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Abstract

Contemporary middleware platforms provide a high de-
gree of flexibility and configurability to support a large class
of distributed systems found in a variety of domains, such
as avionics, automotive, financials, healthcare and defense.
Realizing the quality of service (QoS) properties of these
systems requires mapping the domain-specific QoS require-
ments of these systems to the right set of configuration op-
tions of the middleware platforms. This poses a substantial
challenge for the system developers who are experts in the
domain but not in the middleware. Automated graph trans-
formation techniques provide a promising approach to ad-
dress these challenges.

This paper describes an automated model-driven graph
transformation toolchain for QoS Mapping (GT-QMAP)
that uses (1) model-driven engineering to capture system
QoS requirements at domain-level abstractions, and (2)
model transformations to automate the mapping of domain-
specific QoS requirements to middleware-specific QoS op-
tions. We demonstrate GT-QMAP in the context of a repre-
sentative NASA distributed system.
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1. Introduction

Software development processes for distributed systems
found in a variety of domains such as avionics, automotive,
financials, healthcare and defense are increasingly moving
away from the “build from scratch” approach to a “build
by composition and configuration” approach. The technol-
ogy enablers fostering this new approach are contempo-
rary component middleware solutions, such as the CORBA
Component Model (CCM), Enterprise Java Beans (EJB)
and .NET Web services. Since these middleware solutions
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are developed to support a large class of applications in mul-
tiple domains, they are designed to be highly configurable
and flexible.

Despite the substantial benefits of middleware technolo-
gies, system developers are faced with significant chal-
lenges configuring the middleware platforms effectively for
their domains. For example, in order to achieve the desired
quality of service (QoS) characteristics for a distributed sys-
tem, domain-specific QoS requirements must be mapped
onto the right set of middleware-specific QoS configura-
tion options. This requires a comprehensive knowledge of
various QoS configuration options supported by the mid-
dleware, their impact on resulting QoS, and their inter-
dependencies, all of which are critical to realize the QoS
properties of the distributed system.

System developers are domain experts who understand
domain-specific issues but often lack deeper insights about
different middleware configuration options and their impact
on resulting system QoS. Failure to carefully map domain-
level QoS requirements into low-level middleware-specific
configuration options can lead to a suboptimal middleware
configuration degrading the overall system performance,
and in worst case cause runtime errors that are costly and
difficult to debug. There is a significant need therefore for
research and development in automating the mapping from
domain-specific, system-level QoS requirements into the
right set of configurations of the hosting middleware plat-
forms.

Graph transformation (GT) techniques [15, 9] offer a
promising approach to address these requirements, partic-
ularly those that involve model transformations. GTs oper-
ate on labeled typed graphs [2], which can be augmented
with attributes. The typed graph structures can be used
for representing the input – in our case comprising the
domain-specific QoS requirements, and the output – in our
case comprising the models e.g., QoS configuration options
that are represented using UML-style notations [7]. The
GT rules in such model transformations are expressed in a
declarative, well-understood format in terms of source and
target graph patterns, i.e., subgraphs of source and target



graphs, and therefore can be validated for correctness.

Some well known examples of model transformation
techniques include the Graph Rewriting And Transforma-
tion language (GReAT) [11] and VIsual Automated model
TRAnsformations (VIATRA) [6]. These tools provide the
mechanisms and required constructs to model and imple-
ment transformation rules. The details of rewriting rules
specific to an application use case i.e., the graph pattern
matching that performs semantic transformations from in-
put to output models, however, must still be specified using
these transformation tools for that application.

To overcome these limitations and to realize the goals
of automated QoS mapping, we have developed the Graph
Transformation Quality of Service MAPping (GT-QMAP)
model transformation toolchain that automates the follow-
ing activities:

a. Specifying application QoS requirements – Applica-
tion QoS requirements are dictated by domain-specific
policies and are typically expressed by application
developers in terms of what quality characteristics
(i.e., quality values) are expected from the application
rather than how these characteristics can be achieved
at the middleware level. GT-QMAP allows develop-
ers to specify application QoS requirements including,
for example, support for simultaneous service requests
from client components, concurrency support such as
number of threads required to provide a particular ser-
vice, support for buffering service requests.

b. Identifying middleware QoS options for satisfying QoS
requirements – QoS options are the mechanisms that
middleware provides in order to satisfy the application
QoS requirements. Examples of QoS options provided
by Lighweight CCM includes Real-time CORBA fea-
tures like ThreadPool to configure thread resources,
and Priority Model to configure whether ser-
vice requests are executed at the invocation priority or
not.Correct QoS options must be chosen for a given
application QoS requirement specification such that
desired application QoS can be achieved by tuning
these appropriately. GT-QMAP automates the process
of identifying QoS options corresponding to the appli-
cation QoS requirements thereby relieving the appli-
cation developers from having a detailed knowledge
of the low-level configuration mechanisms of the mid-
dleware platform.

c. Mapping of application QoS requirements correctly
onto the middleware QoS options – Pertinent values
for a subset of QoS options (identified in (b)) must
be chosen to correctly tune the middleware for a spe-
cific application. GT-QMAP provides the mapping of
QoS requirements onto the middleware QoS options
by selecting appropriate values for these QoS options.

