

American Institute of Aeronautics and Astronautics

1

INTEGRATED DIAGNOSIS AND CONTROL FOR HYBRID DYNAMIC SYSTEMS

Gabor Karsai, Sherif Abdelwahed, Gautam Biswas

Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN 37203, USA

{gabor,sherif,biswas}@vuse.vanderbilt.edu

ABSTRACT

In this paper we present an approach for
combined fault diagnosis and reconfigurable
control structure for a general class of hybrid
systems. In this approach a plant is modeled using
an extended version of bond graphs, namely
hybrid bond graph, where discrete mode
transitions are represented as binary switch
junctions. A hybrid observer has been developed
that uses this model to track the system behavior
within and across modes. Two complementary
approaches are used for fault detection and
isolation. The first diagnoser is based on hybrid
models and uses the hybrid observer, qualitative
reasoning techniques, and real-time parameter
estimation. The other diagnoser is based an
abstracted discrete event model of the system that
shows the causal and temporal relation between
failure modes and corresponding abstract
observations. To accommodate detected failure a
new controller can be selected for a previously
developed controller library based on the current
condition. Control reconfiguration can be also
achieved through online control techniques.

INTRODUCTION

Large engineering systems such as manufacturing
systems, power networks, and chemical plants are
usually designed for automated operation. Such
automated systems are typically prone to physical
(hardware) and/or logical (software) failures. In
many situations, these system support critical
services and failure can have serious economic,
health, and security impacts. Consequently,
automatic failure diagnosis forms a necessary part
of these systems. Accurate and speedy diagnosis
of faults is vital to the health and efficiency of the
underlying system. In general, the diagnosis

process aims to detect, isolate and predict
possible failures by observing signals and
measurements form the system sensors,
comparing it with a mathematical model
representing relevant nominal and/or faulty
behavior, and explaining the observed behavior in
terms of a hypothesis about possible abnormal
changes to the state of the system components.

To ensure a high degree of reliability and safety
the effects of system failures must be mitigated
and control must be maintained under a variety of
fault scenarios. Sophisticated control techniques
are usually implemented to support the system
operation under nominal conditions. If systems
are designed with redundancy, control decisions
have to be made about when and how backup
systems should be activated, and how exactly the
reconfiguration should be executed.

A large class of contemporary engineering system
can be classified as hybrid systems. Hybrid
systems are dynamic systems with both discrete-
event and continuous-time based components.
Considerable research work has been dedicated
recently to the study of various aspects of hybrid
systems dynamics including the issues of behavior
tracking, diagnosis, and control. See for example34
and the references therein. However, there has
been very little work on integrating the diagnosis
and control process in a formal way for hybrid
system. Most fault-adaptive control techniques
tend to take a pragmatic approach. Potential fault
situations are pre-enumerated, and appropriate
fault accommodation actions are built into the
supervisory controller for each case. The
approach works well for these cases, but may
break down in unforeseen situations. Furthermore,
fault-adaptive control techniques usually geared
towards handling broken components. In many
realistic situations, the system suffers only partial
degradation and failures. If we can build online

American Institute of Aeronautics and Astronautics

2

capabilities to detect and estimate these partial
failures, more sophisticated control algorithms can
be designed to keep the system operational under
these conditions31,32,33.

For the DARPA SEC project, we are developing a
systematic model-based approach to the design
and implementation of control systems that can
accommodate faults. We call this approach Fault-
Adaptive Control Technology (FACT). Developing
fault-adaptive control requires us to solve a
number of technical problems beyond the
capabilities of traditional control approaches. First,
faults must be detected while the system is in
operation. System dynamics is complex, and
sensors can be noisy, therefore, differentiating
degraded faulty behavior from nominal behavior of
the plant quickly is a non-trivial problem. Fault
detection must be followed by rapid fault isolation
and estimation of the fault magnitude. Then a
decision has to be made online on how to
reconfigure the control system to accommodate
the fault. Many alternatives may have to be
evaluated, and metrics will have to be defined that
either (1) select an optimal configuration, if it can
be computed in a feasible manner, or (2) the best
possible reconfiguration is derived under given
time and resource constraints. Finally, the
reconfiguration must be executed, which means
that set points and control parameters may have
to be changed, or a different controller may have
to be selected to continue system operation. The
challenge is bring together methodologies from
fault diagnostics, control theory, signal processing,
software engineering and systems engineering to
build the integrated online FACT system.

