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 Affordability and responsiveness are two key 

requirements for the next generation of aircraft support 
systems. Aircraft have to be repaired with minimum 
downtime and the support process has to be economical and 
efficient. The vision of Autonomic Logistics (AL) entails a 
maintenance and support system that can autonomously 
respond to “events” , e.g. problems detected on-board the 
aircraft. The response includes identifying the source of the 
problem, acquiring the correct parts and tools, locating and 
scheduling the right maintenance personnel. Currently, 
software tools and packages are available that can provide 
functional components for an AL system, but the integration 
of these does not exist yet.  
  The paper discusses how agent technology in general and 
negotiation processes in particular can be applied to build an 
AL system. We envision a system where existing, “ legacy”  
packages are integrated via an agent framework: a higher-
level layer that ties together the packages.  Agents represent 
tasks that need to be performed in an AL system, and they 
autonomously exist, navigate, and negotiate within the 
framework. This approach, while emphasizes automation, is 
not that different from existing, human processes. Even in 
existing maintenance organizations human negotiation is an 
accepted practice, which, in many cases, “makes the system 
work” , in spite of rigid, formal rules. Thus, we envision that 
the autonomous, negotiation-based system will provide the 

required capabilities for an AL system to increase readiness 
and turn-around rates, and to decrease costs. 
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 1. INTRODUCTION 

Affordability and responsiveness are two key requirements 
for the next generation of aircraft support systems. Aircraft 
have to be repaired with minimum downtime and the support 
process has to be economical and efficient. Today’s 
information systems that support the maintenance process 
are typically not able to satisfy these requirements. Isolated, 
highly sophisticated, single-purpose systems are 
commonplace, which do an excellent job in their own 
specialty, but can rarely communicate with each other. The 
pervasive problem of these systems is the lack of semantic 
interoperability among them.  
  In order to enhance the support process, one has to 
consider the efficient integration of various subsystems. The 



pilot reports problems with the aircraft using a pilot 
debriefing system. This should lead to diagnostic analysis, 
possibly done by a sophisticated ground based diagnostic 
analyzer system that also has access to on-board flight data. 
The result of the diagnostic analysis is a set of maintenance 
tasks including both tests and repair actions, that need to be 
executed. The maintenance tasks require skilled mechanics 
(certified to do the specific action) from the pool of 
available mechanics, and Line Replaceable Units (LRU-s) 
that need to be replaced. The assignment of mechanics to 
tasks is a resource allocation problem, similarly to the part 
provisioning. Once the mechanic fixed and tested the 
aircraft, a log of this work has to be created with all the 
accompanying documentation (e.g. serial numbers of parts 
replaced, etc.). In order to collect statistics for the military, 
this data has to be relayed to a maintenance information 
database. In order to provide feedback to the weapon system 
supplier the failure and maintenance data should be fed back 
into continuous engineering/improvement process.  
  For each step of the above process information system 
components do exist, but their integration is lacking. What is 
also lacking is the autonomy of the process: data is shipped 
with human intervention, and the process is not very 
automatic (in spite of the fact that most of the data exist in 
electronic form).  
  Another interesting observation is that the process relies 
heavily on human interaction for conflict resolution. 
Resource conflicts arise all the time, but humans have very 
good skills to resolve them. The process providing the 
resolution is typically a negotiation process where several 
parties gradually arrive at a mutually acceptable solution. 
Another method of conflict resolution relies on taking the 
issue up to the level of hierarchy with the first common 
higher authority. This hierarchical conflict resolution is 
typical in organizations with a strict chain of command (like 
the military). It is important to recognize that the 
conglomerate of the information systems used in support 
operations is currently not capable of supporting these 
conflict resolution strategies. 
  In this paper we discuss a vision for a new generation of 
logistic/maintenance support systems, and how it may be 
supported using agent technology in conjunction with 
existing, legacy systems. Specifically, we present some ideas 
how complex resource allocation processes (currently done 
by humans) can be automated by mapping them into agent 
negotiation strategies. 
 