Further, during the above QoS mapping process, GT-
QMAP ensures the validity of individual QoS options
both at the component/component-interface-level, as
well as at the application-level.

GT-QMAP uses existing domain specific modeling lan-
guages (DSMLs) as input and output typed graphs, respec-
tively: (1) Platform Independent Component Modeling Lan-
guage (PICML) [3] used for modeling component assem-
blies, inter-and intra-assembly interactions and interfaces,
and simplifying various activities of component-based ap-
plication development such as packaging, and deployment,
and (2) Component QoS Modeling Language (CQML) [20]
a platform-specific component QoS modeling language that
allows application developers to express QoS configura-
tions at different levels of granularity, in terms of intuitive,
visual representations.

GT-QMAP augments PICML with a Requirements
Metamodel, which enables an application model to be an-
notated with domain-specific QoS requirements. The QoS
Configuration Metamodel in CQML on the other hand,
models low-level, platform-specific QoS options. The
GT-QMAP transformation rules defined in terms of in-
put and output typed graphs automate the entire process
of mapping platform-independent, system-level QoS re-
quirements into middleware-specific, QoS configuration
options. GT-QMAP thus significantly reduces the appli-
cation life-cycle costs and time-to-market. The remain-
der of this paper is organized as follows: Section 2 describes
a motivating DRE system we use to describe the chal-
lenges in QoS mapping; Section 3 describes the GT-QMAP
toolchain and how it addresses the challenges outlined in
Section 2; Section 4 describes related research; and Sec-
tion 5 describes concluding remarks outlining lessons
learned and future work.

2. Challenges in Middleware QoS Configura-
tion

Section 1 outlined the need for automating the trans-
formations from domain-specific QoS requirements to
middleware-specific QoS configuration options. Develop-
ing a toolchain to provide these automated transformations
incurs a number of challenges. In this section we dis-
cuss these challenges in the context of a case study.

2.1. Distributed system Case Study

We use NASA’s Magnetospheric Multi-scale (MMS)
space mission (stp.gsfc.nasa.gov/missions/
mms/mms.htm) as an example to motivate the need for au-
tomated tools for mapping the domain-specific QoS re-
quirements to middleware-specific QoS configurations.

stp.gsfc.nasa.gov/missions/mms/mms.htm
stp.gsfc.nasa.gov/missions/mms/mms.htm


NASA’s MMS mission is a representative distributed sys-
tem consisting of several interacting subsystems with a
number of complex QoS requirements. It consists of four
identical spacecrafts that orbit around a region of inter-
est in a specific formation. These spacecrafts sense and
collect data specific for the region of interest and at ap-
propriate time intervals send it to the ground stations for
further analysis.

Application developers of the MMS mission must ac-
count for mission-specific QoS requirements along two sep-
arate dimensions: (1) each spacecraft needs to operate in
multiple modes, and (2) each spacecraft collects data using
sensors whose importance varies according to the data being
collected. The MMS mission involves three modes of oper-
ation: slow, fast, and burst survey modes. The slow survey
mode is entered outside the regions of scientific interests
and enables only a minimal set of data acquisition (primar-
ily for health monitoring). The fast survey mode is entered
when the spacecrafts are within one or more regions of in-
terest, which enables data acquisition for all payload sensors
at a moderate rate. If plasma activity is detected while in fast
survey mode, the spacecraft enters burst mode, which re-
sults in data collection at the highest data rates. A prototype
of the data processing subsystem of this distributed system
has been developed [19] by our collaborators at Vander-
bilt University using the Component-Integrated ACE ORB
(CIAO) [8] QoS-enabling component middleware frame-
work, the RACE [18] dynamic QoS adaptation framework
and the PICML [3] model-driven engineering tool. In this
case study section we focus on the physical activity sensor,
data collection, and transmission challenges in the MMS
mission, which NASA is developing to study the micro-
physics of plasma processes.

