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Abstract— The problem of tool integration often occurs in 
the design and implementation of large computer-based 
systems that rely on software-based engineering tools. Each 
specialized tool contributes to a crucial step in the 
engineering process. It would be beneficial to capture the 
information in the context of one tool and use it in a 
different tool. However, differences in file formats and 
variations in the method of user interaction can make the 
integration of tools a formidable challenge. This paper 
presents a new approach to the tool integration problem and 
describes the framework and process that has been used to 
successfully integrate the data models of several tools. The 
technique is centered on generators that create 
“componentized”  semantic translators. 
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1. INTRODUCTION 

The integration of tools used in a sophisticated engineering 
process is a highly relevant problem for a variety of 
domains, including aerospace engineering. Previous 
approaches focused on data transformation and integration 
issues. Currently, there exist a large number of related 
technologies that help to solve this aspect of the problem 
(e.g., CORBA, COM, XML). However, the increased 
complexity and semantic richness of tools necessitates going 
beyond those basic capabilities. Information captured in one 
engineering tool must be expressed in the ontology of 
another tool, and vice versa. Solving the integration problem 

is not easy. The diversity of tools, the variations in their 
method of user interactions, and differences in file formats 
make the task difficult. However, the potential benefits are 
also great: using information captured in one tool in the 
context of another tool saves valuable, but often 
uninteresting, effort.  
 
A semantic mapping or semantic translation approach is 
needed that explicitly captures the semantic relationships 
among the data models of the tools to be integrated. Once 
these relationships are identified, semantic translator tools 
can be developed that implement the mapping. Obviously, 
when the tools evolve and/or new tools are added, the 
semantic translators have to be revised and the entire 
translation framework has to evolve. 
 
In this paper, we describe a technology that is based on a 
framework approach. The framework consists of 
infrastructural elements and tool-specific translators. The 
semantic translators are componentized, and they are 
generated from high-level specifications. There are three 
types of specifications: (1) the data models for the input and 
the output of the translator, (2) the semantic constraints to 
be enforced on the data (which cannot be expressed 
structurally), and (3) the mapping between the two. For 
trivial cases, the mapping is easy to express in an ad-hoc 
data mapping language. However, in our practice we have 
found that the full power of a programming language to 
express portions of the mapping is often helpful. On the 
other hand, the mapping can be easily tied to the process of 
the translation – the traversal of an input data structure and 
the generation of an output data structure. We express the 
translation process in the form of traversal sequences where 
visiting an object during traversal may result in an action 
that creates an output object. We have found that the 
specification of semantic translators in this manner, and 
their automatic generation from those specifications, greatly 
enhances the productivity of software engineers who 



   

develop integration solutions. The semantic tool integration 
framework is much easier to evolve and upgrade than using 
straight “hand-coding,”  and there are no performance 
penalties associated with the approach. The approach has 
been used to permit the integration of a number of tools. 
Experience indicates that the techniques are feasible for 
large-scale integration as well.  
 

2. BACKGROUND 

Computer based systems are often characterized by a tight 
coupling between software and hardware. This necessitates 
the use of various engineering tools that model and analyze 
all aspects of the system, including the computing system 
and the physical environment. Each tool is specialized to 
perform a particular task in a specific domain. The difficulty 
lies in the fact that these tools often do not have the 
capability to communicate with each other and share 
modeling information.  
 
In the past, several techniques were created in an attempt to 
alleviate this problem, but unfortunately they ended up 
being quick solutions that eventually turned out to be 
insufficient. Some of these previous attempts are reviewed 
below.  

File Translators 

The most obvious technique that may come to mind is file 
translators. File translators are specialized programs which 
do nothing more than read data generated by one tool 
(typically the physical data file) and convert its contents into 
another data file suitable for consumption by another tool. 
These translators are very similar to commercial tools that 
allow a user to convert from one file format (e.g., Word, 
Excel, GIF) to another (e.g., WordPerfect, Lotus 1-2-3, 
JPEG). Unfortunately, this approach has some serious 
drawbacks. Arguably the biggest shortcoming of the 
approach is its inherent problem with scalability. To have 
full integration among n file formats, as many as n*(n-1) 
translators would be required. Also, whenever a new format 
is added, a translator needs to be created that will translate 
the new format into all of the previously existing formats. 

