
Graph Transformations in OMG’s Model-Driven
Architecture

Gabor Karsai1 and Aditya Agrawal1

Institute for Software Integrated Systems (ISIS),
Vanderbilt University, Nashville, TN, USA

{gabor.karsai, aditya.agrawal }@vanderbilt.edu
http://www.isis.vanderbilt.edu

Abstract. The Model-Driven Architecture (MDA) vision of the Object Man-
agement Group offers a unique opportunity for introducing Graph Transforma-
tion (GT) technology to the software industry. The paper proposes a domain-
specific refinement of MDA, and describes a practical manifestation of MDA
called Model-Integrated Computing (MIC). MIC extends MDA towards domain-
specific modeling languages, and it is well supported by various generic tools that
include model transformation tools based on graph transformations. The MIC
tools are metaprogrammable, i.e. they can be tailored for specific domains using
metamodels that include metamodels of transformations. The paper describes the
development process and the supporting tools of MIC, and it raises a number of
issues for future research on GT in MDA.

Graph grammars, graph transformations, Model-Integrated Computing, domain-
specific modeling languages, model-driven architecture, formal specifications.

1 The MDA Vision

The Model-Driven Architecture initiative of OMG has put model-based approaches
to software development into focus. The idea of creating models of software artifacts
has been around for quite some time. However, this is the first time when mainstream
software developers are willing to embrace the concept and demand tools that support
this process. MDA is a “good thing” because it helps us develop software on a higher
level of abstraction and - hopefully - will provide a “toolbox” that helps to keep the
monster of complexity in check. This seems justified, as one can envision that multiple,
yet interconnected models that represent requirements, design, etc. on different levels
of abstraction, will offer a better way to work on complex software than today’s UML
models (used often only for documentation) and source code (spread across thousands
of files).

Naturally, we need models to enact MDA; multiple, different kinds of models. Mod-
els capture our expectations (“requirements”), how the software is actually constructed
(“design”), what kind of infrastructure the software will run on (“platform”), and other
such details. There are - at least - two important observations that we can make about
these models: (1) they are (or should be) linked to each other, (2) models can often be



computed from each other via model transformation processes. Among the advocates
of MDA an agreement seems to be forming that model transformations play a crucial
role and tool support is needed, but this need is often understood in the context of PIM-
to-PSM mappings only.

MDA introduces the concepts of the Platform-Independent Models (PIM), and Platform-
Specific Models (PSM). The rationale for making this distinction can be found in the
requirement that a model-driven development process must be platform-independent,
and the resulting software artifacts must exist in a form that allows their specializations
(perhaps optimization) for different kinds of software platforms (e.g. CORBA CCM,
.NET and EJB). Hence, PIM is a representation of a software design, which captures
the essence and salient properties of the design, without platform-specific details, while
the PSM is an extended, specialized representation that does include all the platform-
specific details. The two models are related through some transformation process that
can convert a PIM to its semantically equivalent PSM.

2 Refining the MDA Vision

While the MDA vision provides a roadmap for model-based software development, we
can and must step beyond the “canonical MDA”, where PSM-s (which are closed, prac-
tical implementations on a particular platform) are automatically created from PIM-
s (which are closer to abstract design) via transformations (which capture platform-
specific details). We argue that this “one-shot” view of transformations is very lim-
ited, and there is a much broader role for transformations. We envision a model-driven
process where engineers develop multiple, interlinked models that capture the vari-
ous aspects of the software being produced, and, at the same time, they also develop
transformations that relate models of different kind to each other, and apply these trans-
formations whenever necessary. Transformations become “bridges” that link models of
different nature, and maintain consistency between models: when an “upstream” model
is changed (by the designer or by a tool), the “downstream” model is automatically
updated.

