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Abstract

Embedded systems are composed of a large number of components that interact
with the physical world via a set of sensors and actuators, have their own computa-
tional capabilities, and communicate with each other via a wired or wireless network.
Diagnostic systems for such applications must address new challenges caused by the
distribution of resources, the networking environment, and the tight coupling between
the computational and the physical worlds. Our approach is to move from centralized,
discrete or continuous techniques toward a distributed, hybrid diagnosis architecture.
Monitoring and diagnosis of any dynamical system depend crucially on the ability
to estimate the system state given the observations. Estimation for hybrid systems
is particularly challenging because it requires keeping track of multiple models and
the transitions between them. This paper presents a particle filtering based estima-
tion algorithm that addresses the challenge of the interaction between continuous and
discrete dynamics in hybrid systems. The hybrid estimation methodology has been
demonstrated on a rocket propulsion system.

1 Introduction

Our diagnostic research is motivated by existing and emerging applications of embedded

systems. In such systems the physical plant is composed of a large number of distributed

nodes, each of which performs a moderate amount of computation, collaborates with other

nodes via a wired or wireless network, and is embedded in the physical world via a set of

sensors and actuators. Examples include complex electromechanical systems with embedded

controllers [18] and smart matter systems [11]. Such systems can be best represented by

hybrid models and present a number of interesting new challenges for diagnostic systems.

Model-based diagnostic techniques are usually based upon a logical framework for diagnosis

[3] and are thus discrete. As such, they cannot resolve between and often cannot even detect

failures that manifest as small continuous variations in the plant’s behavior, nor can they

provide sufficient resolution to enable compensatory control of continuous degradations in the

plant. These limitations render such discrete techniques ill-suited for diagnosis and control

of many embedded systems, as demonstrated in practical applications [6]. Current FDI

techniques [5] model continuous behavior, but cannot address the hybrid behavior exhibited

by many physical systems, for example continuous processes coupled with digital controllers.
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They are also typically computationally expensive in that they rely on computing statistics

over raw sensor signals in order to form a diagnosis. They are therefore practical for a

relatively small number of fault hypotheses.

Monitoring and diagnosis of a dynamical system depend crucially on the ability to esti-

mate the system state given the observations. Estimation for hybrid system is particularly

challenging because keeping track of multiple models and the autonomous transitions be-

tween them is computationally very expensive. Simple extension of conventional estimation

techniques, like the Kalman filter, leads to algorithms that require tracking of all possible

trajectories and therefore, are exponential in the number of time steps. Approximation by

Gaussians is often used to collapse the distributions for each trajectory resulting in poor

performance. A related approach to our work based on banks of extended Kalman filters

has been presented in [9] where only trajectories with high confidence probability are traced.

A related methodology that uses both discrete and continuous observers based on finite

state machines and linear systems has been proposed in [1]. Sequential Monte Carlo (or

particle filtering) methods can support process densities that contain both continuous and

discrete dynamics and have been explored for hybrid diagnosis in [16]. However, autonomous

transitions between modes triggered by the continuous dynamics have not been considered.

Particle filtering has been applied also for a class of hybrid systems modeled by dynamic

Bayesian networks in [12] where the autonomous transitions between discrete states are only

defined using the so-called softmax conditional probability distributions. Hybrid diagnosis

based on timed discrete-event representations has been studied also in [15]. In these method-

ologies, the continuous state is quantized and discrete methods are used. A fault modeling

and diagnosis approach for hybrid systems based on qualitative representation of the fault

hypotheses has been presented in [13]. A Bayesian approach for mode estimation of hybrid

systems has been presented in [18] and has been demonstrated for monitoring and diagno-

sis of electromechanical systems. This approach uses continuous measurements to compute

appropriate likehihood functions, but it is based on a temporal discrete event model of the

system dynamics.

Our approach is to move from centralized, discrete or continuous techniques toward a

distributed, hybrid diagnosis architecture; see [14] for details. In this paper, we focus on the

problem of hybrid estimation and we present a particle filtering algorithm that address the

challenge of the interaction between continuous and discrete dynamics. We show how we can

estimate autonomous transitions based on complex guard conditions and we describe how

we can improve the performance and robustness of the algorithm by using guard conditions

that cover the state space of the system. We illustrate the algorithm for the state estimation

of a two-tank system. We also demonstrate the application of the approach to the cryogenic

propulsion system of a NASA experimental vehicle (X34).

The paper is organized as follows. In the remainder of this section, we briefly present

our diagnostic architecture to explain the significance of hybrid estimation techniques in

monitoring and diagnosis of embedded systems. In section 2, we describe our model and

the hybrid estimation problem and in section 3, we present our particle filtering algorithm.
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Section 4 demonstrates the application of the algorithm to a rocket propulsion system. The

final section briefly discusses our current implementation of the estimation algorithm and

provides directions for future work.

