
Automating Human Based Negotiation Processes for
Autonomic Logistics1

Gabor Karsai
Institute for Software-Integrated Systems

Vanderbilt University
P.O.Box 1829B

Nashville, TN 37235,USA
615-343-7471

gabor@vuse.vanderbilt.edu

George Bloor
Phantom Works

The Boeing Company
(206)655-9479

George.Bloor@jsf.boeing.com

Jon Doyle
Laboratory for Computer Science

Massachusetts Institute of Technology
545 Technology Square, Room 419

Cambridge, Massachusetts 02139-3539, USA
(617) 253-3512
doyle@mit.edu

1 0-7803-5846-5/00/$10.00 © 2000 IEEE

� � � � � � � � �
 Affordability and responsiveness are two key

requirements for the next generation of aircraft support
systems. Aircraft have to be repaired with minimum
downtime and the support process has to be economical and
efficient. The vision of Autonomic Logistics (AL) entails a
maintenance and support system that can autonomously
respond to “events” , e.g. problems detected on-board the
aircraft. The response includes identifying the source of the
problem, acquiring the correct parts and tools, locating and
scheduling the right maintenance personnel. Currently,
software tools and packages are available that can provide
functional components for an AL system, but the integration
of these does not exist yet.
 The paper discusses how agent technology in general and
negotiation processes in particular can be applied to build an
AL system. We envision a system where existing, “ legacy”
packages are integrated via an agent framework: a higher-
level layer that ties together the packages. Agents represent
tasks that need to be performed in an AL system, and they
autonomously exist, navigate, and negotiate within the
framework. This approach, while emphasizes automation, is
not that different from existing, human processes. Even in
existing maintenance organizations human negotiation is an
accepted practice, which, in many cases, “makes the system
work” , in spite of rigid, formal rules. Thus, we envision that
the autonomous, negotiation-based system will provide the

required capabilities for an AL system to increase readiness
and turn-around rates, and to decrease costs.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. BACKGROUND

3. AGENT-BASED NEGOTIATION
4. CONCLUSIONS

 5. ACKNOWLEDGEMENTS
 6. REFERENCES

 1. INTRODUCTION

Affordability and responsiveness are two key requirements
for the next generation of aircraft support systems. Aircraft
have to be repaired with minimum downtime and the support
process has to be economical and efficient. Today’s
information systems that support the maintenance process
are typically not able to satisfy these requirements. Isolated,
highly sophisticated, single-purpose systems are
commonplace, which do an excellent job in their own
specialty, but can rarely communicate with each other. The
pervasive problem of these systems is the lack of semantic
interoperability among them.
 In order to enhance the support process, one has to
consider the efficient integration of various subsystems. The

pilot reports problems with the aircraft using a pilot
debriefing system. This should lead to diagnostic analysis,
possibly done by a sophisticated ground based diagnostic
analyzer system that also has access to on-board flight data.
The result of the diagnostic analysis is a set of maintenance
tasks including both tests and repair actions, that need to be
executed. The maintenance tasks require skilled mechanics
(certified to do the specific action) from the pool of
available mechanics, and Line Replaceable Units (LRU-s)
that need to be replaced. The assignment of mechanics to
tasks is a resource allocation problem, similarly to the part
provisioning. Once the mechanic fixed and tested the
aircraft, a log of this work has to be created with all the
accompanying documentation (e.g. serial numbers of parts
replaced, etc.). In order to collect statistics for the military,
this data has to be relayed to a maintenance information
database. In order to provide feedback to the weapon system
supplier the failure and maintenance data should be fed back
into continuous engineering/improvement process.
 For each step of the above process information system
components do exist, but their integration is lacking. What is
also lacking is the autonomy of the process: data is shipped
with human intervention, and the process is not very
automatic (in spite of the fact that most of the data exist in
electronic form).
 Another interesting observation is that the process relies
heavily on human interaction for conflict resolution.
Resource conflicts arise all the time, but humans have very
good skills to resolve them. The process providing the
resolution is typically a negotiation process where several
parties gradually arrive at a mutually acceptable solution.
Another method of conflict resolution relies on taking the
issue up to the level of hierarchy with the first common
higher authority. This hierarchical conflict resolution is
typical in organizations with a strict chain of command (like
the military). It is important to recognize that the
conglomerate of the information systems used in support
operations is currently not capable of supporting these
conflict resolution strategies.
 In this paper we discuss a vision for a new generation of
logistic/maintenance support systems, and how it may be
supported using agent technology in conjunction with
existing, legacy systems. Specifically, we present some ideas
how complex resource allocation processes (currently done
by humans) can be automated by mapping them into agent
negotiation strategies.