But the question arises: Where are the models coming from and what do they exactly
capture? We argue that models should capture the various aspects of software design in
a domain-specific manner. Domain-specificity in development is being widely recog-
nized as a potential way of increasing productivity in software engineering. The idea
is simple: instead of having a programmer constantly translate domain-specific knowl-
edge into low-level code, first a “language” is built for the domain, next a translator is
created that maps the language into other, possibly executable artifacts, and then the
software products are built in the form of domain-specific models, which are then often
transformed into code. The goal is to raise the level of abstraction to a level such that
programming happens closer to the application domain and away from the implemen-
tation domain. Arguably, the model-driven process offers a natural habitat for realizing
domain-specific software development, and we can call this integration of concepts
from MDA and domain-specific development as Model-Integrated Computing [1], or
Domain-Specific Model-Driven Architecture.



Definition: MIC is a domain-specific, model-driven approach to software devel-
opment that uses models and transformations on models as first class artifacts, where
models are sentences of domain-specific modeling languages (DSML-s). MIC captures
the invariants of the domain, the fixed constructs of the DSML-s (i.e. the “grammar”),
and the variabilities of the domain in the models (i.e. the “sentences”).

MIC advocates development in a linguistic framework: the developer should define
a DSML (including a transformations that interpret its “sentences”), and then use it to
construct the final product: the software. This approach to software development brings
forward some questions such as (1) how to define new languages, and (2) how define
transformation tools for those languages.

3 Tools for Domain-Specific Model-Driven Architecture: MIC

First, we need a language to formally and precisely define DSML-s. Formally, a DSML
is a five-tuple of concrete syntax (C), abstract syntax (A), semantic domain (S) and
semantic and syntactic mappings (MS , andMC) [18]:

L = {C,A, S,MS ,MC} (1)

The concrete syntax (C) defines the specific (textual or graphical) notation used
to express models, which may be graphical, textual or mixed. The abstract syntax (A)
defines the concepts, relationships, and integrity constraints available in the language.
Thus, the abstract syntax determines all the (syntactically) correct “sentences” (in our
case: models) that can be built. (It is important to note that the abstract syntax includes
semantic elements as well. The integrity constraints, which define well-formedness
rules for the models, are frequently called “static semantics”.) The semantic domain
(S) is usually defined by means of some mathematical formalism in terms of which
the meaning of the models is explained. The mappingMC : A → C assigns concrete
syntactic constructs (graphical, textual or both) to the elements of the abstract syntax.
The semantic mappingMS : A→ S relates syntactic constructs to those of the semantic
domain. The definition of the (DSM) language proceeds by constructing metamodels
of the language (to coverA andC), and by constructing a metamodel for the semantics
(to coverMC andMS).

3.1 Defining the syntax

A meta-programmable visual modeling environment, GME (see [2] for details)is avail-
able that provides a language called “MetaGME” for defining the abstract and concrete
syntax of DSML-s. The abstract syntax is specified using a UML class diagram [4] edi-
tor that captures the abstract syntax in the form of a diagram, and static semantics in the
form of OCL [11] expressions. The metamodel of MetaGME (i.e. the meta-metamodel)
is MOF compliant [3]. Note that the UML class diagram is used to represent a “gram-
mar” whose sentences are the “object graphs” that conform to it. Concrete syntax is
captured in MetaGME using idioms: patterns of classes and stereotypes, which have
a have a specific meaning for the GME visualization and editing engine. Currently the



GME editor supports a fixed set of visual modeling concepts. In the future, GME will be
changed to enable adding modeling concepts and new visualization and manipulation
techniques. Once the abstract and concrete syntax are defined, i.e. the metamodel of
the language is built, a MetaGME “interpreter” translates this metamodel into a format
that (the generic) GME uses to morph itself into a domain-specific GME that supports
that (and only that) language which is defined by the metamodel. This GME instance
strictly enforces the language “rules”: only models that comply with the abstract syntax
and the static semantics can be built. Figure1 shows an illustrative metamodel and a
compliant model.

Fig. 1.Metamodel and model in MIC

3.2 Defining the semantics

For mapping the domain specific models into a semantic domain we have chosen a
pragmatic approach: we assume that there is always a “target platform” whose seman-
tics is well-known. This approach defining semantic: “semantics via transformations,”
has been used in the past for the formal specification of semantics [8]. Note that the
target platform also has an abstract syntax (with static semantics), and the transforma-
tion between the domain-specific models and target platform models establishes the
semantics of the DSM-s in terms of the target models. One can observe that concep-
tually this is the same process employed in MDA’s PIM to PSM transformation: the
transformation provides semantics to platform-independent models via their mapping
to platform-specific models. In MIC, just like in MDA, transformations play a crucial
role: they specify the (dynamic) semantics of domain-specific models.