Middleware: CORBA, COM 

The tools that are to be integrated could be viewed as 
individual components. There currently exist several well-
established standards for software component integration: 
CORBA [2] and COM [1] being the two major examples. 
At first, it may appear that these component oriented 
middleware solutions offer hope to the integration problem. 
However, this solution also has its own problems.  
 
Most distributed object-oriented component models rely on 
a method of remote method invocation. This concept allows 
a programmer to create a “wrapper”  object around existing 
components, or tools. These tools can then communicate 
with each other through remote method calls. The 

communication between two independent tools can be 
complex. The situation becomes unfeasible as a large 
number of tools are added to the integration pool. The 
difficulty comes from the fact that these middleware 
solutions provide relatively low-level facilities for tool 
interactions. All higher-level functions are usually built 
from scratch. The middleware approach can be helpful in 
solving the data migration problem, but it offers little 
assistance in terms of the translation that needs to be done. 
This still requires deep understanding of tool behavior and 
tool data structures. If every tool defines its own unique way 
of accessing internal tool data, then the problem becomes 
similar to that found with file translators; i.e., each new tool 
that is added may require the creation of numerous new 
translators. 

Universal language  

This solution uses a radically different strategy from the 
above, although it requires the support of at least one of the 
above techniques. One can think about the tool integration 
problem in the context of the particular engineering process 
where it is needed. Processes (and organizations) tend to 
have their own vocabulary and idioms. So the idea comes: 
why not design a universal “ language”  (a database schema, 
in practice) that will be used by all the tools across the 
process. Once a language is defined, we just have to write 
translators for each tool, or setup the middleware 
communications to use this shared language. This is a more 
efficient solution because the number of translators 
increases linearly by the number of tools. Unfortunately, 
where the approach breaks down is in the practical difficulty 
of coming up with this universal language. Project tools are 
often selected using an opportunistic approach, and it is very 
difficult to make changes to the “universal”  language during 
the lifetime of the project. It seems that the “universal”  
language is not very “universal”  at all because it can’ t be 
used on another project. 
 
PCTE 
 
The Portable Common Tool Environment (PCTE) is an ISO 
standard that received much interest in the late 1980s [10]. It 
was expected that PCTE would serve as a standard 
repository to allow for the integration of tools. Recent 
interest in this technology has subsided and no large 
commercial software projects are being developed using 
PCTE. Many tool vendors had problems adopting PCTE 
because it’s monolithic scope required vendors to 
significantly modify the source code of their tools to take 
advantage of the PCTE services.  

Lessons Learned 

This discussion has highlighted a few important questions 
concerning solutions to the tool integration problem. Each 
question addresses the feasibility of a solution with respect 
to time and scalability. 



   

• How much time and effort does it cost to integrate a 
new tool? If it takes a long time to perform the 
integration, then it may be in an organization’s best 
interest to simply translate the data manually.  

• How scalable is the integration approach? The addition 
of a new tool should not require a large amount of 
modifications, nor should it require the creation of a 
large number of new software packages. 

• How much expert knowledge is needed to realize an 
integration solution? One needs a very deep 
understanding of the tool semantics before attempting 
any kind of integration. How fast this understanding 
can be turned into an integration solution will determine 
the success of any kind of integration paradigm. 

• What is the coupling between the individual tools and 
the integration technology? An integration technology 
that requires a tight coupling does not allow for 
incremental/partial adoption. Tight coupling can also be 
problematic for the integration of many legacy tools if 
tool source code must be modified in order to take 
advantage of the integration technology. 

 
In the next section we present a new approach that offers a 
solution to the integration problem. The section describes 
key components of the approach and discusses its feasibility 
in light of the above principles. 
 

