
Structured Specification of Model Interpreters

Gabor Karsai
Institute for Software-Integrated Systems

Vanderbilt University
PO-Box 1829

Nashville, TN 37235,USA
gabor@vuse.vanderbilt.edu

Abstract

Model interpreters play an essential role in model-
integrated systems: they transform domain-specific models
into executable models. The state-ot-the-art of model
interpreter writing needs to be advanced to enhance the
reusability and maintainability of this software. This paper
presents an approach which makes this possible through
the use of structured specifications. These specifications
let the programmer express traversal strategies and
visitation actions in very high-level terms. From these
specifications efficient traversal code can be automatically
generated.

1. Introduction
Model-integrated computing [SZ97] relies on the
interpretation and use of domain-specific models in run-
time environments. The domain models can be considered
as objects that are mapped into run-time objects. The
mapping can take many forms, ranging from configuring
the attribute values of run-time objects to actual generation
of code that defines classes and creates instances of run-
time objects. This mapping process is performed by a
component called the model interpreter that acts as a
transformation engine. While the input of the interpreter is
known (the model objects), the output is difficult to define
in general: it can be, for instance, a text file, a list of
objects created in a running system, or a sequence of
messages in a distributed system. The exact nature of the
output of the interpreter is specific to the domain and the
run-time environment.
Writing a model interpreter is a non-trivial task. One has to
understand the structure of the models, (i.e. the data model
of the model database), the intricate details of the expected
output, and the relationship between the two. Next, this
understanding has to be translated into software that
performs the desired mapping. Additionally, the software
has to perform the transformation with reasonable
performance.

The model interpretation process is somewhat similar to
the back-end of compilers. The models capture
information in a structured form, typically in the form of
hierarchically organized objects. This graph of objects
should be traversed, perhaps transformed, and output
generated. While the process is very easy to describe in
general, it is highly non-obvious how it can be
implemented.
This paper shows a generic technique, which helps in the
writing of model interpreters by offering a high-level,
concise notation for capturing the relevant steps of an
interpreter in a structured form. The technique does not
generate the entire the model interpreter. This would be a
rather impossible task because of the widely different
outputs expected from an interpreter. Instead, it focuses on
the “mechanistic aspects” of model interpretation and
simplifies the task of the interpreter writer by generating a
large and uninteresting portion of the interpreter code
automatically.

2. Background
Model interpreters are transformation programs that walk a
graph (the model objects), and perform actions during this
process. This activity is, of course, performed routinely in
various software systems. Indeed, probably it is fair to say
that it is one of the most frequently occurring tasks in any
system that transforms data.

Attribute Grammars
The first and foremost application of graph traversal and
actions is the code generator part, the “back-end” , of
compilers [AH86]. After building the syntax tree from the
input text, compilers perform various analysis steps on the
data structure (typically for the purpose of semantic
checks), then traverse it and output the generated code.
Compiler research literature provides a great source for
efficient traversal and transformation algorithms. On the
other hand, the area of automatically generated compilers