In this paper, we present the developed fault
adaptive control structure and describe the
different techniques implemented for failure
diagnosis and control reconfiguration. In Section 2,
we present a reference-architecture for FACT
systems. Section 3 presents the different models
that are used to describe aspect of the system
behavior and functionalities that are relevant to the
fault adaptive control architecture. Section 4
describes the hybrid observer scheme for tracking
nominal system behavior. Section 5 discusses the
fault isolation methodologies. Preliminary results
that demonstrate the effectiveness of our
approach are presented. Section 6 briefly
discusses fault-adaptive control and controller
reconfiguration. The summary and conclusions
appear in Section 7 of the paper. We illustrate the
basic modeling concepts and our diagnosis

algorithms using a two-tank system as the plant,
with a supervisory controller.

FAULT ADAPTIVE CONTROL
ARCHITECTURE

The fault adaptive control architecture, shown in
Fig. 1, is an integrated structure of model-based
and logical approaches for fault detection and
isolation, parameter estimation, and control
reconfiguration for a general class of hybrid
systems. In this architecture, the plant is observed
and managed through a set of monitoring and
reconfigurable control modules. Hybrid models2,
derived from hybrid bond graphs3 systematically
integrate continuous and discrete system
dynamics and discrete events to establish the core
of the modeling framework. Supervisory
controllers, modeled as an extended finite state
machine, are used to generate the discrete events
that cause reconfigurations in the continuous
energy-based bond graph models of the plant.
Fault detection involves comparison of the
expected behavior of the system generated from
the hybrid models with actual system behavior, to
determine when discrepancies occur. This
requires the design and implementation of hybrid
observers that estimate the continuous dynamic
states of the system and detect mode transitions
in the system operation. Sophisticated signal
analysis and filtering methods linked to the hybrid
observers are used for detecting deviations from
nominal behavior and triggering the fault isolation
schemes.

Our diagnostic schemes integrate the use of
failure-propagation graph based techniques for
discrete-event diagnosis4 and combined qualitative
reasoning and quantitative parameter estimation
methods for parameterized fault isolation5 of
degraded components (sensors, actuators, and
plant components). The dynamic system state
accumulated from the observer (discrete system
mode plus continuous state vector) and fault
isolation units (status of faulty and degraded
sensors, actuators, and plant components) define
the active system state model. The tracking, fault
detection, and fault isolation mechanisms, shown
in Fig. 1, together constitute a bottom-up
computational approach for estimating the
dynamic system state (nominal or faulty) by
monitoring plant and controller variables.

American Institute of Aeronautics and Astronautics

3

The reconfiguration controller uses this information
to select from the controller library the controller
that is most effective in maintaining desired
system operation and performance. This requires
the definition of metrics and decision criteria that
govern the controller selection process. The
selection and reconfiguration mechanisms operate
in a top-down manner, using the dynamic state
information to effect changes in supervisory
control mechanisms, such as selection (not
synthesis) of feedback control mechanisms, and
re-tuning of low level regulators, such as PID or
model-based controllers. The overall
computational architecture combines the bottom-
up and top-down computational schemes in a
seamless manner, via the shared active model.

Figure 1: Fault Adaptive Control Architecture

Alternatively, online control and supervision can
be implemented to ensure a given safety
specification under both nominal and faulty
conditions. The safety control problem requires
the system to move to a predetermined safe
region from a given set of initial states in the state
space of the system. The online approach does
not require the existence of a finite quotient
equivalent for the system and therefore is
applicable to complex hybrid systems. Moreover,
the approach can be adapted to accommodate
possible changes in the system parameters that
may occur as a result of a fault or parameter
changes in time-varying systems.

The implementation and support for the online
FACT architecture is based on our model-
integrated computing paradigm1. To achieve this,
we have created (1) a graphical modeling
environment that facilitates building hybrid models
of the plant and controllers, and (2) a set of run-
time components that can execute the code
synthesized from the models. This code, when

integrated with the generic FACT run-time
components, instantiate the architecture for a
specific application domain.

THE MODELING PARADIGMS

In general, different aspect of the systems
behavior and functionalities can be used for failure
analysis and control reconfiguration. The FACT
architecture supports two basic modeling
paradigms that can capture essential system
dynamics from different but related prospective.
The detailed mixed continuous and discrete
behavior in the plant components is captured
through Hybrid bond graphs. Fault propagation
graph, on the other hand, focuses on the causal
and temporal relationship between different
operation regions (typically corresponds to failure
modes) and the associated abstract observations.
In addition to these two modeling structure, we
use extended state machine to model the high
level supervisor.