On a more general note, one can observe that in a model-based development process
transformations appear in many, different situations. A few representative examples are
as follows:



– Refining the design to implementation; this is the basic case in the PIM/PSM map-
ping.

– Pattern application; expressing design patterns as locally applied transformations
on the software models [10, 13].

– Aspect weaving; the integration of aspect code into functional code is a transfor-
mation on the design [17].

– Analysis and verification; analysis algorithms can be expressed as transformations
on the design [20].

One can conclude that transformations can and will play an essential role, in general,
in model-based development, thus there is a need for highly reusable model transfor-
mation tools. These tools must be generic, in our terms: meta-programmable; i.e. their
function should be determined by a “meta-program”, which defines how models are
transformed.

There exist well-known technologies today that seem to satisfy these requirements,
and do not require sophisticated metamodeling: for instance XML and XSLT [12]. XML
provides a structured way to organize data (essentially as tagged/typed data elements,
organized in a hierarchy and untyped references that cut across the hierarchy), while
XSLT provides a language to define transformations on XML trees. However, XSLT is
not adequate for implementing sophisticated model transformations: (1) it lacks a type
system, (2) it does not support reasoning about transformations, (3) and its performance
is often not sufficient for practical development [19].

3.3 Defining Semantics via transformations

We have created a model transformation system called “Graph Rewriting and Transfor-
mation” (GReAT). GReAT consists of a model transformation language called UML
Model transformer (UMT), a virtual machine called Graph Rewrite Engine (GRE), a
debugger for UMT called Graph Rewriting Debugger (GRD) and a Code Generator
(CG) that converts the transformation models into efficient, executable code [6, 7].

In UMT transformations are specified on metamodel elements. This helps to strongly
type the transformations and ensures the syntactic correctness of the result of the trans-
formations, within the specification. The transformation rules consist of a graph pattern
(which is matched against an input graph), a guard condition (a precondition, which is
evaluated over the matched subgraph), a consequence pattern (which expresses the cre-
ation and deletion of target graph objects), and a set of attribute mapping actions that are
used to modify the attributes of input or target objects). These transformations specify
the mapping of input models (i.e. the input “graph”) to target models (i.e. the “output
graph”). For efficiency reasons rewriting rules accept “pivot” points: initial bindings for
pattern variables. This reduces the search in the pattern matching process (effectively
reducing it to matching in a rooted tree). One can also explicitly sequence the execution
of the rules, and sequential, parallel, and conditional composition of the rules is also
available.

GRE works as an interpreter: it executes transformation programs (which are ex-
pressed in the form of transformation metamodels) on domain-specific models to gen-
erate target models. GRE is slow compared to hand-written code but is still useful while



creating and modifying the transformation. The GRD provides debugging capabilities
on top of GRE such as setting break points, single step, step into, step out and step over
functions. A visual front end to the debugger is also available.

After the transformations have been created, debugged and tested the Code Gener-
ator (CG) can be used to generate efficient code that executes the transformations. The
generated code improves the performance of the transformations by at least two orders
of magnitude, early experiments show. An in-depth coverage of the GReAT system is
provided in the next section.

4 The GReAT Model Transformation System

This section provides a description of the details of the GReAT tool. First, the transfor-
mation language is described, followed by a description of the GRE.

4.1 The UML Model Transformer (UMT) Language

UMT consists of three sub languages: (1) the pattern specification language, (2) the
graph rewriting language, and (3) the control flow language.

4.2 The Pattern Specification Language

At the heart of a graph transformation language is the pattern specification language
and the related pattern matching algorithms. The pattern specifications found in graph
grammars and transformation languages [6, 7, 22, 23] do not scale well, as the entire
pattern to be matched has to be enumerated. The pattern matching language provides
additional constructs for the concise yet precise description of patterns. String matching
will be used to illustrate representative analogies.