Figure 1 shows the components and their interactions
within a single spacecraft. Each spacecraft consists of a
science agent that decomposes mission goals into navi-
gation, control, data gathering, and data processing appli-
cations. Each science agent communicates with multiple
gizmo components, which are connected to different pay-
load sensors. Each gizmo component collects data from the
sensors, which have varying data rate, data size, and com-
pression requirements.

Comm Ground

Gizmo 1 Filter 1 Analysis 1

Gizmo 2 Filter 2 Analysis 2
Science 
Agent

Gizmo 3 Filter 3 Analysis 3

Facet

Receptacle Event Source

Event Sink

Figure 1: MMS Mission System Components.

The data collected from the different sensors have vary-
ing importance, depending on the mode and on the mis-
sion. The collected data is passed through filter compo-
nents, which remove noise from the data. The filter compo-
nents pass the data onto analysis components, which com-
pute a quality value indicating the likelihood of a transient
plasma event. This quality value is then communicated to
the other spacecraft and used to determine entry into burst
mode while in fast mode. Finally, the analyzed data from
each analysis component is passed to a comm (communi-
cation) component, which transmits the data to the ground
component at an appropriate time.

QoS requirements of the MMS mission across mode
(of spacecrafts) and importance (of data) dimensions are
known, however the application developer still has to iden-
tify correct middleware QoS options required to meet these
requirements and accurately map the requirements to QoS
options by choosing pertinent values for these options. We
discuss GT-QMAP and how it resolves these challenges in
Section 3.

2.2. Design Challenges

Although QoS-enabling component middleware and ex-
isting MDE tools provide several advantages in software de-
velopment, several key requirements need to be satisfied
in order to effectively enable QoS configuration of vari-
ous software components of distributed systems, such as the
MMS Mission. We list these requirements below.
Challenge 1: Specifying domain-specific QoS require-
ments – System developers are domain experts who can
understand and reason about various domain-level issues.
Therefore, the QoS requirements of a distributed system,
which are well understood by the system developers must
be expressible in terms of domain concerns pertaining to
that domain rather than in terms of low-level, middleware-
specific mechanisms required to satisfy these concerns.

For example, in the MMS mission, in order to support
multiple service invocations (from each of the Analysis
components) at varying importance levels, the Comm com-
ponent is configured to have ThreadPool with Lanes feature.
In order to avoid deadlocks, the access to asynchrnous con-
nection between Comm and Analysis must be thread safe
such that only one Comm component thread can access the
asynchronous connection (for retrieving its events, for ex-
ample) at any given time. It is highly desirable, however,
for application developers of the MMS mission to be able
to specify these requirements at the level of MMS mission
instead of the middleware.

Addressing this challenge requires tool support for in-
tuitive modeling capabilities that capture QoS concerns of
a system using semantics and notations that are closer to
the domain. Further, since distributed systems exhibit QoS



different QoS domains, the tool should provide clearcut
separation of concerns during system QoS specification.
Section 3.0.2 illustrates how our GT-QMAP toolchain ad-
dresses this challenge.

Challenge 2: Identifying the middleware-specific QoS
options for satisfying QoS requirements – Although a
tool may provide modeling capabilities to specify system-
level QoS requirements, there remains the need to iden-
tify the right middleware-specific QoS configuration op-
tions that will satisfy the application QoS requirements.
This identification process can be a challenging task be-
cause of the following factors: (1) systems evolve either
as part of the software development lifecycle, or modified
domain requirements/end-goals. Naturally, the new mid-
dleware configurations would have to be identified again,
which is a tedious and error-prone process, and (2) for large-
scale systems this process becomes too time consuming,
and in some cases infeasible.

In the MMS mission, any dangling connections between
disconnected system software components must be purged
periodically, e.g., connections between the Gizmo publisher
and the Filter subscriber. Additionally, the periodic timer
option should also be configurable within the middleware.

An automated QoS configuration tool should be able to
correctly identify the QoS options necessary to achieve de-
sired system QoS from a given (semantically-correct) in-
put model. If QoS requirements have been specified across
more than one QoS domains, the tool should identify corre-
sponding options pertaining for each of the QoS domains.
Section 3.1 illustrates how GT-QMAP addresses this re-
quirement.

Challenge 3: Mapping the QoS requirements onto QoS
configuration options – Even if the QoS configuration op-
tions that satisfy the application QoS requirements may be
identified, appropriate values for each of the configuration
options must be chosen in order to correctly configure the
middleware and realize system level QoS properties. Such
a step would have to potentially be performed several times
during the development cycle of a system and thus should
be easily (and relatively quickly) repeatable.