 2. BACKGROUND 

The Autonomic Logistics vision. The Autonomic Logistics 
(AL) [1] concept envisions a maintenance and support 
system that can autonomously respond to “events” , e.g. 
problems detected on-board the aircraft. Thus, instead of the 
current, “manual”  processes, the AL system employs a 
computational infrastructure that makes the autonomic 
response possible. The response may include various 
actions: 
• identifying the source of the problem,  

• acquiring the correct parts and tools,  
• locating and scheduling the right maintenance 

personnel, 
• logging the maintenance task when finished. 
  Currently, software packages, systems and databases are 
available that can provide the functional components 
performing these actions for an AL system, but their 
integration is not a solved problem.  
  The AL system is a step toward supporting condition-based 
maintenance of aircraft. For condition-based maintenance 
one needs the continuous monitoring of the health of the 
aircraft (and all of its subsystems), and in the case of an 
impending failure a maintenance action must be scheduled 
to prevent further degradation or total failure. Non-
autonomic, manual maintenance processes may not be fast 
and flexible enough to handle this type of maintenance 
scheduling and resource allocation problems.  
  To summarize, an Autonomic Logistic system can be 
defined as a maintenance and supply system wherein change 
in the health of aircraft triggers the logistics system to 
• identify, locate, gather, and schedule parts, equipment, 

and technical personnel, 
• maintain stocks, 
• perform data analysis and provide feedback to 

manufacturers, 
••  resolve conflicts and allocate scarce resources.  
  It is important to emphasize that large and sophisticated 
information system components do exist that are capable of 
solving these problems independently. However, to realize 
an integrated AL system, the integration of these 
components is required, and in such a manner that resulting 
“super-system” exhibits autonomic behavior, with no or 
minimal human intervention.  
  Another aspect of current processes and systems is (which 
is not related to computing) that often human goals and 
preferences do get involved in the process. In the case of 
resource conflicts, frequently humans resolve the issues via 
communication, interactions, and negotiation. Also, parts 
distribution, resource scheduling, personnel assignments are 
oftentimes negotiated. This “ intervention”  gives the system 
its flexibility, and our goal is to preserve this property even 
in a fully autonomic system 
  Agent technology. Agent technology is an outgrowth of 
distributed AI [2], which uses active, typically mobile 
components to facilitate problem-solving processes. While 
there seems to be no single, formal definition for an agent, in 
our work we found it practical to consider them as 
sophisticated objects that are dynamically created, and 
through communication, cooperation, and competition solve 
complex problems. Agents typically represent the goals of 
stakeholders external to the system proper, on whose behalf 
they act.  
  Recently, agent technology became widely available with 
arrival of the Java language that supports network 
computing at various levels. Beyond the basic needs of 
agents (communication), the Java run-time system makes 
possible agent migration across nodes of a network, dynamic 



service lookup on a subnet (using the Jini technology [3]), 
and distributed blackboard-style communication models 
(using the JavaSpaces technology [4]). Although there are 
other techniques available for agent implementation (e.g. 
AgentTcl, Lisp, or C++), Java seems to be language of 
choice. 
  Agent technology as an attempt to simulate the real world 
has been successfully applied in many laboratory situations. 
Agent technology as a novel way of building and integrating 
systems from components has been applied in a number of 
cases, but mostly for small-scale, research-oriented 
environments. Agent-based systems for large-scale Agent 
technology as a practical approach for engineering large-
scale distributed systems is still in its developing phase. 
There are a number of agent-building toolkits available, but 
building systems using agents is not a well-established 
discipline. 
  In many agent-oriented solutions, the agents must compete 
for resources to perform their tasks. This competition has to 
be resolved, and one relevant technique is that of 
negotiation. Problem solving through negotiation is a 
concept that was introduced earlier in the field of distributed 
AI. An early result, the Contract Net [5] protocol, 
demonstrates how task distribution can be arranged among 
agents. Another important application of negotiation is 
related to resource allocation problems. Negotiation 
provides an iterative method for arriving at the solution that 
is mutually acceptable to all participants. Note that this 
solution is not necessarily the “best”  or “optimal”  solution, 
but rather “acceptable for all” .  
  Model-Integrated Computing (MIC). MIC is a system 
development approach [6] that is based the extensive use of 
models in the development process. The use of models in 
itself is not a new idea. Various analysis and design 
techniques (especially the object-oriented ones) very 
frequently build models of the system before realization, and 
model its environment as well. However, we have extended 
and specialized the modeling process so that the models can 
be more tightly integrated into the system development cycle 
than in traditional techniques. The process supporting this 
activity is called Model Integrated Computing (MIC), and it 
results in a model-integrated system (MIS).  In an MIC 
process the models describe the environment of the system, 
represent the system's architecture and they are used in 
generating and configuring the system. These models are 
indeed integrated with the system, in the sense that they are 
active participants in the development process, as opposed 
to being mere passive documents. When MIC is used in 
developing a system, models are involved in all stages of the 
life cycle. To support this, the initial step is the building of 
tools that support model creation and editing, used by the 
end-users when they want to customize the final application. 
The model-editing tools are typically graphical, but more 
importantly, they support modeling in terms of the actual 
application domain. This domain-specific modeling is 
essential for making end user programmability feasible. 
There are two interrelated processes in MIC: (1) the process 
that involves the development of the model-integrated 