Hybrid Bond Graphs

In the FACT architecture plant components are
modeled as bond graphs. Bond graphs represent
energy-based models of the system in terms of the
effort and flow variables of the system. Bonds
specify interconnections between elements that
exchange energy, which is given by the rate of
flow of energy, power = effort x flow. Bond graphs
represent a generic modeling language that can
be applied to a multitude of physical systems,
such as electrical, mechanical, and thermal
systems. There exist standard techniques to build
bond graph models of systems based on physical
principles. State equations can be systematically
derived from the bond graph representation of the
system. Temporal causal graphs, the models for
qualitative diagnostic analysis, can be
systematically produced from bond graphs15. An
extended version of bond graphs, referred to as
hybrid bond graphs (HBG)3 is used to model
possible discrete transitions in system behavior

Timed Failure Propagation Graphs

Timed failure propagation graphs (TFPG)4 are
causal models that describe the system behavior
in presence of faults. The timed failure
propagation graph is a labeled directed graph
where the nodes represent either failure modes -
which are fault causes - or discrepancies - which

American Institute of Aeronautics and Astronautics

4

are off-nominal conditions that are the effects of
failure modes. Discrepancies can either be
monitored (attached to alarms) or silent, and
depending on the way it is triggered by the
incoming signals it is further classified as either
``AND" or ``OR" discrepancy. Attributed edges
between nodes in the graph represent causality,
and the attributes specify the temporality of
causation given by an upper and lower time
constraints on the propagation of failure between
nodes.

An extended version of TFPG model, referred to
as hybrid failure propagation graph, is
implemented. The hybrid failure propagation graph
allows the representation of failure propagation in
multi-mode (switching) systems in which the
failure propagation depends on the current mode
of the system. To this ends, edges in the graph
model can be constrained to a subset of the set of
possible operation modes of the system. Formally,
a hybrid failure propagation graph model is
represented as a tuple $G = (F, D, E, M, ET, EM,
DC, DS), where F is a nonempty set of failure
nodes, D is a nonempty set of discrepancy nodes,
with F ∩ D = ∅, E ⊆ V × V is a set of edges
connecting the set of all nodes V = F ∪ D, M is a
nonempty set of system modes, ET: E → I is a
map that associate every edge in E with a time
interval, EM: E → M is a map that associate every
edge in E with a set of modes in M, DC: D →
{AND,OR} is a map defining the class of each
discrepancy as either AND or an OR node, DS : D
→ {ON, OFF} is a map defining the monitoring
status of the discrepancy. An example of a hybrid
failure propagation graph is shown in the above
figure.

Supervisory Controllers Models

In the FACT architecture, the reconfigurable
monitoring and control component represents all
the traditional monitoring and control functions in
an application. We envision that this component is
implemented mainly in software, although some
components might utilize dedicated hardware
components. This component is also
“reconfigurable”: its sub-components, their
parameters, and their interconnection can be
changed during system operation.

To represent this reconfigurable monitoring and
control component, we have developed a
modeling language, called Controller Modeling
Language (CML). The approach followed here is
that of Model-Integrated Computing1. CML
represents controllers on two levels; the regulatory
level, and the supervision level. On the regulatory
level, it represents controllers using computational
blocks that form a signal flow diagram. The signal
flow diagram has process-network semantics:
each block is a process that is scheduled for
execution upon arrival of data on its inputs. Then
the process performs some calculations and may
generate output data that is sent to downstream
blocks. After finishing processing, the process
terminates and waits for the next triggering data.
On the supervisory level, it represents controllers
using an extended finite state machine model
similar to that of Statecharts22.

