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Abstract

Many large software systems are tightly integrated with
their physical environments and must be adapted when
their environment changes. Typically, software development
methodologies do not place a great emphasis on modeling
the system’s environment, and hence environmental changes
may lead to significant and complicated changes in the soft-
ware. In this paper we argue that (1) the modeling of the
environment should be an integral part of the process, and
(2) to support software evolution, wherever possible, the
software should be automatically generated. We present
a model-integrated development approach that is capable
of supporting cost effective system evolution in accordance
with changes in the system’s environment. The approach is
supported by a “meta-architecture” that provides a frame-
work for building model-based systems. This framework
has been successfully used in various projects. One of these
projects, a site-production flow visualization system for a
large manufacturing operation, is analyzed in detail.

1. Introduction

Every software practitioner knows the difficulties of
maintaining a large software system that is tightly coupled
to a physical environment which is periodically undergo-
ing configuration changes. In fact, it is probable that these
systems are rather the rule than the exception.

Naturally, there are a lot of causes for this problem, but
there seem to exist some aspects that are more prevalent
than others. Let us look at an example system that monitors
and controls a large-scale manufacturing operation. The
system collects data from thousands of sources (PLC-s, mi-
croswitches, etc.), archives the data values, makes the data

available to operators and managers (after processing), and
is also involved in making automatic decisions enforcing
some level of production control. It is a fact of business
that the plant changes and evolves necessitating changes
and upgrades in the software system. One has to change the
database schema, recompile applications, reconfigure data
acquisition systems, etc. just to maintain existing function-
alities. These many-faceted activities involve diverse soft-
ware engineering issues, and the maintenance of the system
becomes a highly non-trivial activity. It is interesting to
note, that software engineers must become plant engineers
(up to a certain degree, of course) in order to understand
how the plant works. While it is important from a business
point of view for the software engineers to become familiar
with the problem domain, this results in a duplication of
effort, since the plant engineers are already experts in their
domain. Furthermore, it seems that the software configu-
ration changes should be closely coupled to configuration
changes in the plant, i.e. the environment of the software.

In this paper, we advocate an approach that addresses this
problem. First we describe the approach on an abstract level,
then we present a set of tools that support the approach. The
major part of the paper describes the process the we followed
to develop an actual application for a large-scale manufac-
turing operation. We discuss our experience with the process
and give an objective evaluation of the work. Finally, we
relate to other development approaches and conclude with
showing some future aspects of the development process.

2. Model-Integrated Development

Recognizing the need for software systems that evolve
and are maintained in accordance with their environment,
we propose the extensive use of models in the development
process. The use of models in software development is not
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a new idea. Various analysis and design techniques (espe-
cially the object-oriented ones) build models of the system
before implementation, and model its environment as well.
However, we propose to extend and specialize the modeling
process, so the models can be more tightly integrated into
the system development cycle than with traditional tech-
niques. The process supporting this activity can be called
Model-Integrated Development (MID), and it results in a
model-integrated system (MIS).

In an MID process, the models play many central and
essential roles, including:

� they describe the system’s environment,

� they represent the system’s architecture, and

� they are used in generating and configuring the system.

These models are indeed integrated with the system, in the
sense that they are active participants in the development
process, as opposed to being mere passive documents.

When MID is used in developing a system, models are
involved in all stages of the life-cycle. To support this,
the initial step is the building of tools that support model
creation and editing. These model editing tools can later be
used by the end-users when they want to customize the final
application. The model editing tools are typically graphical,
but more importantly, they support modeling in terms of the
actual application domain. This domain-specific modeling
is essential for making end-user programmability feasible.
The result of the model editing is a set of domain-specific
models, that are typically kept in a database.

In order to use the models effectively, one needs (at least)
two more components beyond model editors: (1) tools for
transforming abstract models into an executable system,
and (2) run-time support libraries for the executable sys-
tem. The transformation is done by a component called the

model interpreter. A model interpreter traverses the model
database, analyzes the models, and “creates” the executable
system. Model interpreters can be implemented using vari-
ous strategies, depending on what the run-time system looks
like. For instance, if the run-time system includes a rela-
tional database, model interpreters can generate the SQL
definitions for the schema; if it is a multi-tasking kernel,
model interpreters generate the code skeletons performing
synchronization; if it is a Petri-net simulator, they generate
the configuration tables for it. In the most general terms:
the model interpreters are responsible for mapping domain-
specific models into run-time components. Typically, run-
time systems contain “generic” components that are special-
ized according to need (as derived from the models). They
form the run-time support libraries mentioned above. Note
that model interpreters perform an automatic system gen-
eration by instantiating and customizing the generic com-
ponents. The key in the process is that the models are
domain-specific, and do not (necessarily) include software
concepts.