3. THE APPROACH 

The observations made concerning the approaches presented 
in the previous section clearly suggest that a tool integration 
solution should address the issue of semantic 
interoperability. We want our tools to work together 
towards a goal, and in order to do that, some mutual 
understanding, or shared semantics, is needed. The tool 
integration solution should be the implementation vehicle 
for this shared semantics. It is simply not enough to provide 
access to the tool’s data. To solve the integration problem, a 
solution must also address the issue of expressing the 
relationship of a tool’s data model to this shared semantics. 
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Figure 1 Tool Integration 

If one associates semantics with static semantics (in the 
UML-sense [3, 8]), the tool integration problem can be 
visualized as shown in Figure 1. Static semantics can be 

described as the integration of a data model that captures the 
allowed entities and relationships in the tool’s data with 
logical constraints; i.e., Boolean invariants. Given tool X, 
with a particular data model, we want to map the data model 
of tool X into the data model of tool Y. If we restrict the 
data model used to the “entity-relationship-attribute”  variety 
[3], tool integration means solving the mapping problem 
between two database schemas. Unfortunately, if we have 
more than two tools, the mapping problem becomes 
complicated, and we get to the same scaling problem as we 
have seen with the file translators. It is more feasible to 
establish an integrated data model first and then map the 
data model of each tool into that, as shown on Figure 2. The 
integrated data model (IDM) can be defined as a data model 
that is rich enough to contain data from any of the tools. 
The IDM is the vehicle that implements the shared 
semantics across the tools.  
 
Note that this integrated data model is neither the union nor 
the intersection of the data models of the individual tools 
because tool data models will overlap (although not 
completely). For example, two different tools may contain 
the same semantic element, yet have a different name for 
this element. Therefore, the union of the two names into the 
IDM would not be correct; each of the entities must be 
mapped to the same concept in the IDM. Similarly, with 
respect to intersection, two tools may call a semantic entity 
by the same name, yet have different semantics for the 
entity. 
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Figure 2 Tool Integration with Integrated Data Model 

The Architecture 

The architecture of the approach is shown in Figure 3. The 
two major components of this architecture are the Integrated 
Model Server (IMS) and the Tool Adaptors (TA). We chose 
CORBA [2] to implement the communication medium 
between these components.  
 
The core responsibility of the IMS is to provide semantic 
translation services for the constituent tools. By semantic 
translation we mean a transformation of data from one data 
model into another one while preserving the semantics of 
the input data model and enforcing the semantics of the 



   

output data model. Again, semantics is understood here as 
static semantics, expressed in the form of constraints on the 
data. The IMS also provides a short-term repository for 
storing the result of the translation. The schema used in the 
repository is that of the Integrated Data Model.  
 
With regard to our specific implementation, the Microsoft 
Repository is used in the Integrated Model Database to 
provide meta-data management services. The underlying 
database that stores the models can be either Microsoft 
Access or Microsoft SQL Server. 

CM I Protocol (CORBA /COM )CM I Protocol (CORBA/COM )
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Figure 3 Tool Integration Architecture 

 
The Tool Adaptors are responsible for reading the tool 
specific data and converting it into a model that can be sent 
to the IMS. Once the data is read from the tool, the adaptor 
performs a syntactic translation on the data from the native 
data format of the tool to that of the middleware data-
structures. They also must be able to take a model from the 
IMS and convert it into a form that can be read by the tool. 
Thus, mature tool adaptors are bi-directional. Different tool 
adaptors will interact with their corresponding tools in 
different ways depending on the manner that a tool stores its 
underlying data. Therefore, one tool adaptor may read from 
a database that the tool uses to store data while another tool 
adaptor may need to read from a text file. It is even possible 
to have a tool adaptor access the underlying model through 
COM if it is supported by the tool. 
 
There is a common sequence for interacting with the 
architecture whenever a tool wants to make its data 
available. First, the tool’s associated TA must be started. 
The TA obtains access to the tool’s data and begins to 
construct a network of objects that will represent a model 
that can be sent to the IMS. After the TA sends the model to 
the IMS, the IMS receives it and begins to invoke the 
semantic translator associated with that tool’s data model. 
The translated model is then stored in the repository. At this 
point the data is transformed into an IDM-compliant form. 
The reverse process is very similar. If a particular tool 
requires a model stored in the repository, the IMS first 
retrieves the model from the repository and invokes the 

semantic translator associated with the tool. The result of 
the translation is then shipped to the TA, which converts it 
to the physical data format of the tool. 
 