system, and (2) the process that is performed by the end user 
of the system (in order to maintain, upgrade, reconfigure) 
the system -- in accordance with the changes in its 
environment. Figure 1 shows the processes schematically. 
The first process is performed entirely by the system's 
developers (i.e., software engineers), the second, usually, by 
the end users. To summarize, in MIC the system is created 
through the development of the following: (1) a modeling 
paradigm, (2) the model builder (editor) environment, (3) 
the model interpreters and (4) the run-time support system. 
The product of this process is a set of tools: the model 
builder, model interpreter and generic run-time support 
system. Using these, first the developers, but eventually the 
end users can build up the application itself by going 
through the following steps: (1) develop models, (2) 
interpret the models and generate the system (this step is 
automatic), and (3) execute the system. The key aspect of 
the development process is that domain specific models are 
used in building the application, and thus it can be 
re-generated by the end-users.  It may seem that MIC 
necessitates a bigger effort than straightforward application 
development. This is true if there is no reuse and every 
project has to start from scratch. In recent years we have 
developed a toolset called the Multigraph Architecture 
(MGA)[7] that provides a highly reusable set of generic 
tools to support MIC. We claim that the tools provide a 
meta-architecture, because instead of enforcing one 
particular architectural style for development, they can be 
customized to create systems of widely different styles.  
Figure 1 shows the components found in a typical MGA 
application. The shadowed boxes indicate components that 
are generic and are customized for a particular domain.  

 
Figure 1: Multigraph Architecture 

 
 
 3.  AGENT-BASED NEGOTIATION APPROACH  

We envision the use of agent technology in general, and 
negotiation technology in particular, and model-integrated 
computing to build an autonomic logistics system. We 
consider the AL problem as building a new type of complex 
information system, which heavily relies on existing, legacy 



systems, and exhibits autonomic behavior. The above three 
technologies do offer the right ingredients for constructing 
such a system, as we show it below.  
 

Agents and autonomous negotiating teams 

Traditional, legacy systems used in maintenance logistics are 
“passive” . Users interact with them, and the systems react to 
user commands, but they very rarely initiate actions on their 
own. In addition, legacy systems provide high quality, “point 
solutions”  for specific functions required in an information 
system architecture.  
  The AL vision requires an affordable and seamless 
integration of these systems that will result in a “super-
system” that exhibits the desired autonomic behavior. The 
heavy modification of these systems is not feasible: it simply 
takes too much effort to change them. Tight integration 
(with strict synchronization of the systems, mutual 
interdependence, etc), is probably not a good idea either: it 
makes the architecture too rigid. We need a relaxed 
integration mechanism that still provides the functionality 
desired, but does not impose strict constraints on the 
architecture.  
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Figure 2: Agent-based Architecture 

  Based on these observations, we recommend the use of an 
agent-based approach for realizing the AL vision. Figure 2 
shows a high-level representation of the proposed 
architecture. In this system, agents act as representatives of 
(1) component systems and (2) tasks to be performed. The 
two agent types are called adaptor agents and task agents. 
Adaptor agents represent external packages and they act as 
interface between task agents and the legacy systems. Their 
functionality is rather limited: managing the interaction with 
a legacy system. Task agents represent the tasks to be 
performed. What precisely these tasks are is dependent on 
the application domain, Autonomic Logistics in our case.  
  On a high-level, the system operates as follows. When a 
legacy system causes a “significant event”  its adaptor agent 
will notice it. The adaptor agent then creates a specific type 
of task agent that is responsible for performing the related 
task. The adaptor agent is activated, and it creates other task 
agents as required. Either the task itself, or its subservient 
task agents communicate with the adaptor agents of other 

