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Abstract

In this paper, a novel methodology for analysis of piecewise linear hybrid systems based on discrete

abstractions of the continuous dynamics is presented. An important characteristic of the approach is that

the available control inputs are taken into consideration in order to simplify the continuous dynamics.

Control specifications such as safety and reachability specifications are formulated in terms of partitions

of the state space of the system. The approach provides a convenient general framework not only for

analysis, but also for controller synthesis of hybrid systems. The research contributions of this paper

impact the areas of analysis, verification, and synthesis of piecewise linear hybrid systems.

1 Introduction

In this paper, a systematic methodology for analysis of piecewise linear hybrid systems based on discrete ab-

stractions of the continuous dynamics is presented. Our work is motivated by the need to address challenging

problems in the control and coordination of modern complex engineering applications such as autonomous

vehicles, chemical and manufacturing plants, and multiple robotic systems. Hybrid systems are modeled
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as discrete-time dynamical systems. A mathematical model that can capture both discrete and continuous

phenomena is formulated. The continuous dynamics are described by linear difference equations and the

discrete dynamics by finite automata. The interaction between the continuous and discrete parts is defined

by piecewise linear maps characterized by sets of linear equalities and inequalities. We refer to this class of

systems as piecewise linear hybrid dynamical systems in order to emphasize the hybrid nature of the systems

and problems of interest. The introduced model is general enough to describe important engineering appli-

cations, but simple enough to facilitate the development of analysis, and synthesis tools. Piecewise linear

hybrid dynamical systems have an efficient representation for modeling and simulation. Furthermore, current

modeling tools such as Matlab,Simulink, and Stateflow offer the necessary flexibility for modeling and

simulation of this class of systems.

Analysis and synthesis methodologies based on discrete abstractions have been studied extensively in

the hybrid system literature; see for example [2, 27]. In order to analyze hybrid systems and design control

algorithms, it is desirable to induce dynamical systems in finite quotient spaces that preserve the properties

of interest and then study the simplified models. In this paper, we propose a new methodology for the

construction of discrete abstractions of the continuous dynamics. An important characteristic of the approach

is that the available control inputs are taken into consideration in order to simplify the system. The main

mathematical tool to be used is the predecessor operator applied recursively to subsets of the hybrid state

space. The application of the predecessor operator corresponds to partition refinement into finer partitions

that allow the formulation of conditions that guarantee the existence of appropriate controls for the objectives

of interest.

Typical control specifications investigated in this paper are formulated in terms of partitions of the state

space of the system. Examples include safety problems, where the controller guarantees that the plant will not

enter an unsafe region for example guaranteeing that two interacting robots will not collide. Also reachability

problems where the controller drives the plant from an initial operating region or state to a desired one; this

is the case for example in the startup procedure of a chemical plant. In order to study safety specifications

for piecewise hybrid dynamical systems, we introduce the notion of quasideterminism. Quasideterminism

represents the case when the future behavior only for the next time interval of the given system can be

uniquely determined by the current state of the induced system. We show that this property can be used

to formulate conditions for safety specifications for piecewise linear hybrid dynamical systems. The safety

conditions can be tested using efficient linear programming techniques. We also present an algorithm for

the computation of the maximal safe set based on the approach in [51, 32]. Reachability conditions are also

formulated. Our approach is based on conditions that guarantee that the state can be forced to reach a

desirable region of the state space by selecting appropriate controls. It should be emphasized that we are

interested only in the case when reachability between two regions is defined so that the state is driven to

the target region without entering a third region.This is a problem of great practical importance in hybrid

systems since it is often desirable to drive the state to a target region of the state space while satisfying

constraints on the state and input during the operation of the system.

Piecewise linear systems arise very often as mathematical models for practical applications. For example,

piecewise linear systems can be used to model systems with discontinuous dynamics that arise because

of saturation constraints, hysteresis, friction in mechanical systems and so on. For another example, in

order to avoid dealing directly with a set of nonlinear differential equations one may choose to work with

linear equations and switch among these simpler models. Furthermore, piecewise linear systems arise in
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the switching control paradigm [35, 36] where the behavior of the plant is controlled by switching between

different controllers for each region of the state space. It should be noted that the class of piecewise linear

systems has been studied extensively in the circuit theory community; see for example [29] and the references

therein. Here, we are interested in approaches that have been developed for modeling, analysis, and synthesis

of hybrid control systems. The first investigations of piecewise linear hybrid systems can be found in [44, 45,

46]. The main problems studied in this framework are stability, controllability, and input-output regulation.

Piecewise linear dynamical systems have been considered also in [13, 5, 6]. A methodology for approximating

the reachable states is developed and a supervisory control framework is used for controller design. A class

of hybrid systems which is similar to piecewise linear hybrid systems is considered in [9, 10, 11]. These

systems are described by linear dynamic equations subject to linear inequalities involving real and integer

variables. Finally, piecewise linear systems were also studied in [22] to develop computational algorithms for

the analysis of nonlinear and uncertain dynamical systems.

A great amount of research work has already been done in the hybrid systems area during the past

decade; see for example [3] and the references therein. A survey of different models and methodologies can

be found in [4]. The approach presented in this paper is directly related to supervisory control framework

for hybrid systems [47, 49, 27]. Similar approaches based on approximations of the continuous dynamics

by a discrete event system have also been proposed in [39, 41, 19, 31]. The hybrid system model typically

used in the supervisory control framework consists of a plant described by nonlinear differential or difference

equations, a discrete event controller described by a deterministic finite automaton, and an interface which

provides the means for the communication between the plant and the controller. In the model proposed

in the present work, we consider a plant that contain discrete dynamics and both discrete and continuous

inputs.as well as discrete and continuous disturbances.

The hybrid system model used in this paper can be viewed as a input-output hybrid automaton evolving

in discrete-time. Hybrid automata provide a general modeling formalism for the formal specification and

algorithmic analysis of hybrid systems [1]. Formalisms for input/output hybrid automata have been also

proposed in [33, 51, 30]. A related approach to the work presented in this paper uses bisimulations to

study the decidability of verification algorithms [21, 28, 2]. Bisimulations are quotient systems that preserve

the reachability properties of the original hybrid system and therefore, problems related to the reachability

of the original system can be solved by studying the quotient system. However, the use of bisimulations

in practical control systems is limited by the requirements for very simple continuous dynamics [28]. The

related notion of dynamical consistency for hierarchical control systems has been studied in [15]. The use of

dynamical consistency aims at the computation of abstractions that preserve the controllability properties

of hybrid control systems. A lattice of hierarchical partitions is defined in [15] and used to investigate

dynamical consistency. However, no constructive algorithms for the computation of the partitions are given.

Computational methods for reachability analysis of hybrid systems have been also presented in [17, 18]

where the continuous flow of the hybrid system with arbitrary dynamics is approximated using polygonal

flow pipes. Finite-state approximations are then used for the verification of the hybrid system properties.

In our paper, reachability analysis of discrete-time piecewise linear hybrid systems is carried out without

approximations using Fourier-Motzkin elimination and linear programming techniques. The initial partition

is refined based on the existing control resources and disturbances. The refinement terminates when it is

guaranteed that the control specifications can be satisfied enabling the design of control algorithms.

The main contributions of the paper are the following. An algebraic system theoretical framework is

3



developed for the analysis, verification, and synthesis of piecewise linear hybrid dynamical systems. This

framework enables us to develop a novel methodology for analysis of piecewise linear hybrid systems based

on discrete abstractions of the continuous dynamics. Our approach is based on systematic methodology

for refinement of the state space partition. Algorithms for reachability analysis of discrete-time piecewise

linear hybrid systems are presented in detail. It should be noted that these algorithms can be applied in the

general case when the discrete dynamics contain controllable and uncontrollable events and the continuous

dynamics contain control inputs and disturbances. The research contributions of this work impact the areas

of reachability analysis, verification, and synthesis of piecewise linear hybrid systems. Note that the main

results of this paper have appeared in [23]; early results have been reported in [25, 24, 26].

This paper is organized as follows. In Section 2, we present the modeling framework for piecewise linear

hybrid dynamical systems. In Section 3, we use an algebraic system theory framework to describe our

motivation for using discrete abstractions for the analysis of hybrid systems. In Section 4, we present a

methodology for backward reachability analysis of piecewise linear hybrid systems. First, we formally define

the notion of partition refinement by characterizing the set of polyhedral partitions as a lattice. Then, we

define the predecessor operator for PLHDS, and we present computer algorithms for backward reachability

analysis based on the predecessor operator. In Section 5, we study the safety problem for piecewise linear

hybrid systems. In Section 6, we study the reachability problem and we formulate conditions that guarantee

reachability between piecewise linear regions. Finally, concluding remarks are presented in Section 7.

2 Piecewise Linear Hybrid Dynamical Systems

In the following, we define the class of piecewise linear hybrid dynamical systems. The main characteristic of

this class is that the continuous dynamics are described by linear difference equations, the discrete dynamics

by finite automata, and the interaction between the continuous and the discrete part is defined by piecewise

linear maps. First, we present some basic notions and the necessary notation that are used in the modeling

formalism of piecewise linear hybrid dynamical systems.

A piecewise-linear (PL) subset [45] of a finite dimensional vector space V is the union of a finite number

of sets defined by (finitely many) linear equations f(x) = a and linear inequalities f(x) > a. A PL relation

R : X → Y between PL sets is one whose graph is a PL set (as a subset of X × Y ). A PL map is defined

similarly. Equivalently, the map f : X → Y is PL if there exists a covering of X by PL subsets Xi such that

the restrictions f |Xi are all affine (linear + translation).

Consider the state space X and define the mapping π : X → 2X from X into the power set of X . The

mapping π defines an equivalence relation Eπ on the set X in the natural way x1Eπ x2 iff π(x1) = π(x2).

The image of the mapping π is called the quotient space of X by Eπ and is denoted by X/Eπ. Adopting

this notation we can write π : X → X/Eπ where π is understood as the projection of X onto X/Eπ. The

mapping π generates a partition of the state set X into the equivalence classes of Eπ and will be called

generator.