Notice that the principle of separation of concerns is 
observed. The concepts of syntax and semantics are handled 
in separate components. The IMS is concerned about 
semantic issues while the TAs are concerned only with the 
syntax of the data. This distinction makes the development 
of the integration solution easier. The two components are 
bound together by a common interface for data interchange. 
This approach is different from the one adopted by PCTE, 
where there is a tighter coupling between individual tools 
and the integration technology [10]. 

The Common Model Interface 

The Common Model Interface (CMI) defines the rules of 
communication and the form of the data-structures used in 
the interactions between the IMS and the TAs. The CMI is 
the same across all the tools: this is the common, canonical 
“ form”  into which all tool adaptors translate their data. The 
CMI has many components related to data transfer and 
interaction with the IMS, but only the most significant 
aspects will be discussed here. As can be seen in Figure 3, 
the CMI is implemented as a CORBA IDL specification. 
The objects that receive the method invocations from the 
TAs always reside in the IMS. 
 
The primary function of the CMI is to provide a method of 
data interchange between the TAs and the IMS. The data 
structure exposed through the CMI resembles the traditional 
entity-relationship-attribute data model. Data consists of 
attributed objects, which can be models, entities, and 
relations. An attribute is simply a key-value pair (the data 
type of values must be from a small, but powerful set of 
primitive data types, and arrays of primitive values are 
allowed). An entity is a simple attributed object, without 
any further structure. A relationship is an attributed object 
that has two collections of objects, called roles, associated 
with it: these collections contain entities or models that play 
those roles in the relation. A model is an attributed object 
that contains entities, relations, and other models.  
 
It has been our experience that the CMI data model is 
capable of representing data from any tool. However, 
differentiation between the tools cannot be made with 
respect to which tool is represented by a particular data 
model. To overcome this problem, each data object also has 
a type tag that indicates the meaning of the object. That is, it 
is not enough to say, “ this is an entity” , but one also has to 
say, “ this is an entity of type X of tool A” .  
 
The CMI makes this distinction apparent by dealing with 
the data on two-levels. Meta-data describes the data model 
of a particular tool. Physically, meta-data contains models, 
entities, and relations, but these are meta-models, meta-
entities and meta-relations that describe the tool’s data 
model. The IMS exposes the meta-data of each of the tools 



   

as CORBA objects. Thus, each tool, or a generic browser, 
can access the meta-data for each of the tools. The instance-
data is the actual data to be transferred. The instance-data 
contains models, entities and relations, where each data 
object is tagged with the corresponding meta-data object’s 
id (technically an object reference). This tagging makes it 
possible for the IMS to determine the “real”  type of a data 
object. Also, this makes it possible for a TA to get the same 
information.  
 
As a TA constructs a model to be shipped to the IMS, it 
should tag every instance data object with the proper meta-
data references. Likewise, when a TA receives a model from 
the IMS, it can create a new model in the native tool format 
by using the meta-tag relations to process each data item 
correctly. 
 
Note that we are relying on the built-in CORBA mechanism 
for translating the object references. Another mechanism 
used here is for marshalling/unmarshalling: CORBA 
transforms complex data-structures into a network-
compliant flat format suitable for transfer. Unfortunately, 
CORBA marshalling code typically cannot handle circular 
structures. Therefore, the data model uses a form of indirect 
object references in the case of relations: the roles do not 
directly “contain”  (i.e. reference) the objects involved in the 
relations, instead an object id is kept which uniquely 
identifies the object.  
 
Aside from providing the common data interchange 
interface, the CMI offers several other services. These 
services are expressed as a set of interfaces: 
 
• Directory services. The contents of the IMS repository 

can be traversed and viewed as a directory hierarchy. 
Models and directories can be viewed by calling 
methods defined in this interface. 