 2. BACKGROUND

The Autonomic Logistics vision. The Autonomic Logistics
(AL) [1] concept envisions a maintenance and support
system that can autonomously respond to “events” , e.g.
problems detected on-board the aircraft. Thus, instead of the
current, “manual” processes, the AL system employs a
computational infrastructure that makes the autonomic
response possible. The response may include various
actions:
• identifying the source of the problem,

• acquiring the correct parts and tools,
• locating and scheduling the right maintenance

personnel,
• logging the maintenance task when finished.
 Currently, software packages, systems and databases are
available that can provide the functional components
performing these actions for an AL system, but their
integration is not a solved problem.
 The AL system is a step toward supporting condition-based
maintenance of aircraft. For condition-based maintenance
one needs the continuous monitoring of the health of the
aircraft (and all of its subsystems), and in the case of an
impending failure a maintenance action must be scheduled
to prevent further degradation or total failure. Non-
autonomic, manual maintenance processes may not be fast
and flexible enough to handle this type of maintenance
scheduling and resource allocation problems.
 To summarize, an Autonomic Logistic system can be
defined as a maintenance and supply system wherein change
in the health of aircraft triggers the logistics system to
• identify, locate, gather, and schedule parts, equipment,

and technical personnel,
• maintain stocks,
• perform data analysis and provide feedback to

manufacturers,
•• resolve conflicts and allocate scarce resources.
 It is important to emphasize that large and sophisticated
information system components do exist that are capable of
solving these problems independently. However, to realize
an integrated AL system, the integration of these
components is required, and in such a manner that resulting
“super-system” exhibits autonomic behavior, with no or
minimal human intervention.
 Another aspect of current processes and systems is (which
is not related to computing) that often human goals and
preferences do get involved in the process. In the case of
resource conflicts, frequently humans resolve the issues via
communication, interactions, and negotiation. Also, parts
distribution, resource scheduling, personnel assignments are
oftentimes negotiated. This “ intervention” gives the system
its flexibility, and our goal is to preserve this property even
in a fully autonomic system
 Agent technology. Agent technology is an outgrowth of
distributed AI [2], which uses active, typically mobile
components to facilitate problem-solving processes. While
there seems to be no single, formal definition for an agent, in
our work we found it practical to consider them as
sophisticated objects that are dynamically created, and
through communication, cooperation, and competition solve
complex problems. Agents typically represent the goals of
stakeholders external to the system proper, on whose behalf
they act.
 Recently, agent technology became widely available with
arrival of the Java language that supports network
computing at various levels. Beyond the basic needs of
agents (communication), the Java run-time system makes
possible agent migration across nodes of a network, dynamic

service lookup on a subnet (using the Jini technology [3]),
and distributed blackboard-style communication models
(using the JavaSpaces technology [4]). Although there are
other techniques available for agent implementation (e.g.
AgentTcl, Lisp, or C++), Java seems to be language of
choice.
 Agent technology as an attempt to simulate the real world
has been successfully applied in many laboratory situations.
Agent technology as a novel way of building and integrating
systems from components has been applied in a number of
cases, but mostly for small-scale, research-oriented
environments. Agent-based systems for large-scale Agent
technology as a practical approach for engineering large-
scale distributed systems is still in its developing phase.
There are a number of agent-building toolkits available, but
building systems using agents is not a well-established
discipline.
 In many agent-oriented solutions, the agents must compete
for resources to perform their tasks. This competition has to
be resolved, and one relevant technique is that of
negotiation. Problem solving through negotiation is a
concept that was introduced earlier in the field of distributed
AI. An early result, the Contract Net [5] protocol,
demonstrates how task distribution can be arranged among
agents. Another important application of negotiation is
related to resource allocation problems. Negotiation
provides an iterative method for arriving at the solution that
is mutually acceptable to all participants. Note that this
solution is not necessarily the “best” or “optimal” solution,
but rather “acceptable for all” .
 Model-Integrated Computing (MIC). MIC is a system
development approach [6] that is based the extensive use of
models in the development process. The use of models in
itself is not a new idea. Various analysis and design
techniques (especially the object-oriented ones) very
frequently build models of the system before realization, and
model its environment as well. However, we have extended
and specialized the modeling process so that the models can
be more tightly integrated into the system development cycle
than in traditional techniques. The process supporting this
activity is called Model Integrated Computing (MIC), and it
results in a model-integrated system (MIS). In an MIC
process the models describe the environment of the system,
represent the system's architecture and they are used in
generating and configuring the system. These models are
indeed integrated with the system, in the sense that they are
active participants in the development process, as opposed
to being mere passive documents. When MIC is used in
developing a system, models are involved in all stages of the
life cycle. To support this, the initial step is the building of
tools that support model creation and editing, used by the
end-users when they want to customize the final application.
The model-editing tools are typically graphical, but more
importantly, they support modeling in terms of the actual
application domain. This domain-specific modeling is
essential for making end user programmability feasible.
There are two interrelated processes in MIC: (1) the process
that involves the development of the model-integrated