REGULATORY
CONTROLLERS

DISCRETE SENSOR VALUES

SAMPLED SENSOR VALUES

DISCRETE ACTUATOR SIGNALS

SAMPLED ACTUATOR SIGNALS

SUPERVISORY
CONTROLLER

sampled data values,
events

data values for parameters,
discrete control signals, actions

OPERATOR
GUI

(OPTIONAL)
RECONFIG.
MANAGER

Reconfig.
events

Figure 3: Relationship between the
supervisory and regulatory controllers

The relationship between the two controller layers:
supervisory and regulatory, is shown in Fig. 3. The
regulatory layer operates in a discrete-time
fashion, i.e., it receives discrete (sporadic) and
sampled data from the plant, and it generates
discrete (sporadic) and sampled data for the
actuators. On the other hand, the supervisory
controller operates in a discrete-event mode, i.e., it
has no explicit notion of time. It receives sampled

Figure 2: A hybrid failure propagation graph

American Institute of Aeronautics and Astronautics

5

data values and discrete events generated in the
regulatory layer, and sends new data values for
parameters, and events in the form of discrete
control signals to the regulatory layer. The
supervisory controller can also trigger the
execution of reconfiguration actions. As mentioned
above, during reconfiguration the design
procedures associated with the regulatory blocks
will be triggered to recalculate parameter values.

THE HYBRID OBSERVER

The hybrid observer tracks the system behavior
across different modes of operation. This involves
two steps: Tracking continuous system behavior in
individual modes of operation, and Identifying and
executing all mode changes including controlled
and autonomous jumps. Transitioning from one
mode to the other involves: (i) switching the state
equation model that defines continuous behavior
in a mode, and (ii) applying the reset function to
derive the initial state in the new mode.

The observer uses the state equations models -
derived by symbolic analysis from the hybrid bond
graph model - for tracking the continuous behavior
in a particular mode of operation. The analysis
also derives the controlled and autonomous
events that define mode transition conditions as
the system behavior evolves in time. Solving for
the mode transitions requires access to controller
signals for controlled jumps, and predictions of
state variable values for autonomous jumps. We
rewrite all autonomous jump conditions in terms of
the state variables of the system. The state
variable estimates are obtained from the hybrid
observer, and these values are used to determine
if autonomous jumps have occurred. If a mode
change occurs in the system, the observer
switches the tracking model (to a different set of
state space equations), initializes the state
variables in the new mode (using a “reset”
function, again derived from the hybrid bond graph
model), and continues to track system behavior
with the new model13. Since the input and output
of the system may be affected by processor
disturbances and measurement noise, we use a
Kalman filter23 to track system behavior in a single
mode of operation. For a given state space model
the Kalman gain matrix can be computed from the
covariance matrices, as usual.

FAULT DETECTION AND ISOLATION

A primary component of our system is the model-
based fault detection and isolation (FDI)
subsystem that can deal with sensor, actuator,
and parametric faults in the system. Traditional
FDI methods6,24,25,26 are primarily directed toward
additive faults that include failures in sensors and
actuators. Isolation of parametric component
faults, which are multiplicative, requires the use of
sophisticated parameter estimation techniques26.
Numerical techniques for state and parameter
estimation often face convergence and accuracy
problems when dealing with high-order models
that may contain non-linearities7,26. Parameter
estimation techniques are often biased by
measurement noise, and may need specialized
approaches to compensate for these
situations26,29. Accurate parameter estimation also
requires persistent excitation of the input, and this
may not always be true during system operation.
Furthermore, these schemes are applicable in
continuous real-valued spaces, and they do not
easily extend to situations where mode transitions
cause discontinuous changes in the system
models and system variables. Discrete-event
based diagnosis techniques have been proposed,
but they require the pre-compiling of the fault
models and fault trajectories into Finite State
Machines (FSM-s) for tracking nominal and faulty
system behavior8,9. In the section below we will
show how an alternative representation form can
be used which does not require the explicit
construction of FSMs.

When one deals with hybrid systems that include
discrete transitions, extending these continuous
methodologies becomes intractable, because the
residual transformation functions have to be pre-
computed for all modes of operation. Further,
when faults occur, predicting the true system
mode in itself becomes a challenging task. The
fault isolation problem becomes even more
complex, when the fault occurs in an earlier mode,
but is detected in a later mode of operation. The
predicted mode sequence may no longer be the
true mode sequence the system goes through
after the occurrence of the fault. Additional
methods have to be introduced for detecting mode
transitions, switching the system model when such
transitions occur, and correctly initializing the
system state, so that the fault observers perform
correctly. Typically mode changes introduce
discrete effects that cause transients, and it may
be difficult to separate the fault transients from the

American Institute of Aeronautics and Astronautics

6

transients caused by mode changes. Therefore,
extending continuous FDI schemes to hybrid
systems is a non-trivial task.

We use two approaches to the FDI problem that
generalize traditional approaches: (i) the use of a
robust qualitative fault isolation scheme based on
tracking fault transients combined with a
parameter estimation scheme for refining fault
hypotheses, and (ii) fault diagnostics based on
discrete event models represented as fault
propagation graphs. We discuss each of these
methodologies in greater detail next.