Patterns in most graph transformation languages have a one-to-one correspondence
with the host graph. Consider an example from the domain of textual languages where
a string to match starts with an ’s’ and is followed by 5 ’o’-s. To specify such a pattern,
we could enumerate the ’o’-s and write “sooooo”. Since this is not a scalable solution,
a representation format is required to specify such strings in a concise and scalable
manner. One can use regular expressions: for strings we could write it as “s5o” and
use the semantic meaning that o needs to be repeated 5 times. The same argument
holds for graphs, and a similar technique can be used. Cardinality can be specified for
each pattern vertex with the semantic meaning that a pattern vertex must match n host
graph vertices, where n is its cardinality. However, it is not obvious how the notion of
cardinality truly extends to graphs. In text we have the advantage of a strict ordering
from left to right, whereas graphs do not possess this property.

In figure 2(a) we see a pattern having three vertices. One possible meaning could
be tree semantics, i.e., if a pattern vertex pv1 with cardinality c1 is adjacent to pattern
vertex pv2 with cardinality c2, then the semantics is that each vertex bound to v1 will be
adjacent to c2 vertices bound to v2. These semantics when applied to the pattern gives
figure2(b). The tree semantics is weak in the sense that it will yield different results for



Fig. 2.Pattern with different semantic meanings

different traversals of the pattern vertices and edges and hence, it is not suitable for our
purpose.

Another possible unambiguous meaning could use set semantics: consider each pat-
tern vertex pv to match a set of host vertices equal to the cardinality of the vertex. Then
an edge between two pattern vertices pv1 and pv2 implies that in a match each v1, v2
pair should be adjacent, where v1 is bound to pv1 and v2 is bound to pv2. This se-
mantic when applied to the pattern in figure2(a) gives the graph in figure2(c). The set
semantics will always return a match of the structure shown in figure2(c), and it does
not depend upon factors such as the starting point of the search and how the search is
conducted.

Due to these reasons, we use set semantics in GReAT and have developed pattern-
matching algorithms for both single cardinality and fixed cardinality of vertices.

4.3 Graph Transformation Language

Pattern specification is just one important part of a graph transformation language.
Other important concerns include the specification of structural constraints in graphs
and ensuring that these are maintained throughout the transformations [6]. These prob-
lems have been addressed in a number of other approaches, such as [22, 23].

In model-transformers, structural integrity is a primary concern. Model-to-model
transformations usually transform models from one domain to models that conform to
another domain making the problem two-fold. The first problem is to specify and main-
tain two different models conforming to two different metamodels, simultaneously. An



even more relevant problem to address involves maintaining associations between the
two models. For example, it is important to maintain some sort of references, links, and
other intermediate values required to correlate graph objects across the two domains.

Our solution to these problems is to use the source and destination metamodels
to explicitly specify the temporary vertices and edges. This approach creates a unified
metamodel along with the temporary objects. The advantage of this approach is that
we can then treat the source model, destination model, and temporary objects as a sin-
gle graph. Standard graph grammar and transformation techniques can then be used to
specify the transformation.

The rewriting language uses the pattern language described above. Each pattern
object’s type conforms to the unified metamodel and only transformations that do not
violate the metamodel are allowed. At the end of the transformation, the temporary ob-
jects are removed and the two models conform exactly to their respective metamodels.
Our transformation language is inspired by many previous efforts, such as [6, 7, 22, 23]

The graph transformation language of GReAT defines a production (also referred
to as rule) as the basic transformation entity. A production contains a pattern graph
(discussed above) that consists of pattern vertices and edges. Each object in the pattern
graph conforms to a type from the metamodel. Each object in the production has another
attribute that specifies the role it plays in the transformation. A pattern can play the
following three, different roles:

1. Bind: Match object(s) in the graph.
2. Delete: Match object(s) in the graph, then remove the matched object(s) from the

graph.
3. New: Create new object(s) (provided the pattern matched successfully).