system, and (2) the process that is performed by the end user
of the system (in order to maintain, upgrade, reconfigure)
the system -- in accordance with the changes in its
environment. Figure 1 shows the processes schematically.
The first process is performed entirely by the system's
developers (i.e., software engineers), the second, usually, by
the end users. To summarize, in MIC the system is created
through the development of the following: (1) a modeling
paradigm, (2) the model builder (editor) environment, (3)
the model interpreters and (4) the run-time support system.
The product of this process is a set of tools: the model
builder, model interpreter and generic run-time support
system. Using these, first the developers, but eventually the
end users can build up the application itself by going
through the following steps: (1) develop models, (2)
interpret the models and generate the system (this step is
automatic), and (3) execute the system. The key aspect of
the development process is that domain specific models are
used in building the application, and thus it can be
re-generated by the end-users. It may seem that MIC
necessitates a bigger effort than straightforward application
development. This is true if there is no reuse and every
project has to start from scratch. In recent years we have
developed a toolset called the Multigraph Architecture
(MGA)[7] that provides a highly reusable set of generic
tools to support MIC. We claim that the tools provide a
meta-architecture, because instead of enforcing one
particular architectural style for development, they can be
customized to create systems of widely different styles.
Figure 1 shows the components found in a typical MGA
application. The shadowed boxes indicate components that
are generic and are customized for a particular domain.

Figure 1: Multigraph Architecture

 3. AGENT-BASED NEGOTIATION APPROACH

We envision the use of agent technology in general, and
negotiation technology in particular, and model-integrated
computing to build an autonomic logistics system. We
consider the AL problem as building a new type of complex
information system, which heavily relies on existing, legacy

systems, and exhibits autonomic behavior. The above three
technologies do offer the right ingredients for constructing
such a system, as we show it below.

Agents and autonomous negotiating teams

Traditional, legacy systems used in maintenance logistics are
“passive” . Users interact with them, and the systems react to
user commands, but they very rarely initiate actions on their
own. In addition, legacy systems provide high quality, “point
solutions” for specific functions required in an information
system architecture.
 The AL vision requires an affordable and seamless
integration of these systems that will result in a “super-
system” that exhibits the desired autonomic behavior. The
heavy modification of these systems is not feasible: it simply
takes too much effort to change them. Tight integration
(with strict synchronization of the systems, mutual
interdependence, etc), is probably not a good idea either: it
makes the architecture too rigid. We need a relaxed
integration mechanism that still provides the functionality
desired, but does not impose strict constraints on the
architecture.

