUE”.

7. Multiple
aspects

Allows partitioning a complex model according to part
categories. Used for visibility control, but may also be
used for aggregating specific properties of models
with respect to specific concerns.

Table 1:Fundamental standard modeling abstractions

We have chosen a metamodeling approach where some of the above abstractions are
first-class concepts (i.e. they can be instantiated), while the remaining abstractions are
supported through special embellishments on the basic metamodeling constructs. In
our metamodeling language, the ontology supports the construction of metamodel
objects that are instances of the first four modeling abstractions. We have used the
industry standard Unified Modeling Language (UML) [UML 97b] to facilitate this.
For specifying constraints, we have used the Object Constraint Language (OCL)
[OCL 97]. This choice was made for several reasons: UML directly supports the
fundamental modeling abstractions 1-4, and OCL supports 6, as described above; the
UML/OCL syntax and semantics are well defined [UML 97a]; UML/OCL is an OMG
standard that enjoys widespread use in the industry. The abstractions: 1,2,3, and 4
directly map to the abstractions available in the class diagram sub-language of UML
under the same name (“hierarchy” maps to “aggregation through containment”), while
constraints are supported through OCL expressions. The remaining fundamental

modeling abstractions are supported through special (visual) syntactical constructs.
These abstractions are directly supported by our generic modeling tool [GME 00].
To summarize, the core of our metamodeling language is the class diagram portion of
UML adorned with OCL constraint equations. Our UML constructs are (visually)
decorated to indicate the use of other fundamental modeling abstractions [GME
00][Nordstrom 99b].

4.2 Metamodel syntax: SM

Our metamodel syntax is essentially the same as that of UML class diagrams and
OCL expressions. Additional, non-UML syntactical constructs are used for two
purposes: (1) indicate the use of other fundamental modeling abstractions (e.g.
module interconnection), and (2) control how the domain model is to be visualized.
Their specific capabilities and concrete syntax is discussed elsewhere [Nordstrom
99b].

4.3 Metamodel construction and semantics

We have created a metamodeling tool that supports the visual construction of
metamodels [Ledeczi 99]. The metamodeler uses this tool to first construct the core
metamodel (using UML class diagram) and then embellishes it with special “markers”
to specify other properties of the domain modeling language that couldn’t be
expressed using the class diagram. Additionally, the metamodeler can specify
constraints (using OCL expressions) that capture assertions that must be true for the
domain models to be semantically correct.
The meaning (i.e. the semantics) of a metamodel is defined through a domain-
modeling tool. We use the following pragmatic definition for the semantics of a
metamodel: A metamodel is a program that, when “executed”, configures a generic
modeling environment to support a domain-specific modeling language. The domain-
specialized instance of the generic modeling environment allows only the creation of
syntactically and semantically correct domain models, as defined by the metamodel.
This concept is illustrated on Figure 4 below. Interestingly, this principle and
approach makes possible a very high degree of reuse in the modeling tools. In fact, we
are using the same generic modeling environment as the foundation tool for
metamodeling and domain modeling. We have a meta-metamodel that configures the
environment to support metamodeling. Thus, we can perform “second-order”
modeling as well: we can extend our metamodeling language (if so desired), although
this typically necessitates changes in the generic modeling environment as well.
It is worthwhile to see how metamodeling concepts map into the specific capabilities
of the domain-modeling environment. Embellished UML classes are turned into
atoms (primitive, iconic components of a drawing that have no structure, only
attributes), models (complex diagrammatic constructs that have structure and
attributes, and contain atoms, models, and connections), and connections (attributed
connectors on the diagrams that relate precisely two atoms or models). There are a
few other modeling constructs: references, conditionals, etc., and the interested reader
is referred to the detailed documentation of our tools [GME 00]. The metamodel

specifies the composability constraints on these objects. If a metamodel class
embellished as a “model” aggregates another class embellished as an “atom”, that
means that the domain models may contain atoms of that type. This semantics is
enforced in the domain-modeling environment when the user attempts to add an atom
to a model. Connections are derived from associations on the UML diagram: a
connector is legal between any two domain objects (model or atom), whose original
classes in the UML class diagram are connected (i.e. associated). Further details of
the interpretation of the UML class diagram as a configurator for domain-modeling
can be found in [Nordstrom 99b].