In this paper, we are interested in the case when X = <n and the generator is defined by a set of

hyperplanes. Note that such piecewise-linear regions arise in many practical applications. Consider the

collection {hi}i=1,2,...,`, hi : <n → < of real-valued functions of the form hi(x) = gT
i x − wi, where gi ∈ <n
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and wi ∈ <. Let

Hi = ker(hi) = {x ∈ <n : hi(x) = gT
i x− wi = 0}

and assume that Hi is an (n − 1)-dimensional hyperplane (∇hi(x) = gT
i 6= 0). We define the function

ĥi : <n → {−1, 0, 1} by

ĥi(x) =







−1 if hi(x) < 0

0 if hi(x) = 0

1 if hi(x) > 0

Then, the generator is defined by π(x) = [ĥ1(x), . . . , ĥ`(x)]
T . Although the generator has been defined as

π : <n → {−1, 0, 1}` there is a bijection between {−1, 0, 1}` and the quotient set X/Eπ (they are the same

set). The quotient set can be represented as X/Eπ = {Pi}, i = 1, . . . , |π| where each Pi corresponds to a

polyhedral region of <n.

Let X ⊆ <n denote the continuous state space, Q the finite set of discrete states or modes of the system,

U ⊂ <m the continuous input space, Σ the set of input events, and Y the output set of the hybrid system.

Often, it is desirable to distinguish between controlled and uncontrolled inputs, and we may include both

a space of continuous inputs U ⊂ <m and a space of continuous disturbances D ⊂ <p. Furthermore, the

set of input events can be written as Σ = Σc ∪ Σu. The set Σc represents the controllable events which are

associated with discrete state transitions which can be issued by a control mechanism. The set Σu contains

the uncontrollable events generated by the environment. In our modeling framework, these events are viewed

as discrete disturbances. Note that this definition is different than the definition of supervisory control [42]

where uncontrollable events are events that can be disabled by the controller. The output set can also

contain a discrete and a continuous part. Finally, in the case when the measurements are different from the

outputs, a measurement set and a measurement function can be included in the system’s description.

Definition 1 A piecewise linear hybrid dynamical system (PLHDS ) is defined by

x(t+ 1) = Aq(t+1)x(t) +Bq(t+1)u(t) +Eq(t+1)d(t) (1)

q(t+ 1) = δ(q(t), π(x(t)), σc(t), σu(t)), q(t+ 1) ∈ act(π(x(t))) (2)

y(t) = g(q(t), x(t)) (3)

where x(0) = x0 ∈ <n, q(0) = q0 ∈ Q and π : X → X/Eπ partitions the continuous state space <n into

polyhedral equivalence classes, act : X/Eπ → 2Q defines the active mode set for every equivalence class,

Aq ∈ <n×n, Bq ∈ <n×m, and Eq ∈ <n×p are the system matrices for the discrete state q, δ : Q ×X/Eπ ×

Σc × Σu → Q is the discrete state transition function, and g : Q ×X → Y is the output function which is

assumed to be piecewise linear.

The dynamic evolution of the system is defined as follows. A change in the discrete state of the system can

be caused by two type of events. First, an input event generated by either the controller or the environment.

Second, an event generated by the continuous dynamics when the continuous state enters a polyhedral

region of the continuous state space defined by the partition. The set of events generated by the continuous

dynamics is called the set of plant events. After such a discrete transition, the system is at mode (discrete

state) q and the continuous state evolves according to the difference equation (1) driven by the control input

u(t).
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The interaction between the discrete and continuous components of a piecewise linear hybrid system is

formally defined as follows. For each discrete mode, we assign a region of the state space using the mapping

inv : Q → 2X/Eπ . The continuous state may evolve according to the difference equation determined by

the discrete state q only if x(t) ∈ inv(q). The regions inv(q) are called invariants. It is assumed that the

invariants are regions of the primary partition. These regions arise from the control specifications that do not

allow certain modes in a region of the state space. They can also arise from discontinuities in the continuous

dynamics when, for example, saturation or sign functions are used to model the physical processes. Note

that in our modeling framework, the invariants do not necessarily correspond to disjoint regions of the

state space. This is a realistic assumption, since many times in modeling of practical applications, it is not

straightforward to assign a unique difference equation to each region of the state space. This is a task to be

accomplished by the controller depending on the control specifications.

An alternative way to describe the notion of invariants that will be useful in our analysis is by defining the

set of feasible modes for each region of the primary partition. The active mode set is defined by the mapping

act : X/Eπ → 2Q. From the definition of the invariants and the active mode sets, it follows that for each

discrete state q ∈ Q and for each region of the primary partition P ∈ X/Eπ we have P ∈ inv(q) ⇔ q ∈ act(P ).

Assume that the current discrete state is q and that q′ ∈ act(π(x(t))) for some state x(t) ∈ <n, then

q′ is a possible new state, and the transition q → q′ (or (q, q′)) may occur. Each feasible discrete state

transition is associated either with a controllable event σc ∈ Σc or an uncontrollable event σu ∈ Σu. A

controllable event is issued by a control mechanism and forces the transition to occur. An uncontrollable

event is generated by the environment and may also force a discrete state transition. As it is described in

the previous definition, the discrete state transition function is assumed to be deterministic which means

that for a given controllable or uncontrollable event the next discrete state can be uniquely determined.

The state transitions of the PLHDS are synchronized by a clock. At every clock tick an input event may

be triggered and an event caused by the continuous dynamics may occur. Therefore, every change in the state

occurs synchronously to a clock. Since the hybrid model evolves in discrete-time, the generator will not be

able to identify the exact moment that a hyperplane is crossed. It identifies the first sample after a crossing

has occurred. In many physical systems, however, events occur asynchronously at time instants that do not

necessarily coincide with the clock ticks. Discrete-time systems can be used as approximations of physical

processes. The approximation is based on the fact that events that occur asynchronously are detected in

the next clock tick (using digital computers). In many situations, the discrepancy in the time instants of

the event occurrences can be studied by considering continuous disturbances in the model. Discrete-time

modeling offers significant computational advantages, however, it cannot be used to study the behavior of

the system between sampling instants. For example, it is possible that a sequence of two or more plant

events will occur in a sampling interval. In our model, it is assumed that the plant events are generated

based only on the value of the state at the sampling instants.

It is assumed that the partition defined by the mapping π is appropriate for extraction of important

information for the system and it will be called the primary partition. The primary partition is determined

by considering the regions which are used to describe the control specifications and the interaction between

the continuous and discrete part of the open loop hybrid system.

The proposed modeling formalism separates the physical plant to be controlled from the control specifi-

cations and the controller. It provides the necessary mathematical tools to describe explicitly what control

actions are available in order to influence the behavior of the plant. A very important consequence of this
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characteristics is that it is possible to define open loop and closed loop connections between the plant and

the controller and try to exploit the advantages of feedback. It should be noted that the above model does

not include jumps in the continuous state that may occur when certain state variables are discontinuously

reset, for example, upon crossing a hyperplane. Jumps can be added in the modeling formalism described

above and in the subsequent analysis if they can be represented by piecewise linear maps. However, the

notation becomes tedious, and the ideas and methodologies presented harder to follow.

Example - Temperature Control System We present a temperature control system to illustrate the

piecewise linear hybrid model. An electrical analog of a temperature control system is used by considering

the temperature being analogous to electric voltage, heat quantity to current, heat capacity to capacitance,

and thermal resistance to electrical resistance. The system consists of a furnace that can be switched on

and off. When the furnace is on, a continuous input controls the produced heat. The control objective is to

control the temperature at a point B of the system by applying the heat input at a different point A. The

temperature at point B is also affected by the temperature at a point C of the environment.

The temperature control system has two modes q0 and q1 that correspond to the furnace being on and off

respectively. When the furnace is on, the system can described by the electrical circuit shown in Figure 1.

Let x1 and x2 denote the voltages (temperatures) across the capacitors C1 and C2 controlled by changing

the current (heat) input u, which takes values in the set U ⊂ <. The temperature x2 is also affected by

the temperature d of the environment which is modeled as a continuous disturbance. For the mode q1, the

system is governed by the state-space equation (using Kirchhoff’s laws)

[

ẋ1

ẋ2

]

=

[

− 1
R1C1

1
R1C1

1
R1C2

− 1
R12C2

][

x1

x2

]

+

[
1

C1

0

]

u+

[

0
1

R2C2

]

d

where R12 = R1R2

R1+R2

.

C
1 C

R R1

2

2

u x
1 x

2
d

A B C

Figure 1: Electric circuit describing the case when the furnace is on.

When the furnace is turned off, the temperature is decreasing and the behavior of the system can be

described by the electrical circuit shown in Figure 2. The values of the resistors and the capacitors model

the time constants of the system. The time constants are, in general, different depending on whether the

temperature is increasing or decreasing. The state-space representation of the system for the mode q0 takes

the form [

ẋ1

ẋ2

]

=

[

− 1
R3C3

1
R3C3

1
R3C4

− 1
R34C4

][

x1

x2

]

+

[

0
1

R4C4

]

d

where R34 = R3R4

R3+R4
.

The voltages (temperatures) x1 and x2 can be affected either by the continuous control input u ∈ U or

by switching on or off the furnace using the control input events σon and σoff . It is assumed that a relief

switch is used to protect point A from overheating, so that the furnace is switched off automatically whenever
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C
3 C

R R3

4

4

x
1

x
2

d

A B C

Figure 2: Electric circuit describing the case when the furnace is off.

the temperature x1 exceeds a prescribed level ub. The control objective for the system is to maintain the

temperature x2 between appropriate levels described by the interval [lt, ht].

A partition of the continuous state space is obtained by considering the hyperplanes h1 = x1 − ub, h2 =

x2 − lt, h3 = x2 − ht, and h4 = x1 that describe the safety guard and the control specifications of the

system. The partition of the continuous state space is shown in Figure 4. Discrete-time representations of

the continuous dynamics for each mode are obtained using (zero-order hold) sampling. The discrete part of

the system is described by the automaton of Figure 3. The system switches between modes q0 and q1 upon

receiving the control input events σon and σoff. Moreover, a plant event issues when x1 > ub will switch the

system to the off mode.

start

x  > ub

q
0

q
1

1

OFF ONs
ON

s
OFF

Ú

Figure 3: Temperature control system.

ht

lt

safe

high

low

ub x

x

1

2
h1

h3

h2

h4

Figure 4: Partition for the temperature control system.