“Agent Space”

LogisticsLogistics
App/DbaseApp/Dbase

(Legacy)(Legacy)

AdapterAdapter
AgentAgent

Task Agents

LogisticsLogistics
App/DbaseApp/Dbase
(Legacy)(Legacy)

AdapterAdapter
AgentAgent

LogisticsLogistics
App/DbaseApp/Dbase

(Legacy)(Legacy)

AdapterAdapter
AgentAgent

LogisticsLogistics
App/DbaseApp/Dbase

(Legacy)(Legacy)

AdapterAdapter
AgentAgent

Figure 2: Agent-based Architecture

 Based on these observations, we recommend the use of an
agent-based approach for realizing the AL vision. Figure 2
shows a high-level representation of the proposed
architecture. In this system, agents act as representatives of
(1) component systems and (2) tasks to be performed. The
two agent types are called adaptor agents and task agents.
Adaptor agents represent external packages and they act as
interface between task agents and the legacy systems. Their
functionality is rather limited: managing the interaction with
a legacy system. Task agents represent the tasks to be
performed. What precisely these tasks are is dependent on
the application domain, Autonomic Logistics in our case.
 On a high-level, the system operates as follows. When a
legacy system causes a “significant event” its adaptor agent
will notice it. The adaptor agent then creates a specific type
of task agent that is responsible for performing the related
task. The adaptor agent is activated, and it creates other task
agents as required. Either the task itself, or its subservient
task agents communicate with the adaptor agents of other

legacy systems in order to perform their task. When a task
agent has accomplished its task, it reports to its supervisor,
and then terminates. Obviously, the specific workings of the
system are determined by the actual operational scenarios
(“use-cases”) of the AL domain.
 The task agents, when operating, will have to acquire
resources. During this process they will get into conflicts,
and conflict resolution is necessary. The envisioned solution
for conflict resolution is to use negotiation protocols. We
envision negotiation as a process that is based on the active
information exchange between task agents, and which leads
to a mutually agreeable solution through an iterative process.
 There are several reasons why the negotiation is necessary
in the system.
 1. Resource allocation and planning solutions must be
distributed. Maintenance logistics systems, especially for the
military, are inherently distributed. Resources, agents, and
communication facilities are necessarily distributed. The
coordination of these distributed components is a significant
problem, because only incomplete information is available
locally, thus participating systems have only incomplete
knowledge of the global situation. Organizational
preferences change independently, and changes are not
propagated immediately, if at all. The AL system should
take into consideration all needs from units, but also supply,
transport and organization capabilities. To summarize: it is
simply infeasible to centralize all knowledge required for the
solution.
 2. Resource allocation and planning solutions must adapt to
changing circumstances. Frequently-changing circumstances
undercut fixed designs. If no negotiation is applied, instead
of arriving at a mutually acceptable solution through an
iterative process, one has to resort to inflexible, rigid rules.
Communication links or even organizational structures may
change, perhaps even fail. A negotiation-based approach is
much more amenable to address these problems, than a
fixed, static design. In many cases, participants are not
known in advance, often they are discovered dynamically.
Because responses from newly discovered participants
cannot be calculated in advance, the iterative, negotiated
approach is more suitable. For example, for allocating air
squadron maintenance personnel, tools, and parts, the
location of desired assets and the availability of team
members with needed skills has to be determined through a
highly dynamic process.
 3. Frequently, to arrive at a solution one has to make
tradeoffs between values. For instance, preferences
regarding the speed of getting a result vs. the risk it involves
may have to be decided dynamically. Additional complexity
results when desired tradeoffs change with the situation. A
negotiation approach can easily tolerate these changes.
 4. Resource agreements must assure user confidence.
Results that are imposed externally, say by organizational
rules, are often considered unacceptable. Results that are
derived based on local preferences are deemed to be more
acceptable. Negotiation rules and preferences that clearly
express the local goals of an organization facilitate solutions
that are easier to understand, justify, and accept by the

members of the organization.
We envision negotiation as the tool for facilitating conflict
resolution in case of resource conflicts. Some examples are
listed below.
1. Dynamically generated maintenance tasks require

mechanics with specific skills. When tasks conflict over
allocating the “resources” (i.e., the mechanics), the
agents representing the tasks can arrive at mutually
acceptable solutions through a negotiation process.

2. Maintenance schedule items (e.g. <mechanic,
part set, start time, duration> tuples)
need to be modified such that overall performance is
increased. One performance measure may be the sortie
generation the unit is capable of. The task agents that
“caused” the maintenance tasks may have to negotiate
with each other to perform the re-scheduling. In this
case negotiation will result in a distributed scheduling
algorithm.

3. Maintenance actions may have to be deferred because
of conflicts with the operational schedule. The resource
is the aircraft, on which maintenance tasks need to be
performed but it also has to take part in operations. To
resolve these conflicts, the task agents representing the
desired maintenance actions and the task agents
representing the operational requirements need to come
to a mutual agreement.