The execution of a rule involves matching every pattern object marked either bind
or delete. If the pattern matcher is successful in finding matches for the pattern, then for
each match the pattern objects marked delete are deleted from the match and objects
marked new are created.

Sometimes the pattern alone is not enough to specify the exact graph parts to match
and we need other, non-structural constraints on the pattern. An example for such a con-
straint is: “the value of an (integer) attribute of a particular vertex should be within some
limits.” These constraints or pre-conditions are captured in a guard and are written using
the Object Constraint Language (OCL) [11]. There is also a need to provide values to
attributes of newly created objects and/or modify attributes of existing object. Attribute
Mapping is another ingredient of the production: it describes how the attributes of the
“new” objects should be computed from the attributes of the objects participating in
the match. Attribute mapping is applied to each match after the structural changes are
completed.

A production is thus a 4-tuple, containing: a pattern graph, mapping function that
maps pattern objects to actions, a guard expression (in OCL), and the attribute mapping.

4.4 Controlled Graph Rewriting and Transformation

To increase the efficiency and effectiveness of a graph transformation tool, it is essential
to have efficient implementations for the productions. Since the pattern matcher is the



most time consuming operation, it needs to be optimized. One solution is to reduce
the search space (and thus time) by starting the pattern-matching algorithm with an
initial context. An initial context is a partial binding of pattern objects to input (host)
graph objects. This approach significantly reduces the time complexity of the search by
limiting the search space. In order to provide initial bindings, the production definition
is expanded to include the concept of ports. Ports are elements of a production that are
visible at a higher-level and can then be used to supply initial bindings. Ports are also
used to retrieve result objects from the production (and pass them along to a downstream
production).

An additional concern is the application order of the productions. In graph gram-
mars there is no ordering imposed on productions. There, if the pattern to be matched
exists in the host graph and if the pre-condition is met then the production will be exe-
cuted. Although this technique is useful for generating and matching languages, it is not
efficient for model-to-model transformations that are algorithmic in nature and require
strict control over the execution sequence. Moreover, a well-defined execution sequence
can be used to make the implementation more efficient.

There is a need for a high-level control flow language that can control the application
of the productions and allow the user to manage the complexity of the transformation.
The control flow language of GReAT supports the following features:

– Sequencing: rules can be sequenced to fire one after another.
– Non-determinism: rules can be specified to be executed “in parallel”, where the

order of firing of the parallel rules is unspecified.
– Hierarchy: Compound rules can contain other compound rules or primitive rules.
– Recursion: A rule can call itself.
– Test/Case: A conditional branching construct that can be used to choose between

different control flow paths.

4.5 MIC Tools

Figure3 shows the MIC tool suite included in GReAT, and how the tools rely on meta-
models. In order to set up a specific MIC process one has to create metamodels for
the (input) domain, the (output) target, and the transformations. One can then use the
meta-level tools (such as the MetaGME interpreter and the Code Generator) to build
a domain specific model editor and a model transformation tool. The model editor is
then used to create and modify domain models, while the transformation tool is used to
convert the models into target models.

We believe a crucial ingredient in the above scheme is the meta-programmable
transformation tool: GRE that executes a transformation metamodel (as a “program”)
and facilitates the model transformation. Using the concepts and techniques of graph
transformations allows not only the formal specification of transformations, but, ar-
guably, reasoning about the properties of the transformations as well.

5 Example

The tools described above can also be used to implement PIM to PSM transformations
of MDA as illustrated through the following example. The example shows the transfor-



Fig. 3.Tools of Domain-Specific MDA

mation of software designs from a more abstract, generic model to a model with more
specialized components. Figure4(a) shows the platform-independent model: a UML
class diagram. The model describes the entitiesPublisherandSubscriber, and the rela-
tionship between them. In this case the relationship specifies that multipleSubscribers
can subscribe to one of the multiple services provided by aPublisher.