The temperature control system example is used to illustrate the partition refinement methodolody for

safety specifications in Subection 5.2 and for reachability specifications in Subsection 6.1. A case study

of hybrid controller synthesis for a related heating system is presented in [8], where a heating system is

modeled as a hybrid automaton with continuous dynamics described by first-order differential equations and

controller that guarantees safety is designed using game theory. In our example, the objective is to control

the temperature at of the system by applying the heat input at a different point, and therefore the system

8



can only be described using second-order dynamics. It should be noted that the example and our approach

can be generalized to an nth-order piecewise linear hybrid system. 2

3 Discrete Abstractions

This section describes an algebraic system theoretical framework that enable us to formalize the partition

refinement methodology. The main contribution is a framework for constructing discrete abstractions for

piecewise linear hybrid systems that take into consideration the control inputs, both continuous and discrete.

In order to analyze hybrid systems and design control algorithms, it is desirable to induce dynamical

systems in finite quotient spaces that preserve the properties of interest and then study the simplified models.

The solution we propose is to take advantage of the available control inputs in order to simplify the system.

We want to formulate conditions on the available control inputs in order to construct meaningful discrete

abstractions of the hybrid system. The main mathematical tool to be used is the predecessor operator applied

recursively to subsets of the hybrid state space. The application of the predecessor operator corresponds to

the refinement of the primary partition into finer partitions that allow the formulation of conditions that

guarantee the existence of appropriate controls for the objectives of interest.

In general, the design of the partition depends not only on the plant to be controlled, but also on the

control policies available, as well as on the control goals to be attained. Certain control goals may require,

for example, detailed feedback information while for others coarser quantization levels of the signals may

be sufficient. The former case corresponds to finer partitioning of the feedback signal space, while the

latter corresponds to coarser partitioning. The fact that different control goals may require different types

of information about the plant is not surprising, as it is rather well known that to stabilize a system, for

example, requires less detailed information about the system’s dynamic behavior than to do tracking. Note

that in general, the fewer the distinct regions in the partitioned signal space, the simpler (fewer states) the

resulting induced system will be, and this will result in a simpler controller design. Since the systems to be

controlled via hybrid controllers are typically complex, it is important to make every effort to use only the

necessary information to attain the control goals. The question of systematically determining the minimum

amount of information needed from the plant in order to achieve particular control goals is an important

and largely open question; our work only partially resolves this question.

3.1 Induced Dynamical Systems

Let f be the state transition function of a dynamical system and assume that the inputs are fixed. Consider

the diagram in Figure 5. Intuitively, the map π is used to coarsen the state set of the system. The question

that arises is whether the system f can follow this abstraction. This question is concerned with the existence

of a mapping f̃ : X/Eπ → X/Eπ that makes the diagram commute. It is shown in [43] that f̃ exists if and

only if

x1 Eπ x2 ⇒ (π ◦ f)(x1) = (π ◦ f)(x2) (4)

(where ◦ denotes function composition) and moreover, if (4) is satisfied then f̃ is unique. Note that the above

result does not require any structure on the set X or the mappings π and f . Using equivalence relations on

the state set X , it is possible to define new dynamical systems in the derived quotient spaces. These systems

are called induced dynamical systems [43].

9



X X

X/E X/E

f

f
∼

π π

π π

Figure 5: Induced dynamical systems.

In the hybrid systems case, the properties of the original system are not preserved, in general, in the

induced system. One of the main difficulties arises because abstractions of continuous systems in finite

quotient spaces usually result in nondeterniministic discrete event systems. Consider, for example, two

continuous states x1, x2 ∈ <n, x1 6= x2 such that π(x1) = π(x2) = P ∈ X/Eπ. The states x1 and x2 may

be driven even using the same control input to different equivalence classes of the quotient space X/Eπ.

Therefore, in general we have that (π ◦ f)(x1) 6= (π ◦ f)(x2) and a mapping f̃ that makes the diagram

commute does not exist.

In general, piecewise linear hybrid dynamical systems cannot be induced in finite quotient spaces by

preserving the reachability properties [28]. However, there are some cases when a mapping π and the

induced system f̃ can be computed. A special case arise when the mapping π is defined using the natural

invariants of the continuous dynamics [48, 14, 50]. However, it is very difficult to compute such partitions,

and moreover, the control specifications are not necessarily defined using the invariant sets of the system.

The solution we propose is to take advantage of the available control inputs in order to simplify the

system. We want to formulate conditions on the available control inputs in order to induce piecewise linear

hybrid dynamical systems in finite quotient spaces. The design of hybrid control systems is decomposed in

two levels. In the higher level, we are concerned only with the existence of appropriate control inputs. The

implementation of the controller and therefore, the selection of the control input signal is done by the lower

level. First, we want to formulate efficient algorithms that guarantee the existence of appropriate control

inputs for safety and reachability specifications. Second, we want to develop systematic methodologies for the

design of the (lower level) controller. In this paper, we concentrate on the first problem and we formulate

conditions for the existence of appropriate control inputs for safety and reachability specifications. The

conditions are expressed as the feasibility of an optimization problem. The lower level problem is concerned

with the selection of the optimal control inputs and it is a by-product of the optimization algorithm. A

systematic design methodology for the selection of optimal control inputs that results in a feedback control

architecture has been developed in [23], but it is not presented in this paper due to space limitations.

X × U X
f

f
∼

π  = π    ×  π E E E
X U E

X
π

X/E  × U/EX U X/EX

Figure 6: Function diagram including control inputs.
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First, we describe our approach using an algebraic system theory setting. Consider the diagram shown

in Figure 6. The equivalence relation E is defined by the mapping πE : X × U → X/EX × X/EU as

follows. The restriction of πE in the state space X is the mapping which describes the primary partition

of the system. The restriction of πEU
separates the input space U into two equivalence classes. The first

equivalence class consists of all control inputs available to the system and the second class consists of all

the remaining elements of the input space. In practical applications, physical constraints such as saturation

constraints restrict the control inputs that can be applied to the system. For example, the current input in

the temperature control system example is constrained based on the available current source. Many times,

we even consider a finite set of inputs corresponding to specific commands as, for example, in a valve can be

closed, half open, open, and so on. Therefore, (x1, u1) is equivalent to (x2, u2) if and only if π(x1) = π(x2)

and the control inputs u1, u2 can be applied to the system. Note that the equivalence relation of the input

space is defined in accordance with our two-level approach since the higher control level is concerned only

with the existence of controls. All available control inputs are equivalent at this level of abstraction. The

induced dynamical system f̃ exists if and only if

(x1, u1)E (x2, u2) ⇒ ∃u1, u2 ∈ U, (πEX
◦ f)(x1, u1) = (πEX

◦ f)(x2, u2).

The interpretation of the above condition is that f̃ exists if and only if there exist control inputs so that

states that belong to the same polyhedral equivalence class of the primary partition, will remain equivalent

in the next time step.

Of course, it is desirable to consider the dynamic evolution of the system in more than one steps. In

order to do that, we consider an upper bound N ∈ N on the number of time steps that defines the length

of the time horizon of interest. The length is assumed to be finite, since infinite-time problems in piecewise

linear systems are, in general, undecidable [46]. We introduce the following notation.

[t1, t2] = {t1, t1 + 1, . . . , t2 − 1, t2}, t1 ≤ t2,

u∗[t0, t1] = {u(t0), . . . , u(t1)}.

The equivalence relation on the input space is now defined as follows. The input sequences u∗
1[t0, t1] and

X
ϕ

ϕ∼

πE E
X

π

X/EX

X × UN

X/E  × U /EX U
N

N

Figure 7: Function diagram including control input sequences.

u∗2[t0, t2] are equivalent if and only if u1(t), t ∈ [t0, t1] and u2(t), t ∈ [t0, t2] are available control inputs, and

in addition we have t1 − t0 ≤ N and t2 − t0 ≤ N . The system mapping denoted by φ : X × UN → X is the

extension of the map f : X × U → X , so that it can be applied to sequence segments u∗[t0, t], t − t0 ≤ N .

The induced dynamical system φ̃ exists if and only if

(x1, u
∗
1[t0, t1])E (x2, u

∗
2[t0, t2]) ⇒ ∃u∗1[t0, t1], u

∗
2[t0, t2] ∈ UN , (πEX

◦φ)(x1, u
∗
1[t0, t1]) = (πEX

◦φ)(x2, u
∗
2[t0, t2]).
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Our objective is to compute a partition of the state space so that the diagram shown in Figure 7 commutes.

Our approach is to refine the initial partition that is used to describe the specifications, until we can guarantee

that there exist appropriate control resources that guarantee that the specifications are satisfied. Note

that we consider only the regions of the state space that appear in the specifications. Consequently, the

commutativity of the diagram in Figure 7 is only required with respect to the equivalence classes that are

formed from the control specifications.

3.2 Partition Refinement

In this section, we characterize the set of all the partitions of the state space with polyhedral equivalence

classes as a lattice and we define the notion of partition refinement with respect to the partial order of the

lattice. The characterization of the partition refinement in a lattice framework is very important for the

following reasons. First, by formally defining the partition refinement as a lattice operation it is clarified

how the regions of are combined to form the final partition of the system. Second, it illustrates the difficulty

of using a partition of the state space to abstract the continuous dynamics (see Proposition 1). Note that

a lattice of partitions has been used to study dynamical consistency of hybrid control systems in [15]. In

this paper, we only consider polyhedral partitions and we present a constructive methodology for partition

refinement.

In the following, we present some basic notions from algebraic system theory [43] that are needed for to

formalize the partition refinement methodology. A binary relation on X is defined as a subset B ⊂ X×X =

X2. A poset is defined as a set X with a partial order relation ≤ on X and is denoted by (X,≤). A lattice

(X,≤,∧,∨) is a poset (X,≤) for which any two elements have a greatest lower bound (infimum) denoted by

the binary operation x ∧ y (meet), and a least upper bound (supremum) denoted by the binary operation

x∨ y (join). A lattice is said to be complete if inf(Y ) and sup(Y ) exist for every Y ⊂ X . Let Y be a subset

of the lattice (X,≤,∧,∨), then (Y,≤,∧,∨) is said to be a sublattice of (X,≤,∧,∨) if Y is closed with respect

to the binary operations meet and join.