legacy systems in order to perform their task. When a task 
agent has accomplished its task, it reports to its supervisor, 
and then terminates. Obviously, the specific workings of the 
system are determined by the actual operational scenarios 
(“use-cases”) of the AL domain. 
  The task agents, when operating, will have to acquire 
resources. During this process they will get into conflicts, 
and conflict resolution is necessary. The envisioned solution 
for conflict resolution is to use negotiation protocols. We 
envision negotiation as a process that is based on the active 
information exchange between task agents, and which leads 
to a mutually agreeable solution through an iterative process.  
  There are several reasons why the negotiation is necessary 
in the system.  
  1. Resource allocation and planning solutions must be 
distributed. Maintenance logistics systems, especially for the 
military, are inherently distributed. Resources, agents, and 
communication facilities are necessarily distributed. The 
coordination of these distributed components is a significant 
problem, because only incomplete information is available 
locally, thus participating systems have only incomplete 
knowledge of the global situation. Organizational 
preferences change independently, and changes are not 
propagated immediately, if at all. The AL system should 
take into consideration all needs from units, but also supply, 
transport and organization capabilities. To summarize: it is 
simply infeasible to centralize all knowledge required for the 
solution. 
  2. Resource allocation and planning solutions must adapt to 
changing circumstances. Frequently-changing circumstances 
undercut fixed designs. If no negotiation is applied, instead 
of arriving at a mutually acceptable solution through an 
iterative process, one has to resort to inflexible, rigid rules. 
Communication links or even organizational structures may 
change, perhaps even fail. A negotiation-based approach is 
much more amenable to address these problems, than a 
fixed, static design. In many cases, participants are not 
known in advance, often they are discovered dynamically. 
Because responses from newly discovered participants 
cannot be calculated in advance, the iterative, negotiated 
approach is more suitable. For example, for allocating air 
squadron maintenance personnel, tools, and parts, the 
location of desired assets and the availability of team 
members with needed skills has to be determined through a 
highly dynamic process. 
  3. Frequently, to arrive at a solution one has to make 
tradeoffs between values. For instance, preferences 
regarding the speed of getting a result vs. the risk it involves 
may have to be decided dynamically. Additional complexity 
results when desired tradeoffs change with the situation. A 
negotiation approach can easily tolerate these changes. 
  4. Resource agreements must assure user confidence. 
Results that are imposed externally, say by organizational 
rules, are often considered unacceptable. Results that are 
derived based on local preferences are deemed to be more 
acceptable. Negotiation rules and preferences that clearly 
express the local goals of an organization facilitate solutions 
that are easier to understand, justify, and accept by the 



members of the organization. 
We envision negotiation as the tool for facilitating conflict 
resolution in case of resource conflicts. Some examples are 
listed below. 
1. Dynamically generated maintenance tasks require 

mechanics with specific skills. When tasks conflict over 
allocating the “resources”  (i.e., the mechanics), the 
agents representing the tasks can arrive at mutually 
acceptable solutions through a negotiation process. 

2. Maintenance schedule items (e.g. <mechanic, 
part set, start time, duration> tuples) 
need to be modified such that overall performance is 
increased. One performance measure may be the sortie 
generation the unit is capable of. The task agents that 
“caused”  the maintenance tasks may have to negotiate 
with each other to perform the re-scheduling. In this 
case negotiation will result in a distributed scheduling 
algorithm. 

3. Maintenance actions may have to be deferred because 
of conflicts with the operational schedule. The resource 
is the aircraft, on which maintenance tasks need to be 
performed but it also has to take part in operations. To 
resolve these conflicts, the task agents representing the 
desired maintenance actions and the task agents 
representing the operational requirements need to come 
to a mutual agreement. 

  We envision that negotiation illustrates intelligent action in 
open, dynamic environments. The negotiation technology 
applies to a large number of resource allocation problems, 
including scheduling physical, computational, 
organizational, and planning resources. However, this is not 
to say that some problem domains do not require other 
approaches. For instance, fixed problems and extremely 
small time constants may admit better, special solutions. It is 
also interesting that negotiation may also be applicable to 
specification problems, for instance mission statements, task 
specifications, etc.  
 