Depending on the individual QoS requirements, one or
more alternative QoS options may be identified in the pre-
vious step. A QoS configuration tool should choose suitable
values for each of these QoS options. Additionally, it should
ensure that QoS options are valid, both for the association
entity (in the context of component middleware, an asso-
ciation entity would be, for example, a component, a con-
nection between components, or an assembly, to which a
QoS configuration is associated), as well as for the entire
component-based application. Section 3.1 illustrates how
GT-QMAP addresses this requirement.

3. Design of GT-QMAP

This section describes the GT-QMAP QoS map-
ping toolchain for QoS-enabling component middleware.
GT-QMAP uses model-driven engineering (MDE) [17] for
the description of high-level domain-specific QoS require-
ments to capture the (platform-independent) system re-
quirements across various QoS domains and model-driven
graph transformations for the translation of these QoS re-
quirements into (individual) platform-level QoS config-
uration options necessary to realize these QoS require-
ments.
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Figure 2: GT-QMAP Toolchain for mapping QoS re-
quirements to platform-specific QoS Options.

We have used the Graph Rewriting And Transforma-
tion language (GReAT) [10] for model-to-model transla-
tion of QoS requirements defined by application developers
(source model) to QoS configuration options (target model).
GReAT which is developed using GME, can be used to de-
fine model-to-model transformation rules using its visual
language, and executing these transformation rules for gen-
erating target models using the GReAT execution Engine
(GR-Engine).

Figure 2 shows the overall GT-QMAP toolchain. DRE
application developers use the QoS requirements model-
ing language defined by the Requirements meta-model
to specify the application QoS requirements. Models de-
fined using QoS requirements modeling language act as
the source models of GT-QMAP transformation. Simi-
larly middleware-specific QoS configuration options are
captured using the QoS configurations meta-model in Com-
ponent QoS Modeling Language (CQML), and models de-
fined using this language are the target models. The graph
rewriting rules are defined in GReAT in terms of source
and target type graph (i.e., meta-models). These rules
are used by the GR-Engine in order to create QoS op-



tions model of a DRE system from its QoS requirements
model.

Although we have superimposed the Requirements
meta-model on the Platform Independent Modeling Lan-
guage (PICML) [3], it is not tied PICML and thus can
be associated with any other platform-independent mod-
eling language that provides capabilities for modeling
structural units (for example, a component, an assem-
bly, or connections thereof) of a component-based sys-
tem. A language such as PICML can be used to capture
the structure of a DRE system in terms of its compo-
nents, assemblies, their interfaces and interactions. Unless
stated otherwise, our use of PICML throughout the remain-
der of the paper refers to its QoS Requirements modeling
capabilities.

In order to be able to associate the QoS policies with
structural units (for example, a component, an assembly,
or connections thereof) of a component-based DRE sys-
tem, the Requirements meta-model is superimposed on the
Platform Independent Modeling Language (PICML) [3].
PICML can be used to capture the structure of a DRE sys-
tem in terms of its components, assemblies, their interfaces
and interactions. Unless stated otherwise, our use of PICML
throughout the remainder of the paper refers to its QoS Re-
quirements modeling capabilities.
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Figure 3: QoS Requirements Model for Pub-
lish/Subscribe service in PICML.

3.0.1. Modeling QoS requirements in PICML PICML
defines Requirement as a generalization of QoS require-
ments in various domains, figure 3(b) shows that the gran-
ularity of Requirement can be Component-, Com-
ponentAssembly- or Port- level and more than one
such elements (of the same type) can be associated with
the same Requirement. A particular Component-
Assembly’s Requirement is also associated with all
the components contained it that ComponentAssemb-
ly. Such associations provide significant benefits in terms
of flexibility in the creation of QoS requirements mod-
els and scalability of the models.
Real-time QoS requirements. Real-time requirements
have component-level granularity and the meta-model
is shown in Figure 3(a). Depending on the implementa-

tion of a CCM component, it may have the following two
roles: (1) service provider i.e., a server component that pro-
vides certain functionality to other component(s) and
(2)service consumer i.e., a client component that re-
quires certain functionality from other component(s).
Further, each component may have different Real-time re-
quirements depending on its role. Accordingly, we define
ServiceProvider and ServiceConsumer ele-
ments that contain Real-time requirements placed by a
component in a server and client role, respectively.