provides some interesting technologies for the structured
specification of graph traversals.
One approach, as a widely and successfully used one, is
apparent: Attributed Grammars (AG) [AH86]. AGs,
invented by Knuth, tie semantic specification to the
syntactical rules of a programming language. Suppose the
syntax of a language is specified in the form of context
free grammar, with production rules, terminal and
nonterminal symbols, and a start symbol. Now the parser
stage of a compiler builds a syntax tree from the input.
This represents, in a tree form, what production rules have
been applied from the grammar, starting from the start
symbol. The application of these rules leads to the
sequence of terminal symbols, which is equal to the input
string. The syntax tree captures the syntactical structure of
the input to the compiler, if the input was syntactically
correct. Obviously, one grammatical production rule may
appear many times in the tree, showing how a nonterminal
(on the left side of the rule and at the local root in the tree)
was used to “generate” non-terminals and terminals (on the
right side of the rule and at the local leaves). With each
symbol in the grammar, we can associate a set of attribute
values, and in the rules we can define how these values are
to be calculated. Through these calculations attribute
values can depend on other attribute values, including
attribute values of other symbols. Because attributes are
attached to symbols in the production rules, they can be
considered as values associated with the nodes in the parse
tree. Attributes can be inherited or synthesized. The value
of a synthesized attribute is calculated from the attribute
values of the children of a node in the parse tree, while the
value of an inherited attribute is calculated from the
attribute values of the parent and the siblings of a node.
Note that the inherited/synthesized properties of attributes
implicitly define a data dependency among the attribute
values. This dependency implicitly describes a traversal
sequence on the nodes of the parse tree. Thus, attribute
specifications determine how the tree must walked, and
imply a visitation sequence for calculating attributes.
Circular dependencies lead to infinite loops in the
traversal, but these are the result of incorrect
specifications. One can also insert into the attribute
specifications any code to be executed when the traversal
is performed. From the attribute specifications a traversal
code can be generated that walks the tree and evaluates the
attributes in the necessary order.
To summarize, AGs provide very high-level specification
formalism for the traversal of a tree through the use of
dependency among the attributes. Unfortunately, while
intellectually appealing, AGs have very serious practical
limitations. For a specific traversal sequence, it is highly
non-trivial how the attributes should be set up and how
should they depend on each other. Sometimes one has to
introduce extra attributes just for forcing a particular kind
of traversal. Referencing to attributes that are calculated at
remote nodes in the parse tree is rather problematic. Thus,

while Attributed Grammars offer a very high-level
formalism for the structured specification of traversals of
graphs, their usability is limited.

Adaptive Programming
When object-oriented languages started to gain acceptance,
it has been observed that OO programs are structured very
differently than “ traditional” procedural programs [LIE96]
Specifically, it has been noted that OO programs follow a
pattern of collaborations where multiple objects of
different classes cooperate to achieve a certain goal.
Unlike in traditional approaches, complex behaviors are
implemented by a set of simpler behaviors distributed over
a set of classes of objects. This appears to be an essential
property of all object-oriented approaches. This structure is
both a benefit and a liability. It is beneficial because very
complex behaviors can be built from trivial ones, but it is a
liability because OO languages typically lack the
syntactical constructs to express them. Adaptive
Programming (AP) [LIE96] offers a solution, which also
provides relevant techniques for the model interpretation
problem as well. In AP, collaborations are expressed using
two specifications: class graphs and traversal strategy
graphs. Class Graphs describe what classes are available in
the system, and how they are related to each other through
inheritance and associations. Traversal Strategy Graphs are
subgraphs of Class Graphs that also specify what the
precise strategy is to traverse that subgraph. The strategy is
a very compact and high–level specification of the
traversal: it simply refers to the classes involved, omitting
all implementation details. For example, if class A is
associated with class B which is associated with class C, a
strategy can simply specify “ from A visit C” , without
mentioning intermediate classes. In addition to this
specification one can also include code in the strategy
which gets executed when the traversal happens. From the
class graph and the strategy graph specifications, a tool can
synthesize all the traversal code, which is distributed
across classes as methods. From each strategy graph a set
of methods is created (assigned to the classes), which
implement the strategy. The automatic generation of this
code removes the mundane tasks from the programmer:
iterating over lists, invoking methods on objects in the list,
and hand-coding the traversal of a quite complex graphs
with the help of small, distributed methods. The code also
incorporates the user-specified code fragments that are
executed during traversal. The technology has been
developed by Lieberherr and others, and has been termed
as “Adaptive Programming” (AP).
With respect to the specification of model interpreters, we
can recognize the relevance of AP as follows. AP solves
the task of traversal specification in a compact and
efficient way that has many applications in object-oriented
programs. The actual traversal code is synthesized, and the
user is not burdened with low-level details.

Intentional Programming
Intentional Programming, developed at Microsoft
Research [SIM96], offers another paradigm for program
development. The central thesis here is that software is
written as a collection of intentions, which are then refined
into actual implementations. The intentions capture what a
programmer wants to “say” in a particular context, in a
language independent manner. Once the intentions are
expressed, the programmer (or the development
environment) should refine those intentions into actual
implementation. Technically, intentions are intermediate
nodes in a parse tree. The refinement is expressed by
specifying how the intentional data structure should be
transformed into a structure that can be directly used in a
code generator. This refinement is currently expressed in
the form of actual code that performs the transformation.
IP shows similarities to model interpretation in many
respects. If the “models” stand for “ intentions” , the
transformation of those into implementations is the task of
the model interpreter. Unfortunately, the current
implementation of IP offers a very low-level interface for
implementing the transformation engines, i.e. their model
interpreters.