• Session management. Models can be fetched and stored 
by calling operations in this interface. Also, models 
may be removed from the repository using an operation 
in this interface. 

• IMS access. A user or TA must log into the IMS before 
using it. This interface provides login/logout operations 
as well as the ability to receive the IMS system clock 
time. 

 

The Evolution of the System 

Evolvability is a key metric for assessing the feasibility of 
an integration solution. The architecture discussed above 
only gives the framework for implementing an integration 
solution: it does not speak about how the system evolves. 
An integration solution will never stay constant. New tools 
will always need to be either added or removed from the 
architecture. This continuous change necessitates the 
designer to place emphasis on how the system will evolve 
over time.  
 

During the evolution of the system, the most frequent 
problem is the addition of new tools. This means a new tool 
adaptor has to be developed and the IMS should be 
upgraded to “understand”  the new tool. The upgrade means 
changes in the IDM (for the repository), and the 
development of new semantic translators that can manage 
the data of the new tool. Both of these are non-trivial steps, 
especially considering that we can already have a number of 
tools integrated in the system. 
 
The solution chosen here is closely related to work on 
Model-Integrated Computing (MIC) [9]. Model-integrated 
computing relies on the interpretation and use of domain-
specific models in run-time environments. The domain 
models capture the relevant entities and their relationships 
in a specific domain and are used in a generation process to 
create executable systems. MIC has been successfully 
applied in the development of various computer-based 
systems, including aerospace, manufacturing industry, and 
testing applications. In MIC, domain models are used to 
generate components that implement a system. 
 
There are two kinds of models that exist 
1. The data model for each tool, as well as the integrated 

model itself, must be specified. 
2. The translation model is a specification that describes 

how the semantic information in one model is to be 
mapped into the model semantics of another tool. 

 
The evolutionary capabilities of an integration solution can 
be greatly enhanced if we can capture and utilize these 
models as components. The IMS was not designed to be a 
large stand-alone program. Rather, the design goal was to 
create a framework that accepts “pluggable”  components. 
 
Figure 4 shows the internals of a semantic translator in the 
IMS architecture. The reusable components contain the 
generic interfaces to the network side and to the repository 
side (accessible through the very same interface – just 
different implementations), the implementation of CMI 
services (directory, session and IMS access), and other 
housekeeping functions. To instantiate the IMS framework 
for a particular tool integration solution one has to build the 
semantic translators.  
 
In the IMS, the semantic translators are not created by hand. 
Rather, generators are used to create the translators. The 
generators receive the data model and translation 
specification as input and generate C++ code that will 
perform the translation. Please see Figure 5 for a description 
of how translators are generated and structured within the 
framework. Each semantic translator has a set of static 
objects that represent the meta-data of the corresponding 
tool. These objects are created from the models by invoking 
a special generator. This generator requires three models: 
(1) the data model of source, (2) the data model of the 
destination, and (3) the translation specification of the 
particular semantic translator that will perform the 
conversion. 
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Figure 4 The Architecture of a Semantic Translator 

 
Each tool has two semantic translators associated with it. 
One translator, the “up”  translator, performs a translation 
from the tool data model into the integrated model. The 
“down”  translator operates in the reverse; it will translate 
from the integrated model into the tool data model. The 
generated C++ code of each translator for every tool is 
linked (along with all other generated code and the 
framework library elements) to build up the IMS. 
 
Naturally the specification of the translation and mapping is 
key to the whole solution. One might think that the mapping 
is easy to formalize in the form of mapping rules. In the 
most general sense, we have to describe the mapping: 
 

map: (M,E,R,A) -> (M’ ,E’ ,R’ ,A’ ) 
 

where M,E,R, and A stand for models, entities, relations, 
and attributes, respectively. It is very easy to invent a simple 
mapping language that captures this, and it is simple to use 
and simple to generate code from it. 