At the process level, in MID, we have two interrelated
processes: (1) the process that involves the development of
the model-integrated system, and (2) the process that is per-
formed by the end-user of the system, in order to maintain,
upgrade, and reconfigure the system, in accordance with the
changes in its environment. Figure 1 shows the processes
schematically. The first process is performed entirely by the
system’s developers (i.e. software engineers), the second
one is done initially by them, but later by the end-users.

To summarize, with MID the system is created through
the following steps: (1) definition of a modeling paradigm,
(2) development of the model builder (editor) environment,
(3) development of the model interpreters, (4) development
of the run-time support system. The product of this process
is a set of tools: the model builder, model interpreter(s)
and generic run-time support system. Using these, first the
developers, but eventually the end-users can build up the
application itself by going through the following steps: (1)
develop models, (2) interpret the models and automatically
generate the system, and (3) execute the system. The key
aspect of the development process is that domain-specific
models are used in building the application, thus it can be
re-generated by the end-users.

The MID approach can be contrasted with current devel-
opment practices as follows. As opposed to developing a
highly specialized product, in MID we want to understand
an entire class of problems related to the domain. As op-
posed to developing a specific application, we try to develop
first the domain-specific tools to build that application, then
use them (or have them used by the end-users) to generate
the application. Many of these ideas can already be found in
other large-scale packages [2]. What is different here is that,
in addition to making the models themselves available for



Figure 2. MGA Components

the end-users, we want to make explicit use of the models
in generating applications.

It seems that MID necessitates a bigger effort than
straightforward application development. This is true only
if there is no reuse and every project has to start from scratch.
In recent years we have developed a toolset called the
Multigraph Architecture(MGA)[10] that provides a highly
reusable set of generic tools to do MID. We claim that the
tools provide a meta-architecture because instead of enforc-
ing one particular architectural style for development, they
can be customized to create systems of widely different
styles. Figure 2 shows the components found in a typical
MGA application. The shadowed boxes indicate compo-
nents that are generic and are customized for a particular
domain.

In the MGA we use a generic Visual Programming Envi-
ronment (VPE)[5] for model building. Models are stored in
an object-database; another customizable component. The
domain-specific customization of these components deter-
mines how the visual editor behaves, and how the database
schema is organized. The model interpreters are typically
highly domain-specific. Model interpreters transform mod-
els into executable code and/or to the input language of
various, domain-specific analysis tools. For run-time sup-
port purposes we have successfully used a macro-dataflow
based run-time kernel, that facilitates the dynamic creation
of networks of computing objects, even across processors,
and the scheduling of those objects.
The flexibility with which the MGA can be adopted to var-
ious application domains has enabled us to use it in widely
different projects during the last 10 years. A selected list of
systems developed using the MGA is as follows:
DTool[7] and RDS: The MGA was used as the software
framework for a model-integrated robust real-time diagnos-

tic system (RDS) and a diagnosability and testability anal-
ysis tool (DTool). The tools are used by Boeing on the In-
ternational Space Station Alpha (ISSA) program to evaluate
detectability, distinguishability, and predictability of faults
given on-line sensor allocation and built-in-test coverage
(BIT). In the case of RDS[8], the models are interpreted and
the software for the RDS is generated automatically. The
RDS implements algorithms that provide timely diagnosis
for complex systems, even in the case of sensor failures.
IPCS: The Intelligent Process Control System (IPCS) is an
on-line problem-solving environment and decision support
tool for process and production management. The central
concepts of IPCS are models of the plant and the process
engineering activities. Plant models include a variety of
modeling views, including process flow sheets, static and
dynamic process equations, finite-state models, failure prop-
agations, equipment structure, etc. Activity models cover a
wide range of tasks related to process and production man-
agement, such as, for instance, analysis of process opera-
tions. The activity models are automatically translated into
executable software. The IPCS system is actively used at Du
Pont Old Hickory,TN plant for the development of commer-
cial applications, including monitoring, sensor data valida-
tion, on-line process simulation, and process diagnosis[4].
CADDMAS: Computer Assisted Dynamic Data Monitor-
ing and Analysis System. The MGA is the underlying soft-
ware technology for the Computer Aided Dynamic Data
Monitoring System (CADDMAS) developed in close coop-
eration with the USAF Arnold Engineering and Develop-
ment Center (AEDC). CADDMAS provides real-time vi-
bration analysis for 48 channels of 50 kHz bandwidth using
a heterogeneous network of nearly 100 processors [1][6].
In the CADDMAS application, the modeling environment
supports the hierarchical modeling of signal flow graphs,
hardware resources, and resource limitations[1]. A model
interpreter synthesizes the complex executable program and
configures the parallel computing platform.