The Visitor Design Pattern
The Visitor design pattern [GOF95] codifies a prototypical
solution to a frequently occurring design problem: A graph
consists of nodes of heterogeneous types. We need to
traverse this graph, possibly multiple times, and perform
operations on the node. For example, the graph can be the
syntax tree generated in a compiler, and the actions can be
“optimize” or “generate code” . The solution is to
encapsulate the operations in a set of Visitor classes that
can visit nodes of specific types. Once a visitor is created,
it can be “handed to” a graph node, which will invoke the
proper visitation operation on the visitor. The graph node
should also incorporate the actual traversal operation: it
should “know” how its neighboring nodes should be
visited. As a design pattern, Visitor can be implemented in
many ways (none of which is supported directly by a tool
like an AP). The most obvious implementations have
serious shortcomings in terms of scalability, but the pattern
is a conceptually powerful technique.
The Visitor design pattern shows what is important:
separating structure (the graph) from the traversal of the
structure (the Visitor object), and the encapsulation of the
operations in the latter. However, it is merely a design
pattern, and thus in itself does not offer a way for the
structured, high-level specification of model interpreters.
From the above four background technologies one can
draw the following requirements for model interpreter
specification:

• There is a need for the formal, high-level specification
of the traversal. This specification should be the input

to a code generator that synthesizes the actual
traversal code.

• The traversal specification must be explicit (for
maintainability), and concise. All intermediate code
(for iterations, etc.) should be automatically
synthesized.

• There is a need for writing multiple interpreters for the
same structure. Just like one can have multiple visitors
for a syntax tree, one should be able to define multiple
interpretations for the same models.

• The traversal and the operations to be taken during
that traversal should encapsulated in classes. This
encapsulation offers a context, which can be built
dynamically as the traversal proceeds, and provides a
way for capturing the “state” of the traversal.

3. The approach
Based on the observations made above, the following
approach is proposed. When specifying a model
interpreter, the following components should be defined:

• Model structure. The model structure defines what
classes of model objects we have, and how they are
related to each other. One can use, for example, UML
class diagrams to express model structure. In this
paper a simple textual language is used.

• Traversals. Traversals capture how the models should
be traversed. The specification should address the
following question: If we are at node of type X, which
node do we go to next? These traversal specifications
can be made very concise (as shown in AP), and the
actual traversal code can be generated from them.
Traversals are objects that encapsulate the traversal
code fragments, and can also encapsulate state
information.

• Visitors. Visitors capture the actions to be taken when
visiting a node of a particular type. Visitors are also
objects that encapsulate the operations to be
performed, and they can also provide a context for the
traversal.

These three components can be encapsulated as classes, as
shown on Figure 3below.
 The Traversal and Visitor objects are also directly linked
to each other, and are operated in a co-routine like manner.
Suppose the Traverser starts at a specific type of model
node. Based on its specification, it determines how to
follow pointers emanating from that type of node and call
the visitor on the objects that the pointers are pointing to.
The visitor might take an action, and/or activate the
traverser to proceed from the accessed node. So the control
flow oscillates between the traverser and the visitor: the
traverser determines where to go next, the visitor “visits”
(i.e. takes actions) and can call back the traverser to
proceed further.