DOMAIN MODELER’S TOOLS

METAMODELER’S TOOLS

MetaModeling
Environment

Domain-Modeling

Environment

MetaModel
of

Domain

creates

Domain-
Specific
Models

creates

configures

Figure 4: Metamodeling and Domain Modeling

The constraints specified in metamodels (using OCL) are checked at domain model
construction time. An OCL expression is a predicate that can be evaluated in the
context of the current domain model being constructed. When the predicate evaluates
to FALSE, it is an indication of a violation of the static semantics of the domain
modeling language by the model under construction.
This technique is best illustrated by a simple example. Consider the following
metamodel (Figure 5) of a Hose, where the attribute threadSize is used to model
the size of the male and female connectors at the ends of the Hose. A Hose can be
connected to others to form a chain via HoseConnections. Obviously, the
connection has a source and a destination hose.
When connected together, each end of a Hose plays the role of src or dst. Since
the multiplicity of each association end is zero or one, this implies that each end of a
Hose can connect to at most one other Hose. Let us assume that we have two
additional constraints on connecting Hoses together. First, both Hoses must have
the same threadSize, and second, a Hose can’t connect to itself. Note that neither

of these constraints can be stated using only UML class diagrams. We specify these
constraints using OCL, as shown below:

HoseConnection.allInstances->

forAll(c|c.src.threadSize = c.dst.threadSize)

HoseConnection.allInstances->forAll(c|c.src <> c.dst)

When the domain modeler edits a domain model, these expressions are evaluated, and
an error is signaled when they fail.

Hose

threadSize:Int

src

dst

0..1

0..1

HoseConnection

Figure 5: Metamodel of Hoses and HoseConnections

4.4 Metamodel semantics and domain model semantics: IM and ID

The semantics of a metamodel as discussed above is limited to an interpretation in the
context of the generic modeling environment. This allows us build domain-specific
models that are syntactically and semantically correct, but not much else. We want to
build a system from the domain models and determine properties of that system via
various engineering tools. The domain models play a crucial role, as they are the
subject of (or input to) various analysis and synthesis procedures. These procedures
assign a dynamic semantics to the domain models.
Specifically, the dynamic —or operational— semantics of a domain model is
determined in two steps in our systems [Sztipanovits 97][Sztipanovits 95]. To begin
with, we assume that an execution platform is available, which has an “instruction
set” with clearly defined semantics. The platform can be an analysis engine (e.g. a
simulator package), or an execution environment (e.g. a real-time operating system),
or any other operational computational system. In step one, the domain models are
processed by a software component called the model interpreter that transforms the
models into the “instruction set” of the execution platform. In the second step, the

execution platform executes that output of the first step. Thus, the domain model
semantics, ID, is realized by a transformation engine and an execution engine. This
process is illustrated on Figure 6.

DOMAIN
MODELS

MODEL
INTERPRETER

EXECUTION
PLATFORM

“EXECUTABLE”

Transformation
phase

Execution phase

Figure 6: Assigning semantics to domain models

It seems natural that the semantics of domain models should also be captured in the
metamodel of the domain. That is, IM is to map a particular metamodel into a specific
ID that determines exactly how a model interpreter works and how the execution
platform processes the result of the transformation phase. As discussed above, the
metamodel should not only specify the ontology, syntax, and static semantics of the
domain models, but also their interpretation: their dynamic semantics. In our
approach, the latter involves the formal specification of the execution platform and
that of the transformation of domain models into the “instruction set” of the execution
platform.
Currently, we are conducting research activities to address the formal specification of
the dynamic semantics of domain models. The above two-phase scheme has been
applied in many applications, by hand-crafting the model interpreters for specific
execution platforms. However, this is a difficult and error-prone process. Developing
a formal language for capturing the properties of the model transformation and the
execution platform, and developing the semantics of that language (i.e. IM) will allow
us to speed up the development of domain-specific modeling languages and make
their interpretation mathematically precise. Some of our preliminary work on the
theoretical foundations of formalizing these specifications can be found in [Karsai
98].

5 Comparison with other approaches

Many concepts and techniques in our approach are based on groundwork done by a
large community of modeling experts, academic and industrial researchers. The use of
metamodels for defining modeling concepts and domains can be found in many

proposed engineering standards. For example, CDIF [CDIF 00] proposes the use of
the four-layer modeling approach. The static semantics of UML [UML 97b] is
specified using a similar approach, using UML and OCL as its own metalanguage.
Metamodeling is an idea that has been addressed in many research workshops and
programs (e.g. [Metamodeling 95] and [Asilomar 99]). Some of the relevant research
activities and industry efforts are related to integrating data from various sources (e.g.
MetaData coalition [MDC 00]).
In comparison, our effort has focused on developing meta-level tools —modeling
techniques, modeling environments, metamodel interpreters, etc.— that associate a
highly pragmatic and operational semantics to the metamodel. Furthermore, our
research is addressing the specific needs of CBS, where domain-specific modeling
languages are often given, and we have to integrate them with other domain-specific
modeling approaches.