Diagnosis using Hybrid Models

Our diagnosis methodology consists of three
mains steps, (i) using a hybrid observer to track
system behavior, (ii) detecting fault occurrences,
and (iii) isolating faults in the system. The hybrid
observer, discussed in the last section, uses the
models of the system to track system behavior.
The fault detection schemes that compare the
measurements made on the system and the
predictions from the observer to look for significant
deviations in the observed signals are discussed
elsewhere14. Our fault detectors for continuous
systems have to be modified to signal faults only
when abrupt changes cannot be attributed to
mode changes11,13.

The overall scheme for hybrid diagnosis is
illustrated in Fig. 6. We overcome limitations of
quantitative schemes by combining robust
qualitative reasoning mechanisms with
quantitative parameter estimation schemes for
parametric fault isolation5. Hybrid bond graphs
models discussed in Section 3 form the basis for
generating parameterized Timed Causal Graphs
(TCG-s), a representation that captures system
dynamics as causal links between system
variables, annotated by temporal relations, such
as instantaneous effects and integral
relationships9. The bond graph representation
explicitly includes component parameters that
govern system dynamics as resistive, capacitive,
inertial, transformation, and signal propagation
elements. The TCG representation makes explicit
the effect of changes in parameter values on the
dynamics of system variables. The fault isolation
methodology for hybrid systems is broken down
into three steps. It includes

1. A fast roll back process using qualitative
reasoning techniques to generate possible

fault hypotheses. Since the fault could have
occurred in a mode earlier than the current
mode, fault hypotheses need to be
characterized as a two-tuple <mode, fault
parameter>, where mode indicates the mode
in which the fault occurs, and fault parameter
is parameter of the implicated component
whose deviation possibly explains the
observed discrepancies in behavior.

2. A quick roll forward process using progressive
monitoring techniques to refine the possible
fault candidates. The goal is to retain only
those candidates whose fault signatures are
consistent with the current sequence of
measurements. After the occurrence of a fault,
the observer’s predictions of autonomous
mode transitions may no longer be correct,
therefore, determining the consistency of fault
hypotheses also requires the fault isolation
unit to roll forward to the correct current mode
of system operation.

3. A real-time parameter estimation process
using quantitative parameter estimation
schemes. The qualitative reasoning schemes
are inherently imprecise. As a result a number
of fault hypotheses may still be active after
Step 2. We employ a least squares estimation
technique on the input-output form of the
system model to estimate consistent values of
the fault parameter that is consistent with the
sequence of measurements made on the
system.

Diagnosing using Timed Failure Propagation
Graphs

The diagnostic system operates on the TFPG
model and characterizes the fault status (actual
current state) of the system by hypothesizing
about the faults in components and sensors based
on the signals received from the sensors and the
current mode of the system. The diagnoser uses
the TFPG model and the timed sensor/mode-
switching signals to generate a set of logically
valid hypotheses of the current state of the
system. The hypotheses are then ranked
according to certain criterion based on the number
of supporting alarms versus the number of
inconsistent one. The set of hypotheses with the
highest rank are selected as the most plausible
estimations of the current state of the system.

American Institute of Aeronautics and Astronautics

7

The diagnoser is implemented as a reactive
module that is triggered by signals from the set of
active sensors and well as mode-switching
signals. A diagnoser input signal is represented by
an event structure (e, t), where e denoted a
monitored alarm being activated or a mode-
switching signal and t is the time at witch the
signal is observed. The event structure (e,t) is
triggered whenever the state of a discrepancy is
changed or the system changes mode. he
diagnoser responds to input signals by generating
hypothesis. Each hypothesis is an evaluation of
the status of a failure mode. The hypothesis
structure contains information about the
corresponding failure mode, the estimated time of
failure, and the set of supporting and inconsistent
alarms as conceived based on the failure graph
structure. In addition to generating and updating
hypotheses, the diagnoser also generates a list of
false alarms, namely those alarms that could not
be explained by any hypothesis based on the
timing and structure of the failure propagation
graph. Figure 4 shows a simplified UML diagram
of the basic elements of the TFPG diagnosis
system and the relation between them.