The model structure specification should capture what
kind of model classes are available, how they are
composed of simpler entities or other models, and how
they are associated with each other (beyond composition).
Models, entities, and relations might have attributes: key-
value pairs that capture non-structured information. Thus,
model structure can be easily specified using a standard
specification technique; for instance UML class diagrams
[FOW97]. For the sake of simplicity, we will use a simple;
entity-relationship based textual language for specification.
In the language, one can define entity types (which are
named collections of attributes), relation types (that relate
entities and models to each other), and model types (that
contain entities, relations and possibly models). All types
can have attributes and entity types, and model types can
be organized into inheritance hierarchies. Figure 2 below
shows a trivial specification. The specification introduces
an entity, a model, and a relation, respectively. The
relation is specified in terms of objects it relates (Signal to
Signal) and the name of roles they play in the relations (src
and dst).
Traversal specifications should answer the following
question: “ if we are at node of type X, where do we go
next?” The “next” should be an object that is reachable
from objects of type X. Thus it should be associated with
X either directly or indirectly, possibly through
inheritance. From “Compound” , for instance, one can
access each “Dataflow” object via the “ flows” association.
Thus, one traversal specification might be like “ from
Compound to flows” . This specification results in a code
fragment in the interpreter, which is invoked when one
wants to traverse a graph starting from a Compound node.
When specifying a traversal, one specifies what visiting
action to take indirectly: it is not explicit what to do, but
the traverser “expects” that a corresponding visiting action
is available. In a traversal specification one would also
want to visit multiple nodes. For example “ from
Compound to { locals, blocks, flows} ” might be a suitable
specification. As was mentioned above, model and entity

types can be organized in an inheritance hierarchy. In the
example, Compound is a Block, inheriting attributes, parts,
relations, and associations from the base type. When
traversal of a derived type is specified, it is useful for
specifying that the derived type objects should first be
traversed as a base type object, for instance: “from
Compound do Block to {locals, blocks,
flows}” . This capability simplifies the specifications,
because base class related traversals could be specified
only once, and then invoked from derived class traversals.

Visitor specifications should capture what should be done
when visiting a particular kind of object. There are
basically two options: either take a “user action” (i.e.
execute a piece of user-supplied code), or it can proceed
with the traversal (i.e. call the traverser with the object
being visited). These can be intermixed and/or omitted
completely. The visitor specification should thus
enumerate actions using the form:

at Dataflow <<USERCODE-1>> traverse
<<USERCODE-2>>

Figure 1:Components of a Model Interpreter

MODEL
STRUCTURE

TRAVERSALtraverse
s

VISITOR
visits

entity Signal {
 attr string name;
}
model Compound : Block {
 part LocalSignal locals;
 part Block blocks;
 rel Dataflow flows;
}

relation Dataflow {
 Signal src * <-> Signal dst *;
 -- constraints for connections
}

Figure 2: Example Model Structure
specification

Each clause after the type name is optional. The << and >>
are special brackets which surround user-defined code.
User-defined code can contain any C++ code to be
executed at the start of the visit (USERCODE-1), or at the
end of the visit (USERCODE-2).
A model interpreter generator can translate each traversal
specification into a method of a Traverser class. The
methods can take one parameter: a reference to the type of
model object where the traversal starts. The visitor
specifications can also be translated into methods of a
Visitor class, which gets one parameter: a pointer to the
object visited. One can even use the same name for the
methods (e.g. visit() for Visitor methods, and traverse() for
Traverser methods), because the C++ or Java overloading
mechanism can correctly resolve the call based on the type
of the parameter.
The overloading gives rise to an interesting capability: One
can supply extra formal parameters in traversal and visitor
specifications with the “origin point” of the action, and can
supply actual parameters when “calling” a visitor or a
traverser. An example is shown on Figure 3.

The parameters are simply added as extras for the
generated method’s parameter list, and, again, the
overloading mechanism will be used to select the correct
alternative.
User-defined actions can be added to the visitor
specifications, as indicated above, but occasionally it is
also useful to add them in traversal specifications. The
syntax for traversals allows this in the following way:

from Compound do Block << USERCODE-1 >>
 to << USERCODE-2 >> locals
 << USERCODE-3 >> ;

USERCODE-1, USERCODE-2 are executed in sequence,
and USERCODE-3 is executed after visiting all the
LocalSignal nodes.
A translator program that generates C++ code processes the
model structure, traversal and visitor specifications. The
model structure can be translated into C++ class definitions,
with attributes translated into class members, and relations
into class objects that contain pointers to the related objects.
This, of course, is just one possible translation: for example,
an OODB schema can also be easily generated. The
traverser specifications are translated into a Traverser class

definition, with associated methods: one for each traversal
specification. The methods contain code that iterates over
the associated objects, and calls the corresponding visitor
method. The Visitor methods contain the user-supplied
code, and the (optional) call back to the Traverser for
continuing with the traversal. Interestingly, the translation
algorithm, which generates this code, can also be written
quite easily using the Visitor/Traverser style.