3. A Practical System: SSPF

In this section, we describe the functionalities, require-
ments, design and development of the application of MID
towards providing a problem-solving environment and de-
cision support tools in the context of discrete manufacturing
operations at Saturn Corporation. The Saturn Site Produc-
tion Flow (SSPF) system is a client-server application de-
signed to meet an initiative within Saturn Manufacturing
to increase the number of cars built utilizing existing man-
ufacturing facilities and processes. The primary focus of
tools and services provided by SSPF is the flow of mate-
rial throughout the production facility (site-wide production
flow). SSPF is intended to provide an integrated problem-
solving environment which presents consistent and pertinent



information,� and analysis and decision support services that
are needed for informed decision making by the team mem-
bers and leaders within Saturn.
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SSPF is designed to be an application that evolves easily.
The functionalities described below represent the capabili-
ties of the system that have already been identified and have
been implemented or are currently under development. In
the future, the requirements and functionalities of the sys-
tem are expected to grow considerably.
Data Acquisition. SSPF functions involve real-time col-
lection, presentation, storage, retrieval, and analysis of data.
There is a data rich environment at Saturn based on tradi-
tional process monitoring and control (PM&C). The data
being measured consists of production counts, downtimes,
bank counts, and other production related information. Data
can be presented on screens, using an existing data acquisi-
tion and display package. However, in the absence of any
structured plant models to guide the data collection, log-
ging and presentation, the enormous volume of data presents
considerable difficulties in using the system for monitoring
site-wide status and for performing simulations and other
decision making analyses.
Data Storage and Retrieval. Time is an essential facil-
ity in understanding the dynamics of production flow. The
stored data contains detailed histories for every process and
buffer in the plant. Furthermore, summarized information
for a shift, day, week and month is maintained. Even though
Saturn currently has systems in place that log and retrieve
the production data, the practical usability of this data is
limited: access to data is very difficult. SSPF stores the raw
data and processed information in a structured manner using
a relational database (Microsoft SQL/Server). The database
schemas and the interfaces to the database are generated
automatically from the plant models, thereby providing the
framework for easy access and maintenance of the database.
Graphical User Interface. The primary purpose of SSPF
is to provide the users with current (real-time) and historical
production data, which can be used for various purposes –
monitoring, analysis, etc. For presenting the data, SSPF
includes a Graphical User Interface (GUI), which is config-
ured from the plant models.

Figure 3 shows the SSPF GUI with hierarchical naviga-
tion, drop down boxes and detailed textual report. On the
left, the process hierarchy is shown, which allows the user to
go to any section of the plant and examine it. On the right the
GUI layout for Vehicle Initial Build, as synthe-
sized from the models, and the textual report of production
related data is shown.

Figure 3. SSPF GUI
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The SSPF application offers a structured view of the data
representing the state of the manufacturing processes. This
structured view and the related visualization services cre-
ate a tight conceptual relationship between the plant and
the SSPF software. In this section, we summarize the key
modeling concepts that are used for defining the SSPF appli-
cation and that are also provided for the users of the system.
Background
The manufacturing plant is viewed as an aggregate of pro-
cesses and buffers. Processes represent the operations re-
quired for making a car. Associated with each process
are certain measurements that relate to the productivity of
the process. Examples of such measurements are: cycle-
time, production count (how many parts were assembled),
Work In Process (WIP) (how many parts are currently being
worked on), production downtime (equipment breakdown),
etc. Buffers (or banks) lie between processes and hold parts
and/or sub-assemblies that are produced by an upstream
process before they are consumed by a downstream process.

To model the Saturn site in terms of its production
processes and business organizations, a special modeling
paradigm was developed, that utilizes four kinds of models:
(1) Production Models, (2) Organization Models, (3) Activ-
ity Models, and (4) Resource Models. Production models
are used to represent the production flow at Saturn. The Or-
ganization models are used to represent the business units at
Saturn and to establish relationships between business units
and production units. Activity models are used to configure
the SSPF activities while resource models describe the al-
location of SSPF activities to workstations. Here we briefly
describe the first kind of models only.
Production Models Production models hierarchically de-