For a client component prioritize_servi-
ce_invocations can be used to configure a pri-
oritized invocation scheme such that the component
has separate, dedicated resources for its service re-
quests. On the other hand, ServiceProvider that
contains Real-time requirements placed by a compo-
nent in server role has the following two elements: (1)
MultipleServiceRequests that specifies sup-
port for handling multiple service requests and contains el-
ements that capture details about this requirement such
as minimum and maximum simultaneous service re-
quests supported, whether service request(s) of client com-
ponents should be (locally) buffered if no resources are
currently available. (2) ServiceLevels that speci-
fies whether to provide the same or varying levels of service
to each of the clients of the component.
Publish/Subscribe QoS requirements. CORBA Real-time
event service uses the publish/subscribe architecture [5]
to support asynchronous and anonymous interactions in
componet-based DRE systems (For the rest of the discus-
sion, we use the terms Real-time event service and pub-
lish/subscribe service interchangeably). A Subscriber
component subscribes to receive events from a Publisher
component that generates events. Publisher and subscriber
components connect to a mediator entity, an Event Chan-
nel, to publish( subscribe to) to events.

Figure 3(a) shows the publish/subscribe service require-
ments modeling elements in PICML. The publish/ subscribe
service requirements have port-level granularity, specifi-
cally the asynchronous ports (i.e., event sources and event
sinks). The ECBehavior element which models the prop-
erties of the event channel, can be used to configrure the fol-
lowing requirements: (1) the policy used to manage compo-
nents that can no longer be accessed using their references,
(2) publisher and subscriber-based filtering of events, (3)
whether publisher(subscriber) components access the con-
nected event channel(s) from single or multiple threads of
execution, and (4) whether event dispatch mechanism prior-
itizes the events for forwarding various events received by
the event channel (from publishers) to the respective sub-
scribers.

3.0.2. Modeling CCM QoS options in CQML While
PICML models capture platform-independent, domain-



specific QoS requirements, QoS Configuration meta-model
defined in CQML is used to represent platform-specific
QoS options. In our case, for example, we have de-
fined meta-models for CCM QoS options. In this section
we describe the meta-models publish/subscribe QoS do-
main in detail.
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Figure 4: Simplified UML notation of QoS options for
CCM publish/subscribe service in CQML.

Real-time QoS configuration options. A shown in
Figure 4(b), RealTimeConfiguration mod-
eling element is a concrete implementation of
QoSCharacteristic and contains RT-CCM op-
tions. RealTimeConfiguration contains the follow-
ing elements: (1) Lane, which is a logical set of threads
each one of which run at lane_priority priority level.
It is possible to configure static thread(i.e., those that re-
main active till the application is running and dynamic
thread (i.e., those threads that are created and destroyed
as required) numbers using Lane element. (2) Thread-
Pool, which controls various settings of Lane elements,
or a group thereof. These setting include, stacksize
of thread(s), whether borrowing of threads across two
Lane elements is allowed, and maximum resources as-
signed to buffer requests that can not be immediately ser-
viced. (3) PriorityModelPolicy, which controls
the policy model that a particular ThreadPool fol-
lows. It can be set to either CLIENT_PROPAGATED if the in-
vocation priority is preserved, or SERVER_DECLARED
if the server component changes the priority of invoca-
tion. (4) BandedConnections, which defines sepa-
rate connections for individual (client) service invoca-
tions.
Publish/Subscribe QoS configuration options. Fig-
ure 4(a) shows a simplified UML diagram of pub-
lish/subscribe services in CCM. Similar to RealTim-
eConfiguration element, RTECConfiguration
is a concrete implementation of QoSCharacterist-

ic. We discuss some of the publish/scbscrive service
settings below: (1) Publisher and Subscriber el-
ement covers all the event source and sink settings, re-
spectively. These include, managing thread locks for
publishers(subscribers) accessed by multi-threaded appli-
cations, and types of filtering set. (2)m RTECFactory
element contains configurations specific to the event chan-
nel itself. These include, event dispatch method that
controls how publisher events are forwarded to the re-
spective subscribers, scheduling of events for delivery and
other scheduler-related coordination, and handling of time-
out events in order to forward them to respective sub-
scribers. (3) Strategies to group more than one filters
together for publishers(subscribers) can be specified us-
ing FilterGroup element.
Resolving Challenge 1. Specifying domain-specific QoS
requirements. By providing platform-independent model-
ing elements in PICML and defining representational se-
mantics that closely follow those of the application require-
ments, GT-QMAP allows DRE developers to describe ap-
plication QoS using simple, intuitive notation. Thus, in the
MMS mission prototype, there is a QoS requirement that all
the asynchronous connections between Gizmo and Comm
components should preserve priorities end-to-end. Such
a requirement can be represented easily by (1) enabling
Real-time scheduling for each of these connections using
configure_rt_info, and (2) ensuring that dispatching
of events at each publisher component honors priorities by
using prioritize_event_dispatch at each, Gizmo,
Filter, Analysis and Comm components. Thus, in the MMS
mission prototype, the QoS requirement that that the Comm
component should be able to support service requests hav-
ing varying levels of importance (and invoked from all its
client components), can be easily represented by: (1) set-
ting the varying_service_levels requirement value
to TRUE and configuring MultipleServiceReques-
ts at the Comm component, and (2) setting fixed_pri-
ority_service_invocations to FALSE at Gizmo,
Filter, Analysis, and Comm components such that im-
portance of the sensor data is propagated and preserved as
it is sent from each of these components.