 We envision that negotiation illustrates intelligent action in
open, dynamic environments. The negotiation technology
applies to a large number of resource allocation problems,
including scheduling physical, computational,
organizational, and planning resources. However, this is not
to say that some problem domains do not require other
approaches. For instance, fixed problems and extremely
small time constants may admit better, special solutions. It is
also interesting that negotiation may also be applicable to
specification problems, for instance mission statements, task
specifications, etc.

System integration issues

The MIC/negotiation approach uses the already existing,
legacy systems. This is a requirement, because rewriting
these systems is not feasible: it is simply too costly. The
Adaptor agents of the architecture are responsible for
interfacing these systems to the rest of the agent-based
infrastructure. We call this new part of the system the
“Agent Space” where the agents are created and function.
The agent space provides the infrastructure for basic agent
services: life-cycle, communication and interaction, and
coordination. Naturally, this infrastructure should be flexible
enough to support all varieties of systems, agent interaction
protocols, etc.
 Building an AL information system gives new challenges
for system integration. Some of the requirements are listed
below.
1. Legacy systems may change over time. The applications

that are integrated in this framework change over time.
New capabilities can be added to them, and

occasionally they can be replaced by newer systems.
These changes should have minimal impact on the AL
system as a whole.

2. Legacy systems may be relocated on the net. When
military operations require, entire maintenance systems
should change their geographical location, and thus
their “place” on the network as well. These changes
should not impact the AL system.

3. Sophisticated users should be able to fine-tune the AL
system to represent better the goals the preferences of
their organizations. These changes should be seamlessly
integrated in the system.

4. Task Agents (service clients) should be able to locate
Adaptor Agents (service providers) without knowing
their locations and addresses in advance. Legacy
systems may come and go, and the task agents should
be able to locate them without problem.

LogisticsLogistics
App/DbaseApp/Dbase
(Legacy)(Legacy)

LogisticsLogistics
App/DbaseApp/Dbase
(Legacy)(Legacy)

LogisticsLogistics
App/DbaseApp/Dbase
(Legacy)(Legacy)

LogisticsLogistics
App/DbaseApp/Dbase
(Legacy)(Legacy)

“ Agent Space”

AdapterAdapter AdapterAdapter AdapterAdapter AdapterAdapter

Models
MIPS Environment
Model Int.

Models of apps,
agents, etc.

Figure 3: Model-Integrated Program Synthesis and Agents

Using existing technology can solve some of this integration
issues. For instance, 2.) and 4.) are potential candidates for
using Jini technology for service location. The idea is that
the adaptor agents register themselves with a directory (a
kind of “ trader”) service. The task agents use Jini’s
broadcast facilities to locate the directory service objects
first, then they execute a search on them in order to locate
the service provider/adaptor agent. While Jini provides the
basic infrastructure, probably higher performance lookup
capabilities are needed. Jini is using simple string-lookup,
but a unification-based approach may be required.
For the other system integration issues we envision the use
of Model-Integrated Computing (MIC). Figure 3 shows how
MIC can play a role in building an AL system. Specifically,
the modeling and synthesis capabilities provided by MIC
can be utilized as follows.
1. Model-based generation of task agents. A suitable

modeling paradigm (language) can be used to capture
the interaction protocols, goals, preferences, behavior,
etc. of agents. These models can be specified in terms
of abstract diagrams that can be used for synthesizing
the code that implements the agent behavior. For
instance, interaction protocols can be described using

diagrams that represent communicating finite state
machines (CFSM-s). The diagrams can then either be
“ interpreted” at agent run-time, or compiled into
efficient code for execution.

2. Model-based generation of adaptor agents. The adaptor
agents act as “ translators” that transform agent
messages into operations on the legacy system, and
events detected in the legacy system into messages for
the other agents. This on-line translation of messages
can also be modeled. There are various techniques one
can employ, CFSM-s being one example.

 The model-based approach helps in evolving the system
because the behaviors are encoded in high-level, abstract
structures. When a legacy system changes, the model used
to generate its adaptor agent has to be changed, and
regenerated. When a new behavior for a task agent is
desired, its behavioral model should be changed and its code
regenerated.
 An additional benefit is that models lend themselves better
to verification than straight code. For instance, when an
interaction protocol is implemented in software, it can be
very hard to verify. If it is expressed in terms of an abstract
mathematical structure, verification is easier. Obviously, the
approach will result in an acceptable solution only if the
generation/synthesis process that transforms the models into
code is correct.