In reasoning about the faults the diagnoser uses
the principles of parsimony. In general, due to
possible structural redundancy in the TFPG
model, there can be several explanations of a give
sequence of sensor signals. The principle of
parsimony suggests that the simplest explanation
is the best. By simplest we mean the one that
involve the least number of faulty components. In
general, there may not be a unique simplest
explanation. In this situation the diagnoser will
provide all the simplest explanations to the user.
At the occurrence of every event, the diagnoser
updates the set of hypothesis and the faulty

components will be identified. The diagnoser
updates the set of possible hypotheses about the
system state based on the causal and timing
consistency between the discrepancies.

CONTROLLER IMPLEMENTATION

Our approach is to develop a library of controllers,
which is indexed by sets of characteristics. The
goal is to use the information about current system
state, i.e., the current mode of operation and
system state vector along with failed and
degraded states of components and subsystems
to select a controller that best suits current and
long term performance objectives.

We address the controller reconfiguration task on
two levels. At the supervisory (discrete) level,
reconfiguration implies modification of high-level
control actions. This can take the form of replacing
a current action sequence by a new sequence, or
altering the sequence of actions in the current set.
This type of reconfiguration requires that the
supervisory control logic be explicitly represented
as a data structure. Our challenge is to adopt
model-based approaches to representing
supervisory control programs, and to develop
reconfiguration procedures governed by different
kinds of fault conditions. At the lower (continuous)
level of control, the system relies on regulators,
which can range from simple switching controllers,
to PID mechanisms, and then model-based
controllers. Reconfiguration at this level can take
on three different forms.

1. Set point changes for handling simple fault
situations, such as a partially degraded
component.

2. Controller tuning for handling cases where the
fault changes the plant dynamics (e.g.,
changes in the capacitive and inertial
parameters in the plant), and the re-tuning of
the controller is a viable solution.

3. Structural changes (i.e., rewiring or replacing
the regulators) may compensate for complex
faults where the current controller architecture
is unable to maintain the desired control
because of a significant fault (e.g., sensor
faults, actuator faults, and major structural
changes in the plant, such as pump failures or
valves stuck at closed).

There is an interesting and highly relevant aspect
of controller reconfiguration that is also being

Figure 4: Core classes and their operations
in the TFPG diagnosis system

American Institute of Aeronautics and Astronautics

8

addressed: the explicit management of
reconfiguration transients. Early results24,25 show
that there are a number of techniques available for
mitigating reconfiguration transients in control
systems. If the selected approach of controller re-
initialization and/or blending does not meet the
requirements for the reconfiguration dynamics
other, more explicit transient suppression
techniques can be applied to mitigate the effects
of switching.

Online Safety Control

An online approach to the safety control of hybrid
systems has been developed in34. The safety
control problem requires the system to move to a
predetermined safe region from a given set of
initial states in the state space of the system. The
proposed approach can be applied efficiently for
hybrid systems with small number of switching
inputs. Moreover, the approach is robust to limited
domain changes in the system parameters that
may occur as a result of a fault or parameter
changes in time-varying systems. The proposed
online supervision algorithm explores only a
limited part of the system state space and selects
the next input based on the available information
about the current state. For the safety control
problem, the selection of the next step is based on
a given distance map that defines how close the
current state is to the safe region.

The online supervision algorithm starts by
constructing the tree of all possible future states
from the current state up to a specified depth. To
avoid the Zeno effect, in which the controller may
try to preempt time indefinitely through continuous
switching, we require that any input switching
event is followed by at least one sampling period.
The exploration procedure identifies the set of
states with the minimal distance from the safe
region based on the given distance map. A state is
then chosen from this set based on certain
optimality criterion (for example, minimal input
switching), or simply picked at random. The
chosen state is then traced back to the current
state and the event leading to the least distance is
used for the next step. Conditions for the online
controllability of system with respect to the safety
specifications is established and used to provide
an upper limit for the accuracy error of the online
controller.

CONCLUSIONS AND FUTURE WORK

We have applied our continuous and discrete FDI
methodology to diagnosing faults in a two-tank
system with a number of valves. A simple
supervisory controller model took the system
through a number of filling, emptying, and mixing
cycles. We were successful in tracking continuous
system behavior through discrete mode changes,
and isolating faults when they occurred, with the
discrete and continuous diagnostics algorithms. As
a next step, we would like to extend the two
diagnostic algorithms to work in a more cohesive
fashion, and inform each other as they come up
with fault hypotheses. Once this step is completed,
we will introduce the controller selection
mechanisms to have a comprehensive
implementation of the FACT architecture that has
been presented in this paper.