3.1. Identifying the QoS options and Automating
the mapping of QoS requirements to QoS op-
tions using GT-QMAP

The GT-QMAP model transformations for mapping of
the publish/ subscribe service requirements have been de-
fined in GReAT and contain ∼150 rules. In this section we
briefly outline our transformation algorithm, which is writ-
ten in terms of PICML and CQML DSMLs, and discuss a
few of these GT rules in publish/subscribe service domain.
These rules are applicable to any application model that



confirms to PICML meta-model, and thus can be used by
the application developers repeatitively during the develop-
ment and/or maintenance phase(s) of the application. Note
that GT-QMAP model transformations preserve the granu-
larity specified in the input PICML models, i.e., the concrete
QoSCharacteristic elements in output CQML mod-
els as shown in Figure 4 have the same granularity as the
corresponding concrete Requirement element in input
PICML models as shown in Figure 3. We refer the reader
to [] for a detailed discussion of transformation algorithm
for Real-time QoS domain.

Real-time requirement transformation rules. The trans-
formation algorithm for Real-time QoS requirement map-
ping is given below:

a. For every RTRequirement element in the in-
put PICML model, create a corresponding Rea-
lTimeConfiguration element in the out-
put CQML model. Associate the same component
with the newly created RealTimeConfigurat-
ion in CQML model as was associated with the
corresponding RTRequirement in PICML model.

b. For every RTRequirement element in PICML, if
prioritize_service_invocations is set in
ServiceConsumer, count the number of outgo-
ing ports for the associated component (i.e., Out-
EventPort and ProvidedRequestPort) and
create as many BandedConnections elements in
the corresponding RealTimeConfiguration ele-
ment in CQML model.

c. For every RTRequirement element in PICML, if
simultaneous_service_execution is set
in MultipleServiceRequests element, cre-
ate ThreadPool and Lane elements in the corre-
sponding RealTimeConfiguration element in
CQML and associate them with each other. Addition-
ally, minimum and maximum service levels get di-
rectly mapped onto static and dynamic thread counts
in Lane element, respectively.

d. If fixed_priority_service_execution is
set in a ServiceProvider, create a PriorityM-
odelPolicy element with SERVER_DECLARED
priority model in the corresponding RealTimeCon-
figuration element in CQML model. Otherwise,
configure the priority model to CLIENT_PROPAGAT-
ED for the newly created PriorityModelPolicy
element. Finally associate PriorityModelPol-
icy with ThreadPool created in earlier step.

e. If varying_service_levels is set for the
ServiceProvider in RTRequirement of a
component, count the number of its client compo-
nents. Ensure that the same number of Lane ele-
ments are present in the RealTimeConfigurat-

ion of that component in the CQML model. Popu-
late the static and dynamic thread count as per rule (c)
above.

Publish/subscribe service requirement transformation
rules. The transformation algorithm for event channel QoS
requirement mapping is given below:

a. For every ECRequirement in PICML model, cre-
ate a correponding RTECConiguration element in
CQML model. Similar to ECRequirement that con-
tains all the publish/subscribe service requirements,
RTECConiguration element contains all the con-
figuration options for this service. The newly cre-
ated RTECConfiguration in CQML model has
the same granularity as that of the ECRequirement
in PICML model. Also, for every RTECConfigura-
tion element created, create a new RTECFactory
element (containing configuration options specific to
the event channel itself) and associate it with that
RTECConfiguration element.

b. For a ECPublisher(ECSubscriber) element in
PICML model, create a Publisher(Subscriber)
element in RTECConfiguration of CQML model,
which will contain all the publisher(subscriber)-related
configuration options. If a filter type is configured
for a ECPublisher (ECSubscriber), cre-
ate the same filter type for the corresponding
Publisher(Subscriber).

c. If disconnect_dangling_connections is set
to TRUE in ECRequirement, configure the con-
trol policy (that handles invalid object reference(s)) in
both Publisher and Subscriber to REACTIVE.
If REACTIVE control policy is set at the Publisher/
Subscriber, the object references of these compo-
nents are polled at regular intervals in order to ensure
that they are valid.