INTEGRATED
MODEL

DATABASE

UP TranslatorUP Translator

DOWN TranslatorDOWN Translator

Constraint EnforcerConstraint Enforcer

Database
Interface

Model Model 
Instance Instance 

DataData

Tool Meta DataTool Meta Data

C
M

I Im
pl

GeneratorGenerator

Tool MetaTool Meta
ModelModel

Mapping ModelMapping Model Meta Model ofMeta Model of
Integrated ModelsIntegrated Models

 

Figure 5 Generation of a Semantic Translator 

However, after looking at the first domain data model of an 
actual application the mapping language idea was quickly 

abandoned. One problem with the data model was as 
follows. In one of the tools the surface data model was a 
simple object model, with a single level of containment. 
That is, models of type M contained entities of type E. In 
another tool the data model was hierarchical: models of type 
M’ contained entities of type E’  and models of type M’. At 
closer inspection, it turned out that the first tool’s data was 
really hierarchical: each entity contained an attribute (a 
string), whose value indicated the position of the entity in a 
hierarchy. That is, the attribute value was used to encode a 
hierarchical relationship. This lead to the conclusion that the 
full power of a programming language is beneficial in most 
practical situations. 
 
However, manually writing a translator from scratch can 
still be a daunting task. A practical engineering solution was 
chosen to help in this situation. In previous work on the 
specification of model interpreters [5], a language was 
defined to specify the actions of a translator. A 
corresponding generator tool now exists which supports the 
rapid construction of the translators using this language.  
 
Lieberherr was one of the first to propose a navigational 
language to specify the traversal/visitor actions to be 
performed on an object structure [6]. A more recent work 
that is similar to our approach can be found in [7]. Their 
work is focused more on traversing structures that are 
expressed at a lower level (e.g., object structures in a 
particular programming language). Our work is focused on 
the traversal of higher level modeling structures that are 
specified in our modeling language notation. 
 
Our approach is based on a variant of the Traversal/Visitor 
pattern [4]. The translator begins at a root point that 
represents a model. As it performs the traversal, possibly in 
multiple passes, it executes “actions” . Actions can generate 
an output object, change an output object, etc. During the 
traversal process one can also pass along shared data 
structures that serve as a kind of context. These context 
variables are used to store state information during the 
traversal.  
 
The actual form of the specification contains two parts: the 
traversal specification and visitor specification. Traversal 
specifications answer the following question: “ if we are at 
node of type X, where do we go next?”  The “next”  should 
be an object that is reachable from objects of type X. Visitor 
specifications capture what should be done when visiting a 
particular kind of object. There are two options: either 
execute a “user action”  (i.e. execute a piece of user-supplied 
code), or proceed with the traversal (i.e. call the traverser 
with the object being visited). These can be intermixed 
and/or omitted completely. Note that the specification has 
an outer, high-level language for describing the structure, 
while the inner parts are written in a procedural language –
C++ in our case. The generator translates the above mixed 
form specification into straight C++ while building the code 
sequences for the traversal and iterative parts during the 



   

process. The resulting translator code then is linked with the 
rest of the IMS framework.  
 
Below is an example of a traversal specification. The name 
of the traversal is TRV and it makes use of a visitor named 
VIS. In particular, the example specifies the traversal 
sequence for a Primitve node. Notice that the traversal 
sequence is only relevant for a specific phase. Phases are 
user-defined names that signify various passes over the data 
structure representing the model. The sequence of nodes to 
traverse is specified in the list of names following the 
reserved word “ to.”  Optionally, C++ code can be embedded 
at various points in the traversal sequence. The C++ code is 
surrounded by the << .. >> delimiter. A similar syntax is 
available for the specification of explicit actions for each 
visitor node. 
 
traversal TRV using VIS { 
  from Primitive[pprriimm__ppaarrss]]  
    { in phase }  
    << init_action >> 
    to {<< pre_in_action>> 
        inputs[iinn__ppaarrss]]  
        << post_in_action>>  
    }          
 
We have found that writing translators using the 
traversal/visitor approach is very convenient, because the 
uninteresting parts (pointer tracking, iteration, selection next 
steps), are automatically taken care of by the generator. For 
a specific example of the traversal/visitor approach, see [5]. 
 