We are also looking at applying this technology to
more real-world applications, such as the fuel
transfer system in modern aircraft. The physical
components of the fuel system include a number
of tanks, interconnecting pipes, valves, and
pumps. In addition, the system is equipped with
sophisticated controls to support reliable and
robust fuel delivery under a variety of flight
conditions, at the same time ensuring that the
gravity of aircraft center of gravity is not
compromised. In addition, the controllers have to
deal with a number of fault scenarios, such as
pump failure and pipe leaks. The goal under such
conditions is not to compromise aircraft safety, but
to save as much fuel as one can to continue the
current mission. To achieve this, the system
should utilize built-in redundancy mechanisms to
compensate for the failure, and at the same time,
maintain control. We are currently developing
models of a generic aircraft fuel system, and
testing and validating the FACT tools and
techniques on a number of example scenarios that
have been generated using a high fidelity
simulator.

ACKNOWLEDGEMENTS

The DARPA/ITO SEC program (F33615-99-C-
3611), and The Boeing Company have supported
the activities described in this paper. We would
like to thank Dr Kirby Keller and Mr. Mark Kay for
their help.

American Institute of Aeronautics and Astronautics

9

REFERENCES

[1] Sztipanovits, J., Karsai, G.: “Model-Integrated
Computing”, IEEE Computer, pp. 110-112, April,
1997.
[2] Branicky, M.S., V. Borkar, S. Mitter, 1994. “A
Unified Framework for Hybrid Control:
Background, Model, and Theory,” Proceedings of
the 33rd IEEE Conference on Decision and
Control, Lake Buena Vista, FL, Paper No. LIDS-P-
2239.
[3] Mosterman P.J. and G. Biswas, 1998. “A
theory of discontinuities in physical system
models,” Journal of the Franklin Institute:335B, pp.
401-439.
[4] Misra A., Sztipanovits J., and Carnes J., 1994.
“Robust Diagnostics: Structural Redundancy
Approach,” Knowledge Based Artificial Intelligence
Systems in Aerospace and Industry, SPIE's
Symposium on Intelligent Systems, Orlando.
[5] Manders E.J., S. Narasimhan, G. Biswas, and
P.J. Mosterman, 2000. A combined
qualitative/quantitative approach for efficient fault
isolation in complex dynamic systems. 4th
Symposium on Fault Detection, Supervision and
Safety Processes, pp. 512-517.
[6] Patton, R.J., Frank, P.M., and Clark, R.N.
(eds.), 2000. Issues of Fault Diagnosis for
Dynamic Systems, Springer-Verlag, London, U.K.
[7] Chen, J. and Patton, R.J. 1999. Robust Model-
Based fault Diagnosis for Dynamic Systems,
Kluwer Academic, Boston, MA.
[8] Sampath, M. et al., 1996. “Fault Diagnosis
using Discrete-Event Models,” IEEE Trans. On
Control Systems Technology: 4(2), pp. 105-124.
[9] Lunze, J. 1999. “A Timed Discrete Event
Abstraction of Continuous Dynamic Systems,” Intl.
Journal of Control: 72, pp. 1147-1164.
[10] Alur, R. et al., 1993. Hybrid Automata: an
algorithmic approach to the specification and
verification of hybrid systems, in, R.L. Grossman,
et al., eds., Lecture Notes in Computer Science,
Springer, Berlin, 736, pp. 209-229.
[11] Narasimhan, S. and Biswas, G. 2000. Using
Supervisory Controller Models for more Efficient
Diagnosis of Hybrid Systems. Submitted to Hybrid
Systems: Control and Computation, Intl.
Workshop, Rome, Italy.
[12] Rosenberg, R.C. and Karnopp, D.C. 1983.
Introduction to Physical System Dynamics,
McGraw Hill, NY.