Figure 4. Structural Aspect for Vehicle Initial
Build

scribe the production flow of Saturn Plant in terms of
processes and buffers. A process represents a produc-
tion entity in which production and/or assembly opera-
tions are performed. A process can be a leaf process, e.g.,
Hardware 310, or it may be an aggregate process, e.g.,
Vehicle Initial Build. Aggregate processes con-
sist of other (leaf and/or aggregate) processes and buffers.
Buffers represent the banks between processes, e.g., 300,
which is the bank between processes Hardware 200E
and Hardware 310 (see Figure 4). A process may have
input and output conveyors. These act as interface to buffers
and other processes and are used to connect banks and pro-
cesses together.
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There are three main parts to the SSPF system as shown
in Figure 5:
Model-Integrated Programs Synthesis (MIPS) Environment:
This consists of the Visual Programming Environment
(VPE) also referred to as the Graphical Model Builder
(GMB) , Model Database and the Application Generator
(AG).
SSPF Server: This consists of the Real-Time Data Server
(RTDS), Historical Data Server (HTDS), Cimplicity Inter-
face, a Cimplicity project bridge (SSPFPB) (for PM&C),
ODBC Interface and one or more MS/SQL Server and
MS/SQL Database.
SSPF Client: This consists of the Client Data Handler and
the Client GUI.

The Application Generator (AG) translates the SSPF
models into the executable. This was accomplished as fol-
lows.
1. Configurable run-time libraries and programs were devel-
oped, which get their configuration information from con-
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Figure 5. SSPF Architecture

figuration files produced by the AG. These components im-
plement generic functionalities (e.g. interface to the data
acquisition system, user interface, etc.), that can be instan-
tiated according to the contents of models.
2. Schemas for storing production data were defined. At this
time, this is a manual process. In the future, these schemas
will also be generated from the models.
3. AG traverses the model database, extracting the relevant
information and produces a number of configuration files
and SQL script files.
4. The configuration files are read by the SSPF components
to build internal data structures, thus reflecting exactly what
is in the models.
5. The SQL scripts are executed by the SQL/Server. The
SQL scripts fill in the rows for the tables with essential
information about the processes, buffers, etc. in the plant.

If the models are changed to reflect changes in the plant,
only the last three steps need to performed. If a change in the
functionality of SSPF is desired, the first two (and possibly
the last three) steps need to be performed.

4. Experiences

The SSPF project was started in September of 1995, with
an Engineering Study and preliminary design. By the end of
the year, a prototype was developed, with about one-third of
the plant modeled. During 1996, the prototype was moved
towards a production release. Some of the changes were
necessitated by the integration process, but most were just
due to added functionalities. A large part of the effort since
April 1996 was spent on building the complete models of the
plant. The modeling phase involved consulting with Saturn
personnel, and then putting this information into the models.



SSPF@ was put into production release in the first week of
August 1996.

We learned many lessons during our system integration
efforts:

A A large part of the effort was required for modeling of
the plant. This is not surprising since the application
itself is generated from the models.

A Using the MID approach helped us considerably in
verifying and testing the application. Before going
into production release, SSPF Beta release was on-line
during the model building phase. This allowed us to
verify the application and the models.

A Due to iterations on functional specifications for SSPF,
many times during the integration phase, requirements
and/or enhancements in the functionality of SSPF were
added. We had a very quick turn-around time on these
since all it required was a change in one configurable
component followed by re-generation of the applica-
tion. Without the use of MID, trying to keep an appli-
cation upgrade consistent for all the processes (and the
buffers) would be a very difficult and costly task.

A Since the data acquisition systems in different sections
of the plant were implemented by different people, we
had to deal with the idiosyncrasies of these implementa-
tions. Being able to capture this information in models
also helped considerably.

5. Other Approaches

The benefits of software modeling and generating soft-
ware from models (to facilitate rapid development) has been
known for some time. The importance of domain model-
ing in the software development process has been recently
recognized[3][2].

Many of the concepts developed in [3] are present in
our toolset, the MGA. Just like in [2], the domain-specific
models play an essential role. What makes our approach
different, however, is the explicit model interpreter com-
ponent, that decouples the execution of the system from
the models. In a sense, our model interpreters are similar
to component generators[9]: they instantiate and configure
generic components and templates, although our process
may be executed at run-time.

6. Conclusions

Model-Integrated Development shows the following ad-
vantages in the software and system development process:

(1) It establishes a software engineering process that pro-
motes designing for change. (2) The process shifts the en-
gineering focus from implementing point solutions to cap-
turing and representing the relationship between problems
and solutions. (3) It supports the applications with model-
integrated program synthesis environments offering a good
deal of end-user programmability. We have found that the
critical issue in system acceptance has been to facilitate do-
main specific modeling. This need has led us to follow
an architecture-based tool development strategy that helps
separate the generic and domain/application specific system
components. The Multigraph Architecture has proven to be
efficient in creating domain specific model-integrated pro-
gram synthesis environments for several major applications.
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