Denote by B(X) the set of all binary relations on the set X . We can define the poset (B(X),≤)

where the partial order relation ≤ on B(X) defined as B1 ≤ B2 if (x1, x2) ∈ B1 ⇒ (x1, x2) ∈ B2. A

lattice structure (B(X),≤,∧,∨) can be developed in the poset (B(X),≤) by introducing meet and join

operations (corresponding to the set theoretic intersection and union in X2). The lattice (B(X),≤,∧,∨)

is complete and is referred to as the relational lattice. Let E(X) be the set of all equivalence relations on

X . We have that E(X) ⊂ B(X) and E(X) inherits the partial order of B(X), that is for E1, E2 ∈ E(X)

E1 ≤ E2 if x1E1x2 ⇒ x1E2x2. A lattice structure can also be developed on the set of all equivalence

relations on X (for more details see [43]). The lattice (E(X),≤,∧,∨) is called the equivalence lattice.

Proposition 1 The set EP (X) of all equivalence relations on X induced by mappings π : X → X/Eπ

which are defined using finite collections of (n−1)-dimensional hyperplanes and thus, they separate the state

space X into polyhedral equivalence classes, is a sublattice of the equivalence lattice E(X), and will be called

polyhedral equivalence lattice. Furthermore, EP (X) is not complete.

Proof Consider the equivalence relations E1, E2 ⊂ X defined by the finite collections of affine functions

H1 = {hi}i=1,...,d1
and H2 = {h′i}i=1,...,d2

respectively. The meet of E1 and E2 is defined as the set theoretic

intersection E = inf(E1, E2) = E1∩E2. E is clearly the equivalence relation defined by H = H1∪H2 and its
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equivalence classes are polyhedral sets since they are defined by the intersection of the equivalence classes of

E1 and E2. Therefore, E ∈ EP (X). The join E′ of E1 and E2 is defined as the intersection of all equivalence

relations E′
i ∈ EP (X) that are larger than E1 and E2 with respect to the partial order of the equivalence

lattice

E′ = sup(E1, E2) = E1 ∪ E2 =
⋂

i

E′
i, E1, E2 ≤ E′

i

The intersection of infinite number of equivalence relations from EP (X) does not necessarily belong to

EP (X). However, in this case we can define E ′ to be the equivalence relation induced by the finite collection

H′ = H1 ∩H2 of affine functions. Then clearly, E1, E2 ≤ E′ and E′ ∈ EP (X). Note that in the case E1 and

E2 do not have any common hyperplanes, their join is the equivalence relation that corresponds to X 2.

For the sublattice (EP (X),≤,∧,∨) to be complete, every subset of EP (X) should have an infimum and a

supremum. Consider a infinite set {Ei} of equivalence relations in EP (X), then inf i(Ei) does not necessarily

belong to EP (X) since infinite intersections of polyhedral sets may not be polyhedral. 2

Partition refinement is defined with respect to the order relation of the polyhedral equivalence lattice.

A partition defined by the mapping π′ is finer than the partition defined by π, if the induced equivalence

relations considered as elements of the equivalence lattice satisfy the condition Eπ′ ≤ Eπ. The partition

refinement methodology starts from the initial partition of the system and computes finer partitions by

incorporating additional hyperplanes. In the lattice framework, given the primary partition, we refine the

state space using the “meet” operation of EP (X). The fact that the polyhedral equivalence lattice is not

complete implies that in order for the final partition to be a polyhedral equivalence relation, the partition

refinement must use only a finite number of “meet” operations. It should be emphasized that the control

specifications,the invariants, and the guards of the hybrid model are represented using the polyhedral regions

of the primary partition.

4 Backward Reachability Analysis

In this section, we describe a backward reachability analysis approach for partition refinement. The main

contribution is an efficient algorithm for partition refinement of piecewise linear hybrid systems based on the

predecessor operator.

4.1 The Predecessor Operator for PLHDS

In this section, we define the predecessor operator for PLHDS. We also present the technical results that

are necessary for the computation of the operator. These results are used for the development of computer

algorithms for backward reachability analysis of PLHDS.

A region of the state space is defined as R = (M,P ) where M ⊆ Q is a set of modes and P ⊂ <n

is a piecewise linear set satisfying the following property. For every x ∈ P there exists q ∈ M such that

q ∈ act(π(x)). This condition guarantees that for every state in the region R there is a possible evolution of

the system.

Given the region R = (M,P ), we define the predecessor operator pre : 2Q×X → 2Q×X to compute the

set of states for which there exists a control input so that the state will be driven in R for every disturbance.

13



The action of the operator is described by

pre(R) = {q ∈M} × {x ∈ X |∃u ∈ U, ∀d ∈ D,Aqx+Bqu+Eqd ∈ P}.

The set pre(R) is piecewise linear and can be always represented using only linear equalities and inequali-

ties. Such a description is based on the fact that piecewise-linear algebra admits elimination of quantifiers [45]

which means that any PL set defined using quantifiers can be also defined using only propositional connec-

tives.

4.2 Computation of the Predecessor Operator

In the following, we present algorithms to carry out the elimination of quantifiers for the computation of the

predecessor operator for piecewise-linear hybrid dynamical systems. Our results are based on combinations of

three different mathematical tools. Fourier-Motzkin elimination [37] for computing appropriate projections,

linear programming techniques [38] for eliminating redundant constraints, and equivalences from predicate

logic [40] to combine the constraints.

Consider the region R = (M,P ). A PL set is not necessarily polyhedral. However, every PL set P can

be written as a finite union of polyhedral sets P =
⋃p

i=1 Pi, for example, by writing the linear constraints

in disjunctive normal form. In order to show that there exists a constructive algorithm for elimination of

quantifiers, we have essentially to consider only the logical formula

(∃u ∈ U)(φ11(x, u) ∧ φ12(x, u) ∧ . . .) ∨ . . . ∨ (φp1(x, u) ∧ φp2(x, u) ∧ . . .).

Algorithms for elimination of quantifiers for more complicated logical formulas can then be derived using

logical equivalences [16]. In the case of PLHDS, we are interested in elimination of quantifiers for formulas of

the form (∃u ∈ U) and (∀d ∈ D) for the control inputs and disturbances respectively. Since any PL set can

be written as the finite union of polyhedral sets, it suffices to show how the predecessor operator is applied

to a union of polyhedral sets. We compute the predecessor operator of a PL set in two steps. First, we

consider only polyhedral sets and second, unions of polyhedral sets. In order to simplify the notation, in the

remaining of this subsection we assume that the discrete state q is fixed and we consider the restriction of

the predecessor operator to the continuous state space prec : 2X → 2X .

4.3 Continuous control inputs

Consider the system x(t + 1) = Ax(t) + Bu(t) where A ∈ <n×n and B ∈ <n×m. It is assumed that the

control input takes values in the polytope (bounded polyhedral) U described by U = {u ∈ <m|Fu ≤ v}, F ∈

<µ×m, v ∈ <µ. Consider the polyhedral set P ⊆ <n given by P = {x ∈ <n|Gx ≤ w}, G ∈ <ν×n, w ∈ <ν .

Our objective is to present a systematic methodology to compute the predecessor operator set

prec(P ) = {x ∈ <n|∃u ∈ U,Ax+Bu ∈ P}.

We denote Pr : X × U → X the projection from the set X × U = <n ×<m to the state space X = <n.

Proposition 2 The set prec(P ) is given by prec(P ) = Pr(W ) where W ⊆ X × U is defined as W =

{(x, u)|(GAx +GBu ≤ w) ∧ (Fu ≤ v)}.
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Proof By direct substitution, we have that prec(P ) = {x|∃u ∈ U,GAx+GBu ≤ w}. Then, we have that if

x ∈ Pr(W ), there exits u ∈ U such that (x, u) ∈ W , and therefore x ∈ prec(P ). Conversely, if x ∈ prec(P ),

then by definition of the predecessor operator there exists control input u ∈ U such that (x, u) ∈ W , which

implies that x ∈ Pr(W ). Therefore, we have shown that prec(P ) = Pr(W ). 2

The projection of the set W into the continuous state space X = <n can be computed using the Fourier-

Motzkin elimination method [37, 20, 53]. We project the polyhedron W ⊂ <n × <m into the space <n by

eliminating the variables ui of the control input vector. According to Fourier’s method, in order to eliminate

a variable from a set of inequalities, we must consider all pairs of inequalities in which the variable has

opposite sign and eliminate the variable between each pair.

Since U is bounded, all the control variables ui will appear with opposite sign in at least one pair of

inequalities from the constraints Fu ≤ v. In order to see that, consider that there exists ui that appear with

the same sign in all the constraints. Assume without loss of generality that ui appears with a positive sign in

all the constraints Fu ≤ v. Then, ui can be decreased indefinitely without violating any of the constraints.

Therefore, the set U is unbounded which is a contradiction.

Example Consider the following set of linear inequalities

x1 + x2 + u ≤ 1 (5)

2x1 + x2 + u ≤ 1 (6)

u ≤ 1 (7)

−u ≤ −.5 (8)

for which we want to eliminate the variable u. We consider all pairs of inequalities in which the variable u

has opposite signs and eliminate between each pair. To demonstrate this, the inequalities (5) and (8) can be

written as

.5 ≤ u ≤ 1 − x1 − x2. (9)

Therefore, we have that

.5 ≤ 1 − x1 − x2 (10)

which can be written as

x1 + x2 ≤ .5. (11)

Therefore, if there is a solution to the inequalities (5) and (8), there must be a solution to the derived

inequality (11). Conversely, if there is a solution to (11), then by writing the inequality in the form (9), it

follows that there exists u such that the initial inequalities are satisfied. Note that the inequality (11) can

be easily derived by adding (5) and (8) (after possible multiplication by a positive number). Repeating this

procedure for all the pairs of inequalities in which u has different signs we obtain the following set of linear

inequalities, which represents the projection of the set of solutions to the (x1, x2) space.

x1 + x2 ≤ .5

2x1 + x2 ≤ .5

0 ≤ .5

Note that the constraint 0 ≤ .5 is redundant. 2
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A piecewise linear set, however, is not necessarily polyhedral, but it can be written as the union of

polyhedral sets. Consider, the set P =
⋃p

i=1 Pi where Pi are polyhedral sets. Then, the set prec(P ) can be

computed by the following lemma.