d. If publisher_filtering is set in ECRequire-
ment, in the CQML model configure the filt-
ering in Publisher to per_publisher. Oth-
erwise, configure filtering to NULL. Similarly,
if subscriber_filteting is set, following two
choices are available: (1) if configure_rt_sched
is set to TRUE for the corresonding ECSubscriber
indicating that Real-time scheduling is being used,
in the CQML model configure the filtering in
RTECFactory to PRIORITY such that subscriber fil-
tering honors priorities of events being filtered, (2) oth-
erwise, configure the filtering to BASIC.

e. If multithreaded access is configured for
ECPublisher (ECSubscriber), in
the CQML model configure the lock in
Publisher(Subscriber) to REACTIVE en-
suring that the access to the event channel is



thread safe, i.e., the shared data (here, event chan-
nel) is not accessed by more than one threads in
ECPublisher(ECSubscriber) components.
Otherwise, configure lock to NULL.

f. If prioritize_event_dispatch is set to TRUE,
configure dispatching in RTECFactory as fol-
lows: (1) if configure_rt_sched for the corre-
sponding ECPublisher in PICML model is set to
TRUE, configure dispatching to PRIORITY in or-
der to preserve priorities during dispatching, (2) other-
wise configure it to REACTIVE.

Resolving Challenge 2. Identifying the middleware-
specific QoS options for satisfying QoS requirements.
Output typed graph (CQML) elements (i.e., QoS op-
tions), are well-undertood by platform experts of individ-
ual implementation middleware. GT-QMAP transformation
rules listed above are designed in terms of input (PICML)
and output (CQML) typed graphs by these CCM plat-
form experts. Application developers can describe their ap-
plication QoS requirements using the modeling capabilities
discussed in Section 3.0.1 and apply the GT-QMAP trans-
formation algorithm described above to automatically iden-
tify correct CCM QoS options that will ultimately help
achieve the desired QoS for their component-based applica-
tion. As can be seen from the GT-QMAP transformation al-
gorithm above, identification of the appropriate subset of
QoS options can be a function of one or more QoS require-
ment elements. For example, in our MMS mission pro-
totype, disconnect_dangling_connections re-
quirement at the (asynchronous) connection between
Gizmo and Filter components can be satisfied by con-
figuring control mechanism and control_period
for handling invalid object references. On the other
hand, as per the publish/subscribe transformation algo-
rithm step(d) in Section 3.1, subscriber_filtering
and configure_rt_sched requirements at (asyn-
chronous) connection between Analysis and Comm
component are translated to filtering configura-
tion of RTECFactory.
Resolving Challenge 3. Mapping QoS requirements onto
QoS configuration options. GT-QMAP GT rules contain
information about the semantics of the QoS options, their
inter-dependencies, and how they affect the high-level QoS
requirements of an application and therefore are used to ass-
sign values to the subset of options chosen earlier. Further
QoS options semantics are known precisely during transfor-
mations, and thus GT-QMAP ensures preservation of tar-
get typed graph semantics (i.e., CQML). Component inter-
actions defined in input typed graph instance (i.e., PICML
model), along with the user specified QoS requirements
captured in that instance are used to completely generate an
instance of the output graph. For example, in our MMS mis-
sion prototype, since (1) Real-time scheduling is enabled,

and (2) event dispatch is prioritized, at all asynchronous
connections between Gizmo and Comm components, as per
publish/subscribe transformation algorithm step (f), a value
of PRIORITY is set for dispathching at each event chan-
nels.

4. Related Work

We discuss the related work in the area of middleware
QoS configuration.

Model Driven Architecture (MDA) [14] development
centers around defining platform-independent model (PIM)
of an application and applying (typed, and attribute aug-
mented) transformations to PIM to obtain platform- specific
model(s)(PSM). The COMQUAD project [16] discusses ex-
tensions to MDA in order to allow application developers to
refine non-functional aspects of their application from an
abstract point of view to a model close to the implementa-
tion. Model transformations are defined between different
non-functional aspects and are applied to QoS characterit-
sics (i.e., measurment of quality value) definitions to allow
for such a refinement.

Authors in [1] attempt to clearly define platform-
independent modeling in MDA development by intro-
ducing an important architectural notion of Abstract
Platform that captures an abstraction of infrastruc-
ture characteristics for models of an application at some
platform-independent level in its design process. An im-
portant observation of the authors is the requirement of
design languages that they should allow for appropriate lev-
els of platform-independence to be defined.