System integration issues 

The MIC/negotiation approach uses the already existing, 
legacy systems. This is a requirement, because rewriting 
these systems is not feasible: it is simply too costly. The 
Adaptor agents of the architecture are responsible for 
interfacing these systems to the rest of the agent-based 
infrastructure. We call this new part of the system the 
“Agent Space”  where the agents are created and function. 
The agent space provides the infrastructure for basic agent 
services: life-cycle, communication and interaction, and 
coordination. Naturally, this infrastructure should be flexible 
enough to support all varieties of systems, agent interaction 
protocols, etc. 
  Building an AL information system gives new challenges 
for system integration. Some of the requirements are listed 
below.  
1. Legacy systems may change over time. The applications 

that are integrated in this framework change over time. 
New capabilities can be added to them, and 

occasionally they can be replaced by newer systems. 
These changes should have minimal impact on the AL 
system as a whole. 

2. Legacy systems may be relocated on the net. When 
military operations require, entire maintenance systems 
should change their geographical location, and thus 
their “place”  on the network as well. These changes 
should not impact the AL system. 

3. Sophisticated users should be able to fine-tune the AL 
system to represent better the goals the preferences of 
their organizations. These changes should be seamlessly 
integrated in the system. 

4. Task Agents (service clients) should be able to locate 
Adaptor Agents (service providers) without knowing 
their locations and addresses in advance. Legacy 
systems may come and go, and the task agents should 
be able to locate them without problem. 
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Figure 3: Model-Integrated Program Synthesis and Agents 
 

Using existing technology can solve some of this integration 
issues. For instance, 2.) and 4.) are potential candidates for 
using Jini technology for service location. The idea is that 
the adaptor agents register themselves with a directory (a 
kind of “ trader” ) service. The task agents use Jini’s 
broadcast facilities to locate the directory service objects 
first, then they execute a search on them in order to locate 
the service provider/adaptor agent. While Jini provides the 
basic infrastructure, probably higher performance lookup 
capabilities are needed. Jini is using simple string-lookup, 
but a unification-based approach may be required. 
For the other system integration issues we envision the use 
of Model-Integrated Computing (MIC). Figure 3 shows how 
MIC can play a role in building an AL system. Specifically, 
the modeling and synthesis capabilities provided by MIC 
can be utilized as follows.  
1. Model-based generation of task agents. A suitable 

modeling paradigm (language) can be used to capture 
the interaction protocols, goals, preferences, behavior, 
etc. of agents. These models can be specified in terms 
of abstract diagrams that can be used for synthesizing 
the code that implements the agent behavior. For 
instance, interaction protocols can be described using 



diagrams that represent communicating finite state 
machines (CFSM-s). The diagrams can then either be 
“ interpreted”  at agent run-time, or compiled into 
efficient code for execution.  

2. Model-based generation of adaptor agents. The adaptor 
agents act as “ translators”  that transform agent 
messages into operations on the legacy system, and 
events detected in the legacy system into messages for 
the other agents. This on-line translation of messages 
can also be modeled. There are various techniques one 
can employ, CFSM-s being one example.  

  The model-based approach helps in evolving the system 
because the behaviors are encoded in high-level, abstract 
structures.  When a legacy system changes, the model used 
to generate its adaptor agent has to be changed, and 
regenerated. When a new behavior for a task agent is 
desired, its behavioral model should be changed and its code 
regenerated.  
  An additional benefit is that models lend themselves better 
to verification than straight code. For instance, when an 
interaction protocol is implemented in software, it can be 
very hard to verify. If it is expressed in terms of an abstract 
mathematical structure, verification is easier. Obviously, the 
approach will result in an acceptable solution only if the 
generation/synthesis process that transforms the models into 
code is correct. 
 
 4.  CONCLUSIONS 

In this paper we have shown an initial design for building an 
Autonomic Logistic system from already existing and new 
components. The use of agent technology makes possible 
the integration of these components in such a manner that 
new functionalities (including autonomy) can be provided 
easily. The use of modeling and model-based generation of 
agents facilitates end-user programmability and evolvability.  
  We are now working on a small-scale prototype of the 
above system that demonstrates the basic capabilities. A 
significant effort should go into developing interaction 
protocols and mechanisms. Published negotiation techniques 
do not always deal with real-life situations (e.g., broken 
communication links, server problems, etc.). We plan to 
develop the robust interaction protocols to address these 
issues.   
  Representing goals and preferences using abstract models 
is also an open problem. We are working on developing the 
modeling language that allows us to capture these. 
Obviously, their translation into efficient agent code is an 
additional problem. 
  To summarize, agent-based integration solutions seem to 
offer good capabilities for realizing the Autonomic Logistic 
vision. Model-integrated Computing techniques can provide 
the framework for implementing an agent-based solution 
that is flexible, extensible, and evolvable. 
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