Lemma 1 Consider the piecewise linear set P =
⋃p

i=1 Pi, where Pi are polyhedral sets, then the predecessor

operator of P can be computed by prec(P ) =
⋃p

i=1 prec(Pi).

Proof

prec(P
′) = prec

(
p
⋃

i=1

Pi

)

= {x|∃u ∈ U,Ax+Bu ∈

p
⋃

i=1

Pi}

= {x|∃u ∈ U,Ax+Bu ∈ P1 ∨ . . . ∨ ∃u ∈ U,Ax+Bu ∈ Pp}

=

p
⋃

i=1

prec(Pi)

2

Therefore, the predecessor operator commutes with unions of piecewise linear sets. Note that this lemma

is a consequence of the equivalence (∃x)(φ(x) ∨ ψ(x)) ↔ (∃x)φ(x) ∨ (∃x)ψ(x) in predicate logic.

4.3.1 Continuous Disturbances

Here, we consider that continuous disturbances are present in the description of the system which for a fixed

discrete mode is given by x(t+1) = Ax(t)+Bu(t)+Ed(t) where A ∈ <n×n, B ∈ <n×m, and E ∈ <n×p. It is

also assumed that the control input u and the disturbance d take values in the polyhedral and bounded sets

U and D respectively. Consider the polyhedral set P represented by the following set of linear inequalities:

gT
1 x ≤ w1

...
...

gT
ν x ≤ wν

In this case, the predecessor operator takes the form

prec(P ) = {x ∈ X |∃u ∈ U, ∀d ∈ D,Ax+Bu+Ed ∈ P}. (12)

Consider the following linear programming problems for i = 1, . . . , ν:

min −gT
i Ed

s.t. d ∈ D

Since D is a bounded set the above linear programming problems have finite solutions. The corresponding

solutions are denoted by d∗i = argmind∈D{−gT
i Ed}, i = 1, . . . , ν.

Proposition 3 The set prec(P ) is given by prec(P ) = Pr(V ) where V ⊆ X × U is defined as V =

{(x, u)|
∧

i=1,...,ν g
T
i Ax+ gT

i Bu ≤ wi − gT
i Ed

∗
i }.
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Proof If x ∈ prec(P ) then by definition there exists control input u ∈ U such that the following set of

inequalities holds for every d ∈ D, and therefore for d = [d∗1, . . . , d
∗
ν ]T we have that

gT
1 Ax+ gT

1 Bu ≤ w1 − gTEd∗1
...

...

gT
ν Ax+ gT

ν Bu ≤ wν − gT
ν Ed

∗
ν

Therefore, there exists u ∈ U such that (x, u) ∈ V , which implies that x ∈ Pr(V ).

Conversely, assume that x ∈ Pr(V ) but x /∈ prec(P ). Then, there exists d̄ ∈ D and i ∈ [1, . . . , ν] such

that for every u ∈ U

gT
i Ax+ gT

i Bu > wi − gT
i Ed̄.

But by the assumption that x ∈ Pr(Q) we have that there exists u ∈ U such that

gT
i Ax+ gT

i Bu ≤ wi − gT
i Ed

∗
i ≤ wi − gT

i Ed̄

which is a contradiction. 2

Note that we could first apply the Fourier-Motzkin elimination method for the elimination of control

variables, and then solve the linear programming problems for the disturbance.

In the case the set P is piecewise linear but not polyhedral, then we can can compute the set prec(P )

without quantifiers by using appropriate equivalences from predicate logic. For example, in order to eliminate

the universal quantifier of the disturbances for the set P1 ∪ P2, we can use the logical equivalence

∀d ∈ D,Ax +Bu+Ed ∈ P1 ∪ P2 ↔ ¬(∃d ∈ D,Ax +Bu+Ed ∈ P c
1 ∩ P c

2 ).

Then, the existential quantifier can be eliminated by writing the set P c
1 ∩P c

2 in disjunctive normal form and

apply the Fourier-Motzkin elimination method for each set of conjunctive constraints. Note that since the

control variables u ∈ U are independent of the disturbance variable d ∈ D, we can select the order for the

elimination of quantifiers.

Example In order to illustrate, that the predecessor operator can be computed in a closed-form in a

straightforward manner, we consider a piecewise linear set described by the logical formula

(φ1(x, u, d) ∧ φ2(x, u, d)) ∨ (φ3(x, u, d) ∧ φ4(x, u, d))

where φi corresponds to the linear constraint gT
i Ax + gT

i Bu + gT
i Ed ≤ wi. The computation of the set

prec(P ) is equivalent to the quantifier elimination for the formula

(∃u)(∀d)(φ1(x, u, d) ∧ φ2(x, u, d)) ∨ (φ3(x, u, d) ∧ φ4(x, u, d)).

By applying simple logical equivalences we have

(∃u)(∀d)(φ1(x, u, d) ∧ φ2(x, u, d)) ∨ (φ3(x, u, d) ∧ φ4(x, u, d))

⇔ (∀d) ((∃u)(φ1(x, u, d) ∧ φ2(x, u, d)) ∨ (φ3(x, u, d) ∧ φ4(x, u, d))

⇔ (∀d) ((∃u)(φ1(x, u, d) ∧ φ2(x, u, d))) ∨ (∃u)(φ3(x, u, d) ∧ φ4(x, u, d)) .

The elimination of the control variables can be accomplished by applying Fourier-Motzkin elimination.

The resulting set can be written in disjunctive normal form to obtain the logical formula Ψ(x, d). Then,

the disturbance variables can be eliminated using the logical equivalence (∀d ∈ D)(Ψ(x, d)) ⇔ (¬(∃d ∈

D)¬(Ψ(x, d)). 2
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We have presented constructive algorithms for the computation of the predecessor operator for any

piecewise linear region of the continuous state space. These algorithms use the Fourier-Motzkin elimination

method, linear programming techniques, and simple equivalences from predicate logic. The algorithms were

presented in analytical form and they can be implemented by software in a straightforward manner. These

algorithms have been applied for reachability analysis of practical examples using Matlab in Section 5.

Remark A special case of particular interest is the class of hybrid systems for which the control inputs take

values in a finite set. This is a rather important class of systems since it can be used to model many practical

applications. For example, chemical processes usually involve actuators that can be modeled using discrete

variables such as valves and compressors. Discrete control inputs arise also in the motion control of many

systems such as satellites or underwater vehicles. Note that in this case the projection can be computed

as the union of the sets that result by substituting each possible value for the control input. This method,

however, will lead to many redundant constrains. The procedure to eliminate these redundant constrains

requires additional computational effort. A methodology for reachability analysis in the case of discrete

control inputs based on mathematical programming techniques has been presented in [26].

4.4 Algorithms for Backward Reachability Analysis

Consider a PLHDS described by the equations (1) - (3) and a region R = (M,P ). We denote the quotient

space X/Eπ induced by the primary partition as X/Eπ = {Pi}, i = 1, . . . , |π|. In addition, let prec,q : 2X →

2X denote the predecessoroperator for a continuous transition described by the discrete mode q as defined

in Equation ( 12). The following algorithm computes all the states of the hybrid system that can be driven

to R in one time-step.

Algorithm for the computation of pre(R)

INPUT: R = (M,P ), S = ∅, T = ∅;

for i = 1, . . . , |π|

Qi = P ∩ Pi;

if Qi 6= ∅

for q ∈ M ∩ act(Pi)

S = S ∪ prec,q(Qi);

T = T ∪ {q};

end

end

OUTPUT: pre(R) = (T, S)

The algorithm computes all the regions of the state space for which the state can be driven to R. In

order to consider only the discrete modes that are feasible at each region of the state space, we write the

set P as a union of regions of the initial partition and we consider only the active mode set for each region.

Note that by construction, for every x ∈ S there exists q ∈ S such that q ∈ act(π(x)) and therefore, the set

pre(R) is a region.

We have shown that the set pre(R) is piecewise linear since it can be described using a finite set of linear

inequalities. Therefore, we can apply the predecessor operator to compute the set of all states that can be

driven to pre(R) to get pre(pre(R)). Following the same procedure, we define successive applications of the
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predecessor operator as

preN (R) =

N times
︷ ︸︸ ︷

pre(· · · pre(R)) .

For a given region R, we define the coreachable set CR(R) as the set of all states that can be driven to R.

The coreachable set for a region of the hybrid state space can be computed by successive application of the

predecessor operator CR(R) = pre∗(R) where ∗ denotes the fixed point of the predecessor operator. It should

be noted that the algorithm for the computation of the coreachable set for a region R is semi-decidable. The

procedure produces the correct answer if it terminates, but its termination is not guaranteed. Infinite time

problems for piecewise linear systems are, in general, undecidable [46]. In Section 6, we present a grid-based

approximation technique that can be used to formulate a termination condition for the successive application

of the predecessor operator.

For finite time problems, backward reachability algorithms for piecewise linear hybrid systems are NP -

complete [46]. This follows from the definition of the predecessor operator which is formulated using the

existential quantifier over all possible inputs. Practically, the number of linear constraints that are used

to represent the coreachable region grows exponentially at every iteration of the algorithm. The developed

algorithms can be used for practical applications if they involve only a reasonable number of iterations. For

example, it is shown in Section 5 that we can formulate conditions that guarantee that a piecewise linear

region is safe by considering only one iteration.

5 Safety

In the following, we focus on the safety problem and we show how the refinement of the state space partition

can be used to formulated conditions for safety.

Definition 2 Given a set of safe states described by the region R ⊂ Q × X and an initial condition

(q0, x0) ∈ R, we say that the system is safe if (q(t), x(t)) ∈ R for every t.