Starting from the PIM, the transformer applies design patterns and adds further
implementation details to build a more detailed, platform-specific model (PSM). Fig-
ure 4(b) shows the refined model where there is only onePublisher(indicated by the
cardinality on thesubscribesassociation). This class could be implemented using the
Singletondesign pattern. ThePublisherclass creates a new, specificServantfor each
Subscriber (the Servants could be created using the “AbstractFactory” design pattern).
ThePublisheralso hands over theSubscriber’s location so that aServantcan notify its
Subscriberdirectly. Moreover, in this implementation, only oneServantis assumed to
be running at a time. Hence, for scheduling multiple servants theSchedulerclass has
been added to the PSM.

Transforming these models takes three steps. The first step is to transform allPub-
lishers into Servants. After the appropriate publishers have been created, aScheduler
must be created. Finally, the newPublisher (which will be the only one in the new
model) is created.

Figure5shows two levels of the transformation specification. Figure5(a), “MakePSMs”
specifies the order of execution of the transformation rules. Figure5(b), the specifica-
tion for the transformation that converts a publisher into a servant is shown. On the
bottom left side of figure5(b), thePublisherandSubscriberform the (PIM) pattern



Fig. 4.Platform-Independent Model and Platform-Specific Model



Fig. 5.Transformation rules to convert publisher subscriber PIM to PSM



to be matched, and on the right side theServant(PSM) denotes the new object to be
created.

6 Extending MIC towards a multi-model process

In the previous discussions on MIC we have focused on a single DSML and a single
target; similar to the simple PIM/PSM mapping. In a large-scale application of MIC,
however, a multitude of metamodels and transformations are needed. As discussed in
the introduction, models can capture requirements, designs, platforms (and many other
subjects), as well as the transformations between them. We envision that the next gen-
erations of software development tools are going to support this multi-model develop-
ment.

It is interesting to draw the parallel here with the design and development of very
large-scale integrated circuits. VLSI circuits are design using a number of languages
(VHDL being only one of them), and using transformation tools (datapath generators,
etc.) that “link” the various design artifacts [9]. It usually takes a number of steps to go
from a high-level representation of a design to the level of masks, and consistency and
correctness must be maintained across the levels. We believe that with consistent and
recursive application of MDA through the use of transformations, the software engi-
neering processes will be able to achieve the kind of reliability VLSI design processes
have achieved.

We envision that the developers who apply MIC develop a number of domain-
specific modeling languages. Modeling languages are for capturing requirements, de-
signs, but also platforms. It is conceivable that the engineer wants to maintain a hi-
erarchy of design models that represent the system on different levels of abstractions.
Lower-level design models can be computed from higher-level ones through a transfor-
mational process. Maintaining consistency across models is of utmost importance, but if
a formal specification of the transformation is available then presumably this can be au-
tomated. Note that model transformations are also models. Thus they can be computed
from higher-level models by yet another transformation, and, in fact, transformation
specifications can be derived also through a transformation process.

Naturally, the toolset introduced above need to be extended to allow this multi-
model MIC. Presumably models should be kept in a model database (or “warehouse”),
with which the developers interact. Transformations can be applied automatically, or
by the user. Transformation results may be retained, and/or directly manipulated by
the developer. We believe that an environment that supports this process should allow
multiple formalisms for visualizing and manipulating artifacts (“models”), and trans-
formation objects should ensure the coherency across the objects.

7 Relationship to OMG’s QVT

On can argue that the approach described aboveis MDA, instead of being an extension
of MDA. Indeed, the approach described above has all the ingredients of the MDA vi-
sion as described in [3], and recent papers pointed towards using UML as a mechanism
for defining a family of languages [21]. We fully agree with this notion, however we can



envision applications where the full flexibility and power of MIC is not worth the cost.
For example, “throw-away”, “use-it-once” applications may not require all the features
of MIC.

On the other hand, the MIC tools discussed above provide a way of implement-
ing the MDA concepts, including QVT, although they do not support everything, at
least not immediately. The reason is that we wanted to focus on the DSML-s and drive
the entire development process using domain-specific models, instead of the modeling
language(s) defined by UML. We were also concentrating on building configurable,
meta-programmable tools that support arbitrary modeling approaches.