4. Example
In this section a simple example is presented, which shows
how to write a model interpreter for a block diagram
language. The full specification can be found in the
Appendix.
The models are for representing hierarchically organized
processing networks (hardware or software). The modeling
paradigm includes entity types called Ports, which are sub-
classed into InputPorts and OutputPorts. The model type
Block represents a “generic” processing module, which
has inputs and outputs. This model type is sub-classed into
Primitives and Compounds. Primitives define elementary
processing operations, identified by a string attribute called
type. Compounds are also blocks that contain other blocks
(i.e. Primitives and Compounds), and relations of type
Connection. Connections relate Ports to each other thus
they can represent flow of data among processing blocks.
There are no Block instances only Primitive or Compound
instances. Furthermore, a Compound instance cannot
contain itself.
The task of the model interpreter is to traverse the network
of model objects, starting from a root Primitive or
Compound. During traversal it has to print out each
primitive instance (called a “node”) encountered with a
unique id and the type string, and wiring instructions that
connect wires to nodes on the numbered ports of that node.
Note that Compounds can contain other Compounds and
Primitives, but in the output only the primitives are
needed, with the “ flat” wiring connecting them.
To show how the specified interpreter works, suppose we
start at a Compound that has some input ports, some output
ports. It contains one Primitive whose input ports are
“wired” to the input ports of the parent Compound, and its
output ports to the output ports of its parent. The traversal
starts at the Compound, and the first specification here
forces a traversal as if the object were a Block (using the do
Block clause). Note that the Compound traversal
specification expects one extra parameter, of type PortMap,
which maps object ids (IDs) into connection ids (Wires).
This parameter is passed along to the Block traversal
specification. That specification visits the input and output
ports of the object. The corresponding Visitor action checks
if the selected port has an entry in the map, if not it creates a
new Wire and assigns it to the object. Thus, the input and
output ports will all have a Wire assigned to them. Next, the
traversal continues by visiting all the Connections, and then

Traverser:
from Compound[int x] to blocks[2*x];
from Block[int j] to locals[j+1];

Visitor:
at Block[int x] traverse[x+3]

Figure 3: Specification with parameters

all the Blocks contained in the Compound. When a
Connection is visited, the Visitor code checks the Port
objects (on both “ends” of the Connection) what parent
model they belong to. If the Port belongs to the same parent
as the Connection itself, it associates the Wire generated in
the parent with the other Port object (via the PortMap). If
neither of the Ports belongs to the parent of the Connection,
this must be an “ internal” wire that connects two ports
belonging to blocks under the Compound. Thus, it creates a
new Wire and assigns that to both ports. In terms of the
example, these Visitor actions will result in new entries in
the PortMap that associate the ports of the embedded
Primitive with the already existing Wires. After visiting the
Connections, the Traverser visits all Blocks. In the example
there is only one block, of type Primitive, whose visit action
calls back to the Traverser. The Traverser first traverses the
Primitive as if it were a Block, which will not result in the
creation of new Wires, because all its Ports must already
have a Wire assigned to them. Next, a new Node is created
(and a message is printed), and then the input and output
Ports are visited again. But now a different visiting action is
taken: one, which has extra parameters. This visiting action
print out the “wiring commands” , that indicate which Node
should be connected to which Wire, and at which Port
index.

5. Conclusions and Future Work
In this paper, we have shown a new approach to model
interpreter specification. Traversals and Visits should be
specified (in addition to the model structure). High-level
notations can be used intermixed with user-supplied code.
A tool has been developed that understands these
specifications, and generates all the low-level traversal and
visitation code.
The approach described in this paper is a highly practical
one: its purpose is to serve the software engineer. This
does not mean that the specifications cannot be thoroughly
analyzed and important properties of traversals and visits
determined. In fact, the tool mentioned above already
performs these checks, and code generated by it is always
correct. (Naturally, it cannot check the correctness of user-
supplied, embedded code.)
The approach can be extended in many different
directions. One is to incorporate constraints in the
specification that can be used to determine semantic
correctness of models. Much of the work in a real model
interpreter deals with validating model correctness, and the
formal constraint specifications could help in this. Another
issue is the sequencing and precise control of traversals.
Currently the tool supports phases, which are distinct
passes through the model structure. It is the main
program’s responsibility to switch between the phases.
Instead of using phases, one might use conditional
traversals/visits, which are executed only when some
conditions are true.