Our objective is to formulate conditions on the available controls, so that a given set is safe for a PLHDS.

In order to study safety specifications for piecewise hybrid dynamical systems, we introduce the notion of

quasideterminism. Quasideterminism represents the case when the future behavior only for the next time

interval of the actual system can be uniquely determined by the current state of the induced system. We

show that this property can be used to formulate conditions for safety specifications for piecewise linear

hybrid dynamical systems.

5.1 Quasideterminism

Quasideterminism can be viewed as a desirable property of the partition of the continuous state space. The

central characteristic of quasideterministic systems is that only the reachability properties with respect to

the safety specifications are preserved in the quotient system. Quasideterminism is a weaker requirement

than the existence of a finite bisimulation. A partition that results in quasideterminism can be always

computed for piecewise-linear systems, while recent results have shown that finite bisimulations exist only

for limited classes of systems [28]. In both approaches an algorithm is used to refine the state space. A
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bisimulation corresponds to a fixed point of the refinement algorithm. In quasideterminism, we do not require

the existence of a fixed point but we stop the refinement at a prescribed fixed iteration. The disadvantage

of that is that in this case the quotient system does not completely preserve the reachability properties of

the original system, however this is not needed for controller design for an interesting class of problems as

this work demonstrates.

5.1.1 Measurements and Final Partition

Suppose that at time t, π(x(t)) ∈ X/Eπ is known. The signal x(t) represents the state of the system at the tth

successive iteration of the system. If it is agreed that the granularity of the primary partition is appropriate

for the extraction of useful information regarding the system’s behavior, then it is desirable to uniquely

determine the state at the next iteration up to its membership on an equivalence class π(x(t+ 1)) ∈ X/Eπ.

This can be accomplished by considering a finer partition than the primary partition defined by the generator

π to obtain better estimates for the continuous state. This partition will be called the final partition.

The final partition is defined by a mapping πF : X → 2X in a similar way as the primary partition is

defined by π. Given a partition defined by a finite set of (n − 1)-dimensional hyperplanes, the generator

πF : X → X/EπF
separates the state space into a finite number of equivalence classes which correspond to

polyhedral regions in <n. The function z = πF (x) can be seen as a measurement function that provides the

membership of the state to one of the equivalence classes of EπF
. Intuitively, our ability to make decisions

to influence the behavior of the system depend on the amount of information contained in the measurement

signal.

In the case when the estimates of the state at time t provide sufficient information to uniquely determine

the membership of the state of the induced system at time t+1 on an equivalence class of Eπ, the system is

said to be quasideterministic. The notion of quasidetermism is illustrated in Figure 8. Although we do not

compute an equivalence relation that guarantees the existence of a mapping f̃ that preserves the reachability

properties of the original system, we exploit the commutativity of the diagram in Figure 8 in order to analyze

the reachability properties with respect to the safety specifications.

X X

X/E X/E

f

f
~

p p

p p

F

F

Figure 8: Quasideterminism and the partitions of the state space.

Definition 3 A piecewise linear hybrid dynamical system with primary and final partition defined by X/Eπ

and X/EπF
is quasideterministic with respect to the primary partition if for every region of the final partition

Zi ∈ X/EπF
and for all states x ∈ X such πF (x) = Zi, there exists unique region of the primary partition

Pi ∈ X/Eπ such that Pi = π(x(t + 1)) for every feasible discrete transition (q, q′), q′ ∈ act(π(x(t)), control

action u ∈ U and disturbance d ∈ D.
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In Section 3, we showed that given a piecewise linear region R ⊂ Q × X , the set pre(R) of all the

states that can be driven to R is piecewise linear, and therefore, can be described using a finite set of linear

inequalities. Next, consider the hyperplanes h′i(x) that correspond to the linear inequalities that define the

set pre(R) and the partition π′ ∈ EP (X) defined by those as π′(x) = [ĥ′1(x), . . . , ĥ′`(x)]
T where

ĥ′i(x) =







−1 if h′i(x) < 0

0 if h′i(x) = 0

1 if h′i(x) > 0

Theorem 1 Consider a piecewise linear hybrid dynamical system with primary partition defined by Eπ and

let the partition generated by applying the predecessor operator pre : 2Q×X → 2Q×X to the regions of the

initial partition defined by Eπ′ . Then the piecewise linear hybrid dynamical system with final partition defined

by EπF
= inf(Eπ, Eπ′) is quasideterministic with respect to the primary partition.

Proof Consider an equivalence class Zj ∈ X/EπF
. Zj corresponds to an polyhedral region of <n. Since

EπF
= inf(Eπ, Eπ′), for every Pi ∈ X/Eπ we have that either Zj ⊆ prec(Pi) or Zj ∩ prec(Pi) = ∅. Consider

a continuous state x ∈ Zj , then by the definition of the predecessor operator we have that x(t + 1) =

Aqx(t) + Bqu(t) + Eqd(t) ∈ Pi if and only if Zj ⊆ prec(Pi). Therefore, for each (q, q′), q′ ∈ act(π(x(t)), for

each u ∈ U , and for every d ∈ D, the membership of the continuous state x(t+ 1) in an equivalence class of

X/Eπ can be uniquely determined from the membership of the state x(t) in an equivalence class of X/EπF
.

2

The implication of the above theorem is that for every state, every control action, and every disturbance

the membership of the state at the next time step to an equivalence class of the primary partition can be

uniquely determined from the current region of the final partition. This information can be used to determine

if the set P is safe.

Remark If the PLHDS with primary and final partition defined by X/Eπ and X/EπF
is quasideterministic

with respect to the primary partition π, then it is also quasideterministic if instead of EπF
we use any finer

final partition such that EπN
≤ EπF

. This can be shown by considering a region Z ′
i ∈ EπN

. By the definition

of the partial order in the equivalence lattice, for every Z ′
i ∈ EπN

, there exists a unique Zj ∈ EπF
so that

πN (x) = Z ′
i ⇒ πF (x) = Zj . Therefore, every Z ′

i ∈ EπN
corresponds to a unique equivalence class of EπF

,

for which the membership of the continuous state x(t+ 1) in an equivalence class of X/Eπ can be uniquely

determined.

5.2 Safety Conditions

In this section, we formulate conditions that guarantee that a given region of the hybrid state space is safe.

The conditions can be efficiently tested using linear programming techniques.

Theorem 2 A PLHDS is safe with respect to the region R ⊆ Q×X if and only if R ⊆ pre(R).

Proof If R ⊆ pre(R), every state (q, x) ∈ pre(R) and therefore every state (q, x) ∈ R can be driven in R,

either by selection of appropriate control input u ∈ U or by triggering a discrete transition and therefore,

the system is safe. Conversely, assume that the system is safe and consider there exists control policy such
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Furnace ON Furnace OFF

q1 q0

R1 = 2 R3 = 10

R2 = 1 R4 = 2

C1 = 1 C3 = 0.5

C2 = 1 C4 = 1

U1 = [0.5, 5] U0 = 0

D1 = [0, 1] D0 = [−1, 0]

Table 1: Parameters for the temperature control system

that (q(t), x(t)) ∈ R for every t. By definition, the set pre(R) is the set of all the states for which there exists

control policy so that the next state will be in R. Therefore, since the system is safe for every (q, x) ∈ R we

have that (q, x) ∈ pre(R). 2

In the following, we present a constructive algorithm which is used to test the condition R ⊆ pre(R).

Let R|X and pre(R)|X be the projection of R and pre(R) into the continuous state space X . Similarly R|Q

and pre(R)|Q for the discrete state space Q. In order to show that R ⊆ pre(R), we need to test whether

R|Q ⊆ pre(R)|Q and R|X ⊆ pre(R)|X . Since, the sets R|Q and pre(R)|Q are finite, we can test whether

R|Q ⊆ pre(R)|Q in a straightforward manner. Next, we concentrate on the continuous part of the regions R

and pre(R). The sets R|X and pre(R)|X are piecewise linear but not polyhedral, and therefore they are not

necessarily convex. In order to test whether R|X ⊆ pre(R)|X , we represent the constraints in disjunctive

normal form and we test the feasibility of finite set of linear programming problems.

Every PL set can be written as a union of polyhedral sets using the disjunctive normal form representation.

Therefore, we can assume that the set R|X and the complement of the set pre(R)|X can be written as

R|X =
⋃

i=1,...,|P |

Pi

and

[pre(R)|X ]c =
⋃

j=1,...,|Q|

Wj

where Pi and Wj are polyhedral, and therefore convex sets in <n. For each pair (i, j) the set Cij = Pi ∩Wj

is polyhedral as the intersection of polyhedral sets. Furthermore, the condition Pi ∩Wj = ∅ can be tested

by solving the following linear programming problem:

min x

s.t. x ∈ Cij

We have that Pi ∩Wj = ∅ if and only if the above linear programming is infeasible. Therefore, we have that

R ⊆ pre(R) and the PLHDS is safe if and only if Pi ∩Wj = ∅ for every i = 1, . . . , |P | and j = 1, . . . , |Q|.

Example - Temperature Control System

In the following, we use the temperature control system presented in Section 2 to illustrate how we can

formulate the safety conditions. We consider the system parameters shown in Table 1. The discrete state
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q1 corresponds to the case the furnace is on. Using zero-order hold sampling with T = 1, the continuous

dynamics are described by the difference equation x(t+ 1) = A1x(t) +B1u(t) +E1d(t) where

A1 =

[

−0.6634 0.1997

0.1997 0.2641

]

, B1 =

[

0.8101

0.1369

]

, E1 =

[

0.1369

0.5363

]

,

and u(t) ∈ U1, d(t) ∈ D1. Similarly, for the discrete state q0 (furnace off), we have x(t + 1) = A0x(t) +

B0u(t) +E0d(t) where

A0 =

[

0.8259 0.1354

0.0677 0.5551

]

, B0 =

[

1.8179

0.0773

]

, E0 =

[

0.0387

0.3772

]

,

and u(t) ∈ U0, d(t) ∈ D0. The partition of the state space is obtained by considering the following hyperplanes

h1(x) = x1 − ub, ub = 20;, h2(x) = x2 − ht, ht = 5;, h3(x) = x2 − lt, lt = 0;, and h4(x) = x1. and it is

shown in Figure 9. It is assumed that the safe region is described by the set R = {(q0, q1), P} where P is

given by

P = {x ∈ <2|(0 ≤ x1 ≤ ub) ∧ (lt ≤ x2 ≤ ht)}.
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Figure 9: Primary partition for the temperature control system.