8 Challenges and opportunities for Graph Transformations in the
MDA

Graph Transformation (GT) is powerful technology that may lead to a solid, formal
foundation for MDA. It offers a number of challenges and opportunities for further
research, as listed below.

1. GT as the bridge between the programmer’s intentions and their implementation.
The vision of Intentional Programming (from Charles Simonyi) is that software
should be built in the form of “intentions”: high-level abstractions specify what the
software needs to do, and explicit transformations that convert these intentions into
executable code. We believe GT is the perfect vehicle to realize this vision.

2. “Provably correct” software via provably correct GT-s. In many critical applica-
tions software reliability is of utmost importance, yet reliability is assured using
extensive testing and, to a very limited extent, through formal verification. Formal
specification of the transformations can lead to formal verification of the software
artifacts and may be able to provide some confidence in the generated software.

3. Non-hierarchical (de)composition supported by GT-s. Requirement analysis of-
ten leads to a non-hierarchical decomposition of the problem, and implementation
could also lead to non-hierarchical composition of the system. Perhaps the best
example for the latter is aspect-oriented programming. We argue that GT-s offer a
uniform framework for describing, representing, implementing and analyzing these
orthogonal (de)compositions.

4. Assurance of para-functional properties of the final SW. Especially in the field of
embedded systems, it is often necessary to calculate para-functional properties (like
schedulability, timeliness, performance, lack of deadlocks, etc.) of the system at
design time. We conjecture that some of these properties can be formally defined
and calculated using GT techniques.

5. Efficient implementations of GT. The usability of GT tools will determine success
of the GT technology. Efficient implementation algorithms need to be developed
such that the performance of GT based transformations is at acceptable levels and
is comparable to that of the equivalent, hand-written code.

6. GT tools and support as an integral part of the software development process. A
large number of IDE-s are used in software development today, some with ex-
tremely well-defined processes. These IDE-s (typically) do not handle GT-s (yet).



Again, the industrial success of GT-s will depend on how well GT tools are inte-
grated with existing tools and processes.

7. Design tool integration via GT. Many development processes require a large num-
ber of (possibly heterogeneous) tools. This implies a need for generic tool inte-
gration solutions [16]. We claim that GT-s offer an opportunity for implementing
these solutions and provide a highly effective technology for the rapid creation of
integrated tools.

8. Teaching software engineers about GT as a programming paradigm (design-time
and run-time). Currently, GT technology is not a mainstream software engineering
technology. One potential cause of this is the lack of trained software engineers
whocanuse GT as an engineering tool. There is a need for courses and tutorials on
this topic, and the training should cover the use of GT-s for both design-time (i.e.
transformation on the software design artifacts), and run-time (i.e. GT on domain-
specific data structures, to implement some application functionality).

9 Summary

We claim that a sophisticated model-driven software development process requires mul-
tiple, domain-specific models. Building transformation tools that link these models, by
mapping them into each other (including mapping into executable) form a crucial tool
component in the process, and graph transformations offer a fundamental technology
for these transformations. We here briefly introduced a domain-specific model-driven
process and its supporting tools, some of them based on graph transformations, and
summarized the major concepts behind it.

The described toolset exists in a prototype implementation today and has been used
in small-scale examples. However, it needs to be extended towards a multi-model pro-
cess, where a wide variety of models (and modeling languages) can be used. This ex-
tension is the subject of ongoing research.

10 Acknowledgements

The NSF ITR on “Foundations of Hybrid and Embedded Software Systems” has sup-
ported, in part, the activities described in this paper. The effort was also sponsored
by DARPA, AFRL, USAF, under agreement number F30602-00-1-0580.The US Gov-
ernment is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright thereon. The views and conclusions contained therein
are those of authors and should not be interpreted as necessarily representing the offi-
cial policies and endorsements, either expressed or implied, of the DARPA, the AFRL
or the US Government. Tihamer Levendovszky and Jonathan Sprinkle have contributed
to the discussions and work that lead to GReAT, and Feng Shi has written the first im-
plementation of GReAT-E. A shortened, preliminary version of this paper has appeared
in the WISME workshop at the UML 2003 conference.