 4. CONCLUSIONS

In this paper we have shown an initial design for building an
Autonomic Logistic system from already existing and new
components. The use of agent technology makes possible
the integration of these components in such a manner that
new functionalities (including autonomy) can be provided
easily. The use of modeling and model-based generation of
agents facilitates end-user programmability and evolvability.
 We are now working on a small-scale prototype of the
above system that demonstrates the basic capabilities. A
significant effort should go into developing interaction
protocols and mechanisms. Published negotiation techniques
do not always deal with real-life situations (e.g., broken
communication links, server problems, etc.). We plan to
develop the robust interaction protocols to address these
issues.
 Representing goals and preferences using abstract models
is also an open problem. We are working on developing the
modeling language that allows us to capture these.
Obviously, their translation into efficient agent code is an
additional problem.
 To summarize, agent-based integration solutions seem to
offer good capabilities for realizing the Autonomic Logistic
vision. Model-integrated Computing techniques can provide
the framework for implementing an agent-based solution
that is flexible, extensible, and evolvable.

 5. ACKNOWLEDGEMENTS

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-99-2-050. The US Government
is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon.
 REFERENCES

[1]URL: http://www.jast.mil/html/phm.htm
[2]Ferber, J.: Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison-Wesley, 1999.
[3]URL: http://www.sun.com/jini
[4]URL: http://java.sun.com/products/javaspaces
[5]Smith, R. “The Contract Net Protocol: A High Level
Negotiation Protocol for Distributed Problem Solving,”
IEEE Transactions on Computers (29) 1980.
[6]Misra A., Karsai G., Sztipanovits J.: "Model Integrated
Development of Complex Applications", Proceedings of the
Fifth International Symposium on Assessment of Software
Tools, Pittsburgh, PA, June, 1997.
[7]Sztipanovits J., Karsai G., Franke H.: "Model-Integrated
Program Synthesis Environment", Proceedings of the IEEE
Symposium on Engineering of Computer Based Systems,
Friedrichshafen, Germany, March 11-15, 1996

Gabor Karsai is Associate Professor of Electrical and
Computer Engineering at Vanderbilt University and co-

director of the Institute for Integrated
Information Systems. He has over twelve
years of experience in software
engineering. He conducts research in the
design and implementation of advanced
software systems for real-time, intelligent
control systems, and in programming tools
for building visual programming

environments, and in the theory and practice of model-
integrated computing. He received his BSc and MSc from
the Technical University of Budapest, in 1982 and 1984,
respectively, and his PhD from Vanderbilt University in
1988, all in electrical and computer engineering. He has
published over 60 papers, and he is the co-author of four
patents.

George Bloor is a Senior Principal Engineer working for
the Boeing Joint Strike Fighter Program and is currently

serving as the lead engineer for the
Joint Strike Fighter’s Prognostic and
Health Management Test Bench. He
joined Boeing’s Advanced Research
Group, then known as the High
Technology Center, in 1987. While at

Boeing, he has worked in the disciplines of
telecommunications, flight controls and avionics. Prior to
joining Boeing, George held positions at Hewlett-Packard
and at AT&T Bell Labs. He has earned a Masters Degree

in Electrical Engineering from the University of Washington
and a Masters Degree in Mathematical Statistic from Iowa
State University. George has published materials in the
IEEE, SMC, and for several other professional societies.

 Jon Doyle is Principal Research Scientist at the

Laboratory for Computer Science at MIT.
His principal research goal is to develop
theories and techniques for representation
and reasoning that have a sound basis in
decision theory, economics, and logic, and to
apply these to practical problems of
monitoring and medical informatics,

especially to the representation and use of qualitative and
quantitative models of preferences and utilities. He has
made many contributions to the theory of rational and
economic reasoning, has developed representations for
rational agents and market-guided reasoning systems, and
has worked on structuring ontologies for planning,
command and control, and general medical health-
maintenance monitoring. He is a Fellow of the American
Association for Artificial Intelligence, a former AAAI
Councilor, and a former president of ACM SIGART.