Next, we describe in detail the algorithm for the computation of the set pre(R). We represent the set P

as P = {x|Gx ≤ w} where

G =









gT
1

gT
2

gT
3

gT
4









=









1 0

0 1

0 −1

−1 0









and

w =









w1

w2

w3

w4









=









20

5

0

0









.

First, we compute the set

prec,q0
(P ) = {x|A0x+B0u+E0d ∈ P}.
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Note that if the system is at mode q0, the input is u = 0. Using Proposition 3, we consider the following set

of linear inequalities:

GA0x ≤ w −GE0d (13)

We solve the linear programming problems

min −gT
i E0d

s.t. d ∈ D0

for i = 1, 2, 3, 4 and we obtain [d∗1, d
∗
2, d

∗
3, d

∗
4] = [0, 0,−1,−1]. By substituting in Equation (13) we get

prec,q0
(P ) =







x ∈ <n|









0.8259 0.1354

0.0677 0.5551

−0.0677 −0.5551

−0.8259 −0.1354









[

x1

x2

]

≤









20

5

−0.3772

−0.0387















. (14)

Next, we compute the set

prec,q1
(P ) = {x|A1x+B1u+E1d ∈ P}.

We consider the following set of linear inequalities:

GA1x+GB1u ≤ w −GE1d

u ≤ 1

−u ≤ −0.5

We apply the Fourier-Motzkin elimination method in order to eliminate the control variable u. We also solve

the linear programming problems

min −gT
i E1d

s.t. d ∈ D1

for i = 1, 2, 3, 4 and we obtain [d∗1, d
∗
2, d

∗
3, d

∗
4] = [1, 1, 0, 0]. Using Proposition 3 we have that

prec,q1
(P ) =







x ∈ <2|









0.6634 0.1997

0.1997 0.2641

−0.1997 −0.2641

−0.6634 −0.1997









[

x1

x2

]

≤









19.4580

4.3953

0.6847

4.0507















. (15)

The sets prec,q0
(P ) and prec,q1

(P ) are shown in Figure 10. The set pre(R) is computed using the algorithm

presented in Subsection 4.4 as

pre(R) = {(q0, q1), prec,q0
(P ) ∪ prec,q1

(P )}.

In the following, we illustrate how we can test the safety condition R ⊆ pre(R). The set pre(R)|X can

be represented by the logical formula

(φ01 ∧ φ02 ∧ φ03 ∧ φ04) ∨ (φ11 ∧ φ12 ∧ φ13 ∧ φ14)

where the atomic formulas φij correspond to the linear inequalities that define the sets prec,q0
(P ) and

prec,q1
(P ) in Equations (14) and (15) respectively. We define the set W = [pre(R|X)]c. Using DeMorgan’s

laws, the set W can be represented by

⋃

i=1,2,3,4, j=1,2,3,4

(¬φ0i ∧ ¬φ1j)
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Figure 10: Final partition for the temperature control system.

Therefore, the set W can be written as W =
⋃

i,j Wij . Each set Wij is described by the logical formula

(¬φ0i ∧ ¬φ1j) and therefore, it is polyhedral. The condition R|X ⊆ pre(R)|X can be checked by testing the

feasibility of the linear programming problems:

min x

s.t. x ∈ P ∩Wij

For the temperature control system, we have that R|Q = pre(R)|Q = {q0, q1} and P∩Wij = ∅ for i = 1, 2, 3, 4

and j = 1, 2, 3, 4. Therefore, the region R is safe as it can be seen in Figure 10. Note that for every continuous

states x there exists at least one discrete mode that the system can switch to guarantee safety. 2

5.3 Maximal Safe Set

In Subsection 5.2, we formulated conditions that guarantee that a given region R is safe. In the case when

the safety conditions are not satisfied and R is not safe, it is possible that there exists a region R′ ⊂ R which

is safe. Such a region can be computed as the maximal safe set contained in R. The problem of computing

the maximal safe set has been studied for timed systems in [7, 34] and for several classes of hybrid systems

in [51, 32, 54, 12]. Here, we present how the algorithm presented in [51] can be applied to PLHDS.

Algorithm for the computation of maximal safe set

INPUT: R0 = X ; R1 = R; k = 1;

while Rk 6= Rk−1

Rk+1 = pre(Rk) ∩ Rk;

k = k + 1;

end

OUTPUT: R∗ = Rk

The maximal safe set is computed as a fixed point of the iterative procedure described above. At the kth

iteration of the algorithm, we compute the set Rk = pre(Rk−1) ∩ Rk−1 which contains all the states in Rk

for which there exist controls so that the state will remain in Rk. If there exists a fixed point iteration, then
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clearly the corresponding set R∗ is safe. Furthermore, we have that Rk ⊆ Rk−1 and therefore the set R∗ is

the maximal safe set contained in R.

The algorithm involves the computation of the predecessor operator at every iteration. In [51, 32], this

computation is accomplished by solving a Hamilton-Jacobi-Bellman equation derived from a game theoretical

formulation of the problem. In the case of PLHDS, the predecessor operator can be computed using the

algorithms for elimination of quantifiers presented in Section 3. The proposed procedure is semi-decidable.

If the algorithm terminates, it provides the maximal safe piecewise linear set contained in R, however its

termination is not guaranteed.

The advantage of computing the maximal safe set of a PLHDS, is that based on this set, a controller can

be designed which is maximally permissive. Such a controller is optimal in a sense, since it does not restrict

the behavior of the plant in a conservative way. However, the algorithm for computing the maximal safe

set is not computationally efficient. For PLHDS, the number of linear constraints increases exponentially

at each iteration of the algorithm. On the other hand, the safety conditions presented in Subsection 5.2

do not guarantee that the corresponding controller will be maximally restrictive. However, they provide

constructive conditions that guarantee that a given region is safe and they can be used to determine what

are the appropriate control inputs that guarantee safety. A class of discrete-time systems for which this

procedure is decidable has been presented in [52].

6 Reachability

In this section, we study the reachability problem for piecewise linear hybrid dynamical systems. We present

a reachability algorithm based on the successive computation of the predecessor operator. In general, the

proposed procedure is semi-decidable and its termination is not guaranteed. In order to formulate a construc-

tive algorithm for reachability, we consider two approaches. First, we consider an upper bound on the time

horizon and we examine the reachability only for the predetermined finite horizon. Second, we formulate a

termination condition for the reachability algorithm based on a grid-based approximation of the piecewise

linear regions of the state space.

It should be emphasized that we are interested only in the case when reachability between two regions

R1 and R2 is defined so that the state is driven to R2 directly from the region R1 without entering a third

region. This is a problem of practical importance in hybrid systems since it is often desirable to drive the

state to a target region of the state space while satisfying constraints on the state and input during the

operation of the system. Consider, for example, an unmanned underwater vehicle with control policies that

allow various combinations of screw speeds (on and off), stern plane positions (up, level, down), and rudder

positions (left, right, straight). A control goal for such a system can be described by a target region of the

state space which represents a desirable set of displacements and velocities for the vehicle. However, while

the system is driven to the target regions the dispacements and velocities must be approprietly constrained

to guarantee safe operation.

Definition 4 Given two regions R1, R2 ⊆ Q×X , we say that R2 is directly reachable from R1, if every state

(q, x) ∈ R1 can be driven in R2 in finite time without entering a third region.

The problem of deciding if a region R2 is directly reachable from R1 can be solved by recursively com-
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puting all the states that can be driven to R2 from R1 using the predecessor operator. We only consider

regions of the form R1 = (Q1, P1) and R2 = (Q2, P2) for which P1 and P2 are adjacent polyhedral regions of

the primary partition. In this case, the regions P1 and P2 have a common boundary which is represented by

a (n−1)-dimensional hyperplane h(x) = gTx−w. The reachability problem between any two regions can be

solved by finding a path consisting of adjacent reachable regions. Note that if the regions R1 = (q1, P ) and

R2 = (q2, P ) have identical continuous parts, then the reachability problem can be solved by considering the

set of feasible transitions for the polyhedral region P .

6.1 Finite Time Horizon

Consider the regions R1 and R2 and the initial state (q, x) ∈ R1 and assume that we can disable the state

from crossing all the boundaries of R1 but h(x). It is still possible that the hybrid system will be blocked

in the sense that the state will never exit the region R1 through the hyperplane h(x). Note that this can

happen since we want to drive the state from R1 to R2 without entering a third region. In this case there is a

trade-off between driving the state into the target region and satisfy the constraints for the state trajectory.

The risk of violating the operational conditions of a system while stirring the state to a desired operating

point must be addressed. Thus, this formulation of the reachability problem that takes into consideration

constraints in the state trajectory is more important than considering only the state into the target region,

both in theory and in practice. Our approach is based on conditions that guarantee that state can be forced

to cross the hyperplane h(x) in finite time by selecting appropriate controls. For this purpose, we consider a

finite time horizon defined by NT where T is the sampling period and N ∈ N. Consider a PLHDS described

by the equations (1)-(3) and assume that the initial condition is (q(t0), x(t0)) ∈ R1.

Definition 5 The region R2 is directly N -reachable from R1 if for every initial state (q(t0), x(t0)) ∈ R1 there

exist control inputs for the PLHDS and k ∈ N, 0 < k ≤ N so that (q(t), x(t)) ∈ R1 for t0 ≤ t < t0 + kt and

(q(t0 + kt), x(t0 + kt)) ∈ R2.

We define the coreachable set CRN
R1

(R2) of all states that can be driven from the region R1 to R2 in the

finite time t ≤ NT without entering a third region. The predecessor operator pre : 2Q×X → 2Q×X can be

used to compute the set CRN
R1

(R2) using the following algorithm.