References

1. J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, IEEE Computer, Apr. 1997,
pp. 110-112

2. A. Ledeczi, et al., “Composing Domain-Specific Design Environments”, IEEE Computer,
Nov. 2001, pp. 44-51.

3. “The Model-Driven Architecture”, http://www.omg.org/mda/, OMG, Needham, MA, 2002.
4. J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language Reference Man-

ual”, Addison-Wesley, 1998.
5. A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, G. Karsai, “Generative Programming via

Graph Transformations in the Model-Driven Architecture”, Workshop on Generative Tech-
niques in the Context of Model Driven Architecture, OOPSLA , Nov. 5, 2002, Seattle, WA.

6. Rozenberg G. (ed.), “Handbook on Graph Grammars and Computing by Graph Transforma-
tion: Foundations”; Vol.1-2. World Scientific, Singapore, 1997.

7. Blostein D., Scḧurr A., “Computing with Graphs and Graph Transformations”, Software -
Practice and Experience 29(3): 197-217, 1999.

8. Maggiolo-Schettini A., Peron A., “Semantics of Full Statecharts Based on Graph Rewriting”,
Springer LNCS 776, 1994, pp. 265–279.

9. A. Bredenfeld, R. Camposano, “Tool integration and construction using generated graph-
based design representations”, Proceedings of the 32nd ACM/IEEE conference on Design
automation conference, p.94-99, June 12-16, 1995, San Francisco, CA.

10. A. Radermacher, “Support for Design Patterns through Graph Transformation Tools”, Ap-
plications of Graph Transformation with Industrial Relevance, Monastery Rolduc, Kerkrade,
The Netherlands, September 1999.

11. Object Management Group, “Object Constraint Language Specification”, OMG Document
formal/01-9-77. September 2001.

12. XSL Transformations, www.w3.org/TR/xslt.
13. Karsai G., “Tool Support for Design Patterns”, NDIST 4 Workshop, December, 2001. (Avail-

able from: www.isis.vanderbilt.edu).
14. U. Assmann, “How to Uniformly specify Program Analysis and Transformation”, Proceed-

ings of the 6 International Conference on Compiler Construction (CC) ’96, LNCS 1060,
Springer, 1996.

15. J. Gray, G. Karsai, “An Examination of DSLs for Concisely Representing Model Traver-
sals and Transformations”, 36th Annual Hawaii International Conference on System Sciences
(HICSS’03) - Track 9, p. 325a, January 06 - 09, 2003.

16. Karsai G., Lang A., Neema S., “Tool Integration Patterns, Workshop on Tool Integration in
System Developement”, ESEC/FSE , pp 33-38., Helsinki, Finland, September, 2003.

17. Uwe Assmann and A. Ludwig, “Aspect Weaving by Graph Rewriting”, In U. Eisenecker and
K. Czarnecki (ed.), Generative Component-based Software Engineering. Springer, 2000.

18. T. Clark, A. Evans, S. Kent, P. Sammut, “The MMF Approach to Engineering Object-
Oriented Design Languages”, Workshop on Language Descriptions, Tools and Applications
(LDTA2001), April, 2001

19. Karsai G., “Why is XML not suitable for Semantic Translation”, Research Note, ISIS,
Nashville, TN, April, 2000. (Available from: www.isis.vanderbilt.edu)

20. U. Assmann, “How to Uniformly specify Program Analysis and Transformation”, Proceed-
ings of the 6 International Conference on Compiler Construction (CC) ’96,LNCS 1060,
Springer, 1996.

21. Keith Duddy, “UML2 must enable a family of languages”, CACM 45(11), p, 73-75, 2002.
22. H. Fahmy, B. Blostein, “A Graph Grammar for Recognition of Music Notation”, Machine

Vision and Applications, Vol. 6, No. 2 (1993), 83-99.



23. G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special Issue on Graph Transformation Systems”,
Fundamenta Informaticae, Vol. 26, No. 3/4 (1996), No. 1/2, IOS Press (1995).


	Graph Transformations in OMG's Model-Driven Architecture
	Gabor Karsai cl@@auth, Aditya Agrawal