Before a model is inserted into the IMS, we want to ensure 
that the data is compliant with the constraints of the tool 
data model. After the semantic translators have completed, 
it is possible to verify that certain invariant constraints were 
preserved during the translation. We use a derivative of the 
Object Constraint Language (OCL) to capture the static 
semantics of the data model [11]. After parsing the OCL 
constraints, we generate C++ procedures that “evaluate”  the 
expression in the context of the result of the translation. If a 
constraint is not satisfied, an error is raised and the data is 
not inserted into the server. On Figure 4, the box labeled 
“Constraint enforcer”  represents this function. As an 
example, the following expression would be used to 
represent the constraint that “all model names must be 
distinct from all entity names” : 
 
-- Models and Entities must have 
-- different names 
constraint UniqueNames(Model top) { 
 
top->models-> 
      forAll(m | entities-> 
          forAll(e | e.Name <> m.Name)) 
 
} 
 

With respect to tool adaptors, a model-integrated approach 
has also been used. A framework has been created that 
defines many reusable components that are helpful in 
writing tool adaptors. Much of the framework is focused on 
issues concerning the CMI. A generator has been created 
that builds “glue code”  from the tool data model. This code 
serves as a wrapper around the CMI data structures and 
assists the adaptor writer by allowing access to CMI data 
structures by referencing concepts from within the tool’s 
domain. 
 
We are looking at opportunities to utilize other technologies 
to use in the data integration process. For example, we 
recently completed the development of a tool that allows a 
user to view the contents of an IMS model through a web 
browser. Our tool is a Java applet that connects to the IMS 
and allows the user to view both the meta- and instance data 
for a particular model. All of the information in the model 
can be visualized in a hierarchical tree control; see Figure 6. 
This tool performs its function by utilizing the CMI through 
CORBA. In the future, we hope to allow the user to 
edit/change a model from within this browser. Another 
obvious growth path for the approach is to make IMS data 
available in XML form. 
 
In summary, the process of tool integration using the IMS 
relies heavily on the use of both data models and translation 
specifications in order to generate semantic translators. 
Obviously, as new tools are supported within the IMS, the 
integrated data model will also need to evolve. This is often 
a trivial process and usually allows the existing translators 
to remain unchanged. 
 

 
 

Figure 6 IMS Model Browser 
 
Thus, adding a new tool to the integration process involves 
the following procedure: 
 



   

1. The data model for the tool must be described using the 
notation that is recognized by the various generators. 

2. Additions to the integrated model may be needed in 
order to represent data contained in the new tool.  

3. The semantic translator has to be modeled and 
generated. The modeling involves the description of the 
translation process in terms of traversal/visitor 
specifications. 

4. A tool adaptor must be constructed that reads/writes the 
native physical data format used by the tool. This 
requires an understanding of the physical model, 
whether it be a specific database, comma-separated text 
file, or even access using COM. 

4. CONCLUSIONS 

We have used the approach described in this paper to assist 
us in the task of tool integration. Our most recent project 
involved the integration of four different tools. The initial 
effort on this project was to understand the semantics of 
each tool and then formalize a representative data model. 
The second task was focused on the construction of the 
semantic translators. The average size of a translator was 
about 225 lines of traversal/visitor specifications and C++ 
code. The smallest translator required only 145 lines of 
specifications while the largest needed about 300 lines. 
After the translators were available, work then proceeded 
with the construction of tool adaptors. 
 
There are several lessons that we have learned while 
working on this project: 
 
• The fundamental principle of separation of concerns 

was found to be very powerful. Tool integration 
involves both semantic and syntactic transformations. It 
is conceptually cleaner to keep these issues separate. 

• During the translation process, the complexity of the 
relationships of the underlying data may demand the 
capability to utilize the full power of a programming 
language. 

• The evolvability and maintainability of a system is 
improved when a framework is used as the 
infrastructure for generating components from models. 

 
Our experience has shown that this approach offers a new, 
yet feasible, solution toward integrating different types of 
engineering tools. With an architecture-centric focus, high-
level models and code generators can be used to build 
integration solutions effectively. 
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