Algorithm for the computation of CRN
R1

(R2)

R0 = R2;

CRN
R1

(R2) = ∅;

k = 0;

for k = 1, . . . , N

Rk+1 = pre(Rk) ∩ R1;

if ¬(Rk+1 ⊆ Rk)

CRN
R1

(R2) = CRN
R1

(R2) ∪ Rk+1;

else

exit

end

Given the regions R1 and R2, we compute all the states that can driven from R1 to R2. Note that at

every iteration k of the algorithm we consider the intersection of the set pre(Rk) with the set R1 since we
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are interested only in states that can be driven to R2 directly from the region R1 without entering a third

region. At every iteration of the algorithm we have to apply the predecessor operator to a piecewise linear

region of the state space. The resulting region is still piecewise linear, it can be represented using only

linear equalities and inequalities, and it can be computed using the algorithms for elimination of quantifiers

presented in Section 3. The above algorithm can be used to determine if the region R2 is N -reachable from

R1 using the following theorem.

Theorem 3 Consider a PLHDS described by (1)-(2) and the regions R1 = (Q1, P1) and R2 = (Q2, P2).

Then, the set set CRN
R1

(R2) is piecewise linear and the region R2 is directly N -reachable from R1 if and only

if R1 ⊆ CRN
R1

(R2).

Proof The set set CRN
R1

(R2) is piecewise linear since it is computed using finite unions and intersections of

piecewise linear sets. At the k iteration of the algorithm, the set Rk contains all the states in R1 that can

be driven in R2 in t ≤ kT . If R1 ⊆ CRN
R1

(R2) then there exists controls so that every state (q, x) ∈ R1 can

be driven to R2 in t ≤ NT without entering a third region. 2

Furthermore, since the set CRN
R1

(R2) is piecewise linear, the reachability problem between R1 and R2

can be solved using linear programming techniques similarly to the safety conditions (see Subsection 5.2).

For regions that are not adjacent, a feasible path connecting these regions which consists of adjacent must

be established. Note that this can be done at the higher level of abstraction, since the necessary information

is the existence of a control policy and not the actual policy.

Example - Temperature Control System We illustrate the reachability algorithm using the temperature

control system presented in Section 2. Consider the regions R1 = ({q0, q1}, P1) and R2 = ({q0, q1}, P2) where

P1 = {x ∈ <2|(0 ≤ x1 ≤ 20) ∧ (−20 ≤ x2 ≤ 0)}

and

P2 = {x ∈ <2|(0 ≤ x1 ≤ 20) ∧ (0 ≤ x2 ≤ 5)}.

It is desirable that every state from R1 can be driven to R2 without entering a third region. Such a

specification may arise, for example, at the startup procedure of the system, where it is required for the

state of the system to reach the safe region 0 ≤ x2 ≤ 5 without entering the unsafe region x1 > 20.

In order to compute the set of states in the region R1 that can be driven to R2 using appropriate control

inputs, we apply the reachability algorithm presented in Subsection 6.1. The coreachable set of states for

three iterations of the algorithm is shown in Figure 11. The region R2 is directly reachable from R1 in

t = 3T . Therefore, there exists control policy which selects the control input u ∈ U and possibly forces

appropriate discrete transitions so that every state (q, x) ∈ R1 can be driven to the region R2. 2

6.2 Grid-Based Approximation

In this section, we formulate an approximation-based methodology in order to guarantee that the algorithm

for the successive computation of the predecessor operator will terminate. The reachability algorithm based

on the successive computation of the predecessor operator is semi-decidable and therefore, its termination is

not guaranteed. In the following, we present such an example.
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Figure 11: Coreachable set for the temperature control system.

Example Consider the discrete-time linear system x(t+ 1) = Ax(t) with

A =

[

1.1036 −0.0315

0.1051 0.9984

]

.

Suppose we are given the partition shown in Figure 12 described by the hyperplanes h1(x) = x1 +3, h2(x) =

x1 + 2, h3(x) = x2 − 1, and h4(x) = x2 + 1.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

P2
P1

Figure 12: Primary partition for the system.

We consider the regions

P1 = {x ∈ <n|(−3 ≤ x1 ≤ −2) ∧ (−1 ≤ x2 ≤ 1)}

and

P2 = {x ∈ <n|(−3 ≤ x1 ≤ −2) ∧ (−1 ≤ x2 ≤ 1)}

29



and our objective is to test if the region P2 is reachable from P1.

The linear system x(t + 1) = Ax(t) is an unstable system with complex conjugate eigenvalues 1.0510±

j0.0235. We use the reachability algorithm to compute the set of states in P1 that can be driven in P2. At

the every iteration of the reachability algorithm we have that P k = prec(P )k ∩ P1 6= ∅. Therefore, we add

new states to the coreachable set of P2 at every iteration and the algorithm will not terminate. In Figure 13

we show the linear constraints computed by the algorithm by applying successively the predecessor operator

for twenty iterations. 2

x
1

x
2

Figure 13: The backward reachability algorithm does not necessarily terminate.

In order to guarantee that the reachability algorithm will always terminate we formulate a practical

termination condition. The termination condition is based on quantization of the state space. The basic

idea is that the algorithm should terminate if the set pre(Rk) is not “substantially different” than the set

pre(Rk−L). By “substantially different” we mean whether new cells of the quantized space have been added

to the set of states that can be driven to R. L is a parameter selected by the designer and depends on the

sampling period and the quantization of the state space. If the sampling period is small and the quantization

levels are large, it is possible that no new states will be added in the coreachable set in one time step and

we have to use a parameter L > 1.

First, we select quantization levels ∆xi for each continuous state xi ∈ <, and the range of each state

xi,min and xi,max which is assumed to be bounded. These choices lead to a quantization of the plant state

space into a finite number of n-dimensional cells. A given piecewise linear set P ⊂ <n is then approximated

by the union of all the cells that belong to the set. The membership of a cell to the set P is defined as

follows. A n-dimensional cell satisfies the constraint gTx ≤ w if and only if all the vertices of the cell satisfy

the constraint. The cell belongs to the set P if it satisfies all the constraints that define P . We formally

define this approximation technique using the mapping grid : 2<
n

→ 2<
n

. The set grid(P ) is defined as the

union of all the cells that belong to the set P . The set grid(P ) is a conservative approximation of P since

x ∈ grid(P ) implies that x ∈ P .

Algorithm for the computation of CR(R) using the grid-based approximation
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R0 = R;

G0 = grid(P );

T 0 = R|Q;

while ¬(pre(Rk) ⊆ Rk)

Rk+1 = Rk ∪ pre(Rk);

Gk+1 = grid(P k+1);

T k+1 = Rk+1|Q;

if k + 1 > L then j = k + 1 − L else j = 0;

if Gk+1 ⊆ Gj and T k+1 ⊆ T j then exit;

end

The above algorithm computes the coreachable set for the region R by successive application of the pre-

decessor operator. At the kth iteration, the algorithm computes the set pre(Rk) of states that can be driven

to the region R in k time steps. Note that pre(Rk) ⊆ pre(Rk+1) since at every iteration of the algorithm

we add more reachable states. The algorithm will terminate if no new cells are added to the coreachable

set for L iterations. The algorithm is guaranteed to terminate since by the quantization assumption we

consider finitely many n-dimensional cells. Note that the approximation of the set pre(Rk) is used only in

the termination condition. The algorithm proceeds for the computation of the set pre(Rk+1) using the exact

representation of pre(Rk), therefore there is no accumulation of error due to the approximation.

x
1

x
2

-

-

-
- - -

Figure 14: Grid-based approximation for reachability.

Example Consider the linear system x(t+ 1) = Ax(t) presented earlier in the section. Figure 14 shows an

approximation of the set of states from P1 that can be driven to P2. The quantized levels for the example

are ∆xi = 0.5 and the design parameter L = 2. In this case the coreachable set can be underapproximated

by the shaded region since in the last L = 2 iterations of the algorithm no new cells were added to the

coreachable set. 2
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7 Conclusions

In this paper, a mathematical model that can capture both discrete and continuous phenomena is formulated.

The continuous dynamics are described by linear difference equations and the discrete dynamics by finite

automata. The interaction between the continuous and discrete part is defined by piecewise linear maps.

We refer to this class of systems as piecewise linear hybrid dynamical systems in order to emphasize the

hybrid nature of the systems and problems of interest. The proposed modeling formalism separates the

physical plant to be controlled from the control specifications and the controller. It provides the necessary

mathematical tools to describe explicitly what control actions are available in order to influence the behavior

of the plant so that the control specifications are satisfied.

We present a new methodology for the construction of discrete abstractions of the continuous dynamics.

The main characteristic of the approach is that the available control inputs are taken into consideration in

order to simplify the system. The predecessor operator for piecewise linear systems is defined and computer

algorithms for refining the partition of the state space are developed. Furthermore, we formulate conditions

for safety and reachability specifications for piecewise linear hybrid dynamical systems. In order to study

safety specifications for piecewise hybrid dynamical systems, we introduce the notion of quasideterminism.

Quasideterminism represents the case when the future behavior only for the next time interval of the actual

system can be uniquely determined by the current state of the induced system. We show that this property

can be used to formulate conditions for safety specifications for piecewise linear hybrid dynamical systems.

The safety conditions can be tested using efficient linear programming techniques. Reachability conditions

are also formulated. Our approach is based on conditions that guarantee that the state can be forced to reach

a desirable region of the state space by selecting appropriate controls. The main advantage of the proposed

approach is that it provides a convenient general framework not only for analysis, but more importantly for

controller synthesis.

Practical hybrid systems are often characterized by nonlinear continuous dynamics. The most impor-

tant question that arises is whether the backward reachability analysis developed for piecewise linear hybrid

dynamical systems can be applied efficiently for the analysis of nonlinear hybrid systems. Piecewise linear

systems can be used to approximate the nonlinear dynamics. However, in order to obtain good approxi-

mations we may need to use a large number of subsystems and therefore the corresponding analysis and

synthesis algorithms will be in general computationally inefficient. The extension of the analysis and syn-

thesis techniques based on discrete abstractions of the continuous dynamics for nonlinear hybrid systems is

a very important research direction.
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