GT-QMAP differs from the above projects in the follow-
ing two ways: (1) COMQUAD allows for specification and
transformation of non-functional aspects at different levels
of abstraction, as the application itself evolves. For exam-
ple, response time of a function call may be expressed more
clearly as the time between reception of a request and send-
ing the corresponding response, or time between reception
of a request and reception of the corresponding response.
Successive refinement models in COMQUAD are exposed
to the application developers, such that more details can
be added. Similarly, work discussed in [1] proposes that
design languages should support platform-independence at
each abstract platform levels. GT-QMAP, on the other hand,
deals with mechanisms to translate QoS requirements an ap-
plication places on the implementation platform onto QoS
configuration options of that platform. Output models of
GT-QMAP can be treated as read only models. Application
developers thus, model and modify the high-level PICML
models only, and are thus shielded from the low-level de-
tails about the middleware platform. Finally, we focus on
QoS requirements (and mappings thereof) of an application
at the middleware level while COMQUAD focuses on QoS



characteristics for an application (i.e., response time, delay,
memory usage).

The Adaptive Quality Modeling Language (AQML) [13]
provides QoS adaption policy modeling artifacts. AQML
generators can (1) translate the QoS adaption policies (spec-
ified in AQML) into Matlab Simulink/Stateflow models for
simulations using a control-centric view of QoS adapta-
tion and (2) generate Contract Definition Language (CDL)
specifications used in QuO [21] from AQML models. GT-
QMAP differs with AQML in several ways, including the
application of QoS adaption and the precision of the middle-
ware modeling. For example, GT-QMAP models the con-
figuration of standards-based QoS-enabled component mid-
dleware technologies, whereas AQML targets QuO. More-
over, GT-QMAP’s middleware model precisely abstracts
the implementation so it does not need a two-level declar-
ative translation (from AQML to CDL to potentially CCM
using QuO delegates [21]) to achieve QoS adaptation.

Another approach that uses an aspect-oriented specifi-
cation technique for component-based distributed systems
is discussed in [4]. This work deals with specification of
functional behavior, non-functional behavior, QoS man-
agement policies, and requirements of the application and
synthesis of QoS management components for that sup-
porting application-level adaptation strategies. A declara-
tive approach is used to specify the system, e.g., real-time
temporal logic and timed automata notations are used to
describe the application requirements and QoS manage-
ment policies, respectively. This aspect-oriented technique
is similar to QuO [21], which uses several high-level lan-
guages to capture different aspects of QoS support. In con-
trast to the above works, GT-QMAP focuses on automat-
ing the error-prone activity of middleware QoS configura-
tion, i.e., mapping QoS requirements to QoS configuration
options. Such an automation along with a flexible and in-
tuitive QoS requirement specification mechanism naturally
supports application QoS evolution during its development
cycle. An interesting side-effect of using model transforma-
tions for QoS configuration is that since the changes to ap-
plication QoS are made only at QoS requirement specifi-
cation time, the implementation platform details (i.e., mid-
dleware QoS options) always remain in-sync with the ap-
plication QoS requirements, thereby addressing the produc-
tivity problem [12] at the middleware level. Finally, since
the specification of the QoS requirements itself is platform-
independent, it allows for reconfiguring the QoS mappings
to suit other middleware platforms.

5. Concluding Remarks

Large-scale distributed systems are increasingly built us-
ing middleware tecnhnologies that provide reusable build-
ing blocks and services to support rapid software develop-

ment by composition. In order to configure them correctly
for particular application needs, these middleware platforms
provide highly customizable QoS mechanisms. There is a
need, however, to (1) raise the level of specification abstrac-
tion for application developers (who lack a detailed under-
standing of these QoS mechanisms and their inter- denep-
dencies) such that application QoS requirements can be ex-
pressed in a intuitively, and (2) correctly map these QoS
specifications to middleware-specific QoS options.

In this paper we introduced a model-driven QoS map-
ping toolchain that addresses these challenges in middle-
ware QoS configuration. We showed the use of the toolchain
for Real-time and CORBA publish/subscribe service QoS
domains for correctly translating QoS requirements in these
domains onto respective QoS options. Since the transforma-
tion rules are written in terms of typed graphs (i.e., meta-
models), the toolchain can be reused for any application
QoS requirement specification confirming to the input typed
graph.

In the future, we plan to extend our GT-QMAP toolchain
for other QoS domains, for example, security and fault-
tolerance, and for other middleware technologies, such as
EJB and Web Services. GT-QMAP is available as open-
source from www.dre.vanderbilt.edu/CoSMIC/.
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