Specifying model interpreters in a structured way is key
component for interpreter writing. While hand-coded
actions may be needed for a long time, to impose a
framework on the construction of interpreters offers long-
term gains, especially in maintainability and code reuse.

Acknowledgment
The DARPA/ITO EDCS program (F30602-96-2-0227),
The Boeing Company, Saturn Corporation, and the Arnold
Engineering Development Center of USAF has supported
the activities described in this paper.

References
[AH86] Aho,A., Sethi,R., Ullmann: Compilers:

Principles, Techniques, and Tools, Addison-
Wesley, 1986.

[FOW97]Fowler,M: UML Distilled, Addison-Wesley,
1997.

[GOF95]Gamma,E., Helm,R.,Johnson,R.,Vlissides,J.:
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[LIE96] Lieberherr,K.: Adaptive Object-Oriented
Software:The Demeter Method with Propagation
Patterns,PWS Publishing Company, Boston,1996.

[SIM96] Simonyi,C.: Intentional Programming -
Innovation in the Legacy Age, Presented at IFIP
WG 2.1 meeting, June 4, 1996,
http://research.microsoft.com/ip/ifipwg/ifipwg.ht
m

[SZ97] Sztipanovits, J., Karsai, G.: “Model-Integrated
Computing” , IEEE Computer, pp. 110-112, April,
1997.

Appendix
Model structure specification

paradigm Xdl;

entity Port { }
entity InputPort : Port { }
entity OutputPort : Port { }

model Block {
 part InputPort inputs;
 part OutputPort outputs;
}

model Primitive : Block {
 attr string type;
}

model Compound : Block {
 part Block blocks;

 rel Connection conns;
}

relation Connection {
 Port src * <-> Port dst *;
}

Model Interpreter Specification

interpreter XdlInterpreter;
<< typedef long Wire; typedef long Node;
 typedef map<ID,Wire> PortMap;
 int newId() { static int count = 0;
 return count++; }
 int mkWire() { return newId(); }
 int mkNode() { return newId(); } >>

visitor Visitor {
 at Port [PortMap& sMap]
 << if(sMap.find(self.Id())==sMap.end())
 sMap[self.Id()]=mkWire(); >>;
 at Connection [const Block_M* parent, PortMap &sMap]
 << Port_E *src = self.src(), *dst = self.dst();
 Block_M* srcBlock = (Block_M*)src->Parent();
 Block_M* dstBlock = (Block_M*)dst->Parent();
 if((srcBlock != parent) && (dstBlock != parent)) {
 int tmp = mkWire();
 sMap[src->Id()] = tmp; sMap[dst->Id()] = tmp;
 } else if(srcBlock == parent) {
 sMap[dst->Id()] = sMap[src->Id()];
 } else if(dstBlock == parent) {
 sMap[src->Id()] = sMap[dst->Id()];
 } >>;
 at Primitive [PortMap& sMap] traverse[sMap];
 at Compound [PortMap& sMap] traverse[sMap];
 at Port [int& count, Wire wire, Node node]
 << printf("connect wire:%d to node:%d[%d]\n",
 wire,node,count);
 count++; >>;
 at Port [Node node, Wire wire, int& count]
 << printf("connect node:%d[%d] to wire:%d\n",
 node,count,wire);
 count++; >>;
}

traversal Traverser using Visitor {
 from Block[PortMap& sMap]
 to { inputs[sMap], outputs[sMap] } ;
 from Primitive[PortMap& sMap] do Block[sMap]
 << Node node = mkNode(); int count;
 printf("node %d %s\n ",node,self.type()); >>
 to { << count = 0;>> I
 inputs[count,sMap[arg.Id()],node],

 << count = 0;>>
 outputs[node,sMap[arg.Id()],count] } ;

 from Compound[PortMap& sMap] do Block[sMap]
 to { conns[&self,sMap], blocks[sMap] } ;
}