6 Conclusions and future work

The field of CBS is already very large but growing, and it requires new tools and
more formal techniques for the analysis and synthesis of these systems. Typically, a
number of formal domain-specific modeling languages are needed for the precise
specification and efficient design and implementation of computer-based systems.
Our two-level approach to the specification of domain-specific modeling languages
(DSML) and modeling environment generation has several advantages. By specifying
the entities, relationships, attributes, and constraints at the metamodeling level, the
DSML can be described with mathematical precision, can be safely evolved over
time, and can be used to configure a generic modeling environment for use in
designing CBS within a particular domain. Once configured, the domain modeling
environment ensures valid model creation through the use of constraint specifications
obtained from the metamodel, enforcing the formal static semantics of the domain at
model editing time. Furthermore, if the metamodel captures the specification of the
mapping of domain models into the “instruction-set” of an execution platform, it can
be used to automatically synthesize a transformation engine to facilitate that mapping.
Using the metamodeling technology described in this paper domain-specific modeling
tools have been created, and have been in constant use for many years, in many
engineering application areas and domains [ISIS 00]. The tools typically feed various
analysis and synthesis components that perform design-time analysis and/or
synthesize executable systems. Our current work focuses on a more efficient method
for mapping the abstract syntax of a metamodel onto the graphical idioms of the
generic modeling environment and editing mechanisms within this environment. As
indicated in the paper, the metamodel should contain specifications of model
interpretation along with the syntax and ontology specifications. Active research is
ongoing into the formation, representation, and interpretation of such specifications.

Acknowledgements

The DARPA/ITO EDCS program (F30602-96-2-0227) and the DARPA/ITO SEC
program (F33615-99-C-3611) has supported, in part, the activities described in this
paper.

References

[Sztipanovits 97] Janos Sztipanovits and Gabor Karsai, “Model-Integrated

Computing,” IEEE Computer, pp. 110-112, April, 1997.
[Ledeczi 99] Ledeczi A., Maroti M., Karsai G., Nordstrom G.: "Metaprogrammable

Toolkit for Model-Integrated Computing", Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference, Nashville, TN, March, 1999.

[Nordstrom 99a] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi, A.:
"Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling
Environments", Proceedings of the IEEE ECBS'99, Nashville, TN, April, 1999.

[Nordstrom 99b] Nordstrom G.: "Metamodeling - Rapid Design and Evolution of
Domain-Specific Modeling Environments", Ph.D. Dissertation, Vanderbilt
University, 1999.

[UML 97a] UML Semantics, ver. 1.1, Rational Software Corporation, et al.,
September 1997.

[Karsai 98] Karsai, G., et al.: “Towards Specification of Program Synthesis in Model-
Integrated Computing", Proceedings of the IEEE ECBS’98 Conference, 1998.

[UML 97b] UML Summary, ver. 1.0.1, Rational Software Corporation, March, 1997
[Metamodeling 95] Metamodeling in OO (OOPSLA’95 Workshop) October 15, 1995,

http://saturne.info.uqam.ca/Labo_Recherche/Larc/MetamodelingWorkshop/meta
modeling-agenda.html

[Asilomar 99] 43rd Annual Meeting of the International Society for Systems
Sciences, at the Asilomar Conference Center, Pacific Grove, California, June 26
to July 2, 1999, http://www.isss.org/1999meet/sigs/sigmodel.htm

[Sztipanovits 95] Sztipanovits, J., et al.: “MULTIGRAPH: An Architecture for
Model-Integrated Computing,” Proceedings of the IEEE ICECCS’95, pp. 361-
368, Nov. 1995.

[OCL 97] Object Constraint Language Specification, ver. 1.1, Rational Software
Corporation, et al., Sept. 1997.

[GME 00] Generic Modeling Environment documents,
http://www.isis.vanderbilt.edu/projects/gme/Doc.html

[CDIF 00] CDIF Meta Model documentation.
http://www.metamodel.com/cdif-metamodel.html

[MDC00] MetaData coalition. http://www.mdcinfo.com/
[ISIS 00] Model-Integrated Computing project documents,

http://www.isis.vanderbilt.edu/projects/