[13] Narasimhan, S., Biswas, G., Karsai, G.,
Pasternak, T., and Zhao, F., 2000. “Building
Observers to Handle Fault Isolation and Control
Problems in Hybrid Systems,” Proc. 2000 IEEE
Intl. Conference on Systems, Man, and
Cybernetics, Nashville, TN, pp. 2393-2398.
[14] Manders E.J., Mosterman, P.J., and Biswas,
G., 1999. Signal to symbol transformation
techniques for robust diagnosis in TRANSCEND,
Tenth International Workshop on Principles of
Diagnosis, Loch Awe, Scotland, pp. 155-165.
[15] Mosterman P.J. and Biswas G., 1999.
Diagnosis of Continuous Valued Systems in
Transient Operating Regions, IEEE Trans. on
Systems, Man and Cybernetics:29, pp. 554-565.
 [16] Pasternak, T. Extended Relational Models for
Diagnosis, Masters Thesis, Vanderbilt University,
August 2000.
 [17] Lunze, J., Diagnosis of Quantized Systems
by Means of Timed Discrete-Event
Representation, in Proc. Of Thirds International
Workshop on Hybrid Systems, Computation and
Control, Lecture Notes in Computer Science,
volume 1790, pages 258-271, March 2000.
[18] Simon, G., Kovácsházy, T., and Péceli, G.,
2000. “Transients in Reconfigurable Control
Loops,” IEEE Instrumentation and Measurement
Technology Conference, IMTC/2000, Baltimore,
Maryland, USA.
[19] Simon, G., Kovácsházy, T., and Péceli, G.,
2000. “Transient Management in Reconfigurable
Systems,” International Workshop on Self
Adaptive Software, Oxford University, England.
 [20] Pierce, C. S. "Note B: The Logic of
Relatives." In Studies in Logic by Members of the
Johns Hopkins University Boston: Little Brown and
Co. 1883
[21] Ledeczi A., Bakay A., Maroti M.: Model-
Integrated Embedded Systems, in Robertson,
Shrobe, Laddaga (eds) Self Adaptive Software,
Springer-Verlag Lecture Notes in CS, #1936,
February, 2001.
[22] David Harel, Michal Politi: Modeling Reactive
Systems with Statecharts: The Statemate
Approach, McGraw-Hill, 1998.
[23] A. Gelb, Applied Optimal Estimation, MIT
Press, Cambridge, MA, 1979.
[24] H.L. Jones, Fault Detection in Linear
Systems, Ph.D. thesis, Massachusetts Inst. of
Technology, 1973.
[25] R. Mangoubi, Robust Estimation and failure
Detection, A Concise treatment, Springer Verlag,
New York, NY, 1998.

American Institute of Aeronautics and Astronautics

10

[26] J.J. Gertler, Fault Detection and Diagnosis in
Engineering Systems, Marcel Dekker, Inc., 1998.
[27] S. Narasimhan, P.J. Mosterman, and G.
Biswas, “A Systematic Analysis of Measurement
Selection Algorithms for Fault Isolation in Dynamic
Systems,” 9th Intl. Workshop on Principles of
Diagnosis, Cape Cod, MA, pp. 94-101, May 1998.
[28] P.J. Mosterman and G. Biswas, “Towards
procedures for systematically deriving hybrid
models of complex systems,” Hybrid Systems:
Computation and Control, Third Intl. Workshop,
Lecture Notes in Computer Science, vol. 1790, N.
Lynch and B. Krogh, eds., Springer Verlag, Berlin,
Germany, pp. 324-337, March 2000.
[29] L. Ljung, System Identification: Theory for the
user, Prentics Hall, Englewood Cliffs, NJ, 1987.
[30] X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver,
and M.D. Lemmon, “Supervisory Control of Hybrid
Systems,” Proceedings of the IEEE: Special Issue
on Hybrid Systems, P.J. Antsaklis, ed., pp. 1026-
1049, 2000.
[31] P. J. Antsaklis and K. M. Passino,
"Introduction to Intelligent Control Systems with
High Degree of Autonomy,” Introduction to
Intelligent and Autonomous Control, P.J.Antsaklis
and K.M.Passino, Eds., Chapter 1, pp. 1-26,
Kluwer Academic Publishers, 1993.
[32] P. J. Antsaklis, "Defining Intelligent Control,”
Report of the Task Force on Intelligent Control,
P.J Antsaklis, Chair. In IEEE Control Systems
Magazine, pp. 4-5 & 58-66, June 1994.
[33] P.J.Antsaklis, K.M.Passino and S.J.Wang,
"An Introduction to Autonomous Control Systems,”
IEEE Control Systems, Vol 11, No 4, pp 5-13,
June 1991.
[34] P. J. Antsaklis, editor. Special Issue on Hybrid
Systems. Proceedings of the IEEE. 2000.
[35] S. Abdelwahed, G. Karsai, and G. Biswas,
“Online Safety Control of a Class of Hybrid Systems.”
41st IEEE Conference on Decision and Control, Las
Vegas, NV, 2002