The Diagnostic Architecture

The challenge of diagnosing hybrid systems is that they have both complex, hybrid dy-

namics and a relatively large number of components that can interact in a system-wide

manner. Qualitative techniques perform diagnostic inference involving multiple components

in a computationally efficient manner, but they are limited by the low-resolution intro-

duced by discretization of the continuous variables. Hybrid estimation techniques produce

high-resolution state estimates that can distinguish between these failures, but they are

computationally expensive and can be only used to detect faults that can be described by

detailed analytical models. Thus diagnosis of hybrid systems suggests collaboration between

qualitative diagnosis and hybrid estimation. Figure 1 illustrates our conceptual hybrid di-

agnosis architecture for integrating these two techniques. Given a physical plant such as

the propulsion system of a spacecraft described in Section 4, we make use of models at two

different levels of abstraction, a qualitative model and a hybrid model of the plant. By using

both qualitative diagnosis and hybrid estimation and fault detection, we leverage the speed

of the qualitative diagnoser and the resolution of the hybrid model.

Observations

Qualitative
Model

Distributed
Qualitative
Diagnoser

4

Hybrid
Model

Hybrid 
Estimation 

and 
Fault Detection

Plant

Figure 1: The PARC diagnosis architecture

The qualitative model provides a discrete abstraction of the plant model by first discretiz-

ing the range of each variable representing the system into a discrete, finite domain. For

example, temperatures in a cryogenic propulsion system might be discretized into the range

{ low, high} where low describes temperatures in the range of liquid oxygen (-184 degrees)

and high describes temperatures around the ambient air temperature. The qualitative model

specifies the states of the system and an abstraction of the dynamics. Given a set of ob-

servations in the discrete space, these qualitative relationships are sufficient to very quickly
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rule out many possible states of the plant as inconsistent with observations and yield the

most likely, consistent states. Additional observations might further reduce the set of con-

sistent diagnoses. However, due to the loss of resolution introduced when the plant model

is discretized, the qualitative diagnoser will not be able to distinguish failures that can be

detected with a hybrid model.

The hybrid model represents analytically the physical phenomena that govern the dynamic

evolution of the plant. For example, the continuous states of the propulsion system include

the temperature and mass of the gas and liquid oxygen inside the tank and their evolution

is governed by analytical equations derived by mass and energy conservation laws. It also

relates the sensor measurements with the state of the system and models process and mea-

surement noise. Controlled and autonomous events that affect the evolution of the system

are also modeled. Hybrid estimation is the task of computing the most likely trajectory

of the state given the observations. Estimation of the unobservable states is necessary to

detect failures that are caused by subtle component degradation, for example, a leakage in

a pneumatic valve.

2 Estimation of Hybrid Systems

Hybrid systems contain interacting discrete and continuous dynamics. The discrete dynamics

are usually described by discrete event models with a finite state space. Every discrete

state (or mode) corresponds to a unique differential/difference equation that governs the

continuous dynamics. Mode transitions may occur either upon receiving an external control

command or when the continuous state satisfies certain guard conditions. Mode transitions

that depend on the continuous behavior of the system are called autonomous. The main

idea in our algorithm is to focus on the mode transitions that cover most of the probability

space. Of course, the probability of each mode transition changes dynamically based on the

continuous behavior of the system and has to be recomputed at every time step.

Definition 2.1 A hybrid system is described by H = (Q,X, Σ, I, Inv, E, f) where Q is a

finite set of discrete states or modes of the system, X ⊆ <n is the continuous state space,

Σ is a finite set of transition labels or events, I ⊆ Q × X is the set of initial conditions,

Inv : Q → 2X is the invariant associated with each mode q, E ⊂ Q×X ×Σ×Q×X is the

set of discrete transitions, and f : Q×X → X is the flow condition for every mode.

The state of the hybrid system is described by s = (q, x). The state can change either

by a discrete transition or by a time delay. A discrete (or mode) transition may change

both the mode and the continuous state, while a time delay changes only the continuous

state according to the flow condition. Each transition consists of a source mode qi, a target

mode qj, a labeling event σ (denoted as qi
σ→ qj), a guard set Gij ⊂ X, and a reset map

Rij(x) = x′. If the condition described by the guard is satisfied, then the transition can fire.

Upon firing of the transition, the continuous state may be reset according to the reset map.
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Example We consider a simple tank system to illustrate the approach. The system consists

of two identical cylindrical tanks that are connected by a pipe at level h, as shown in figure 2.

We denote by h1 and h2 the water levels in tanks 1 and 2 respectively. The input flow Qin

is provided by a pump and it is described by

Qin = Vinkinu(t),

where Vin ∈ {0, 1} represents a valve that can be used to turn on or off the pump, kin is

a linear gain, and u(t) is the input signal representing the flow at the pump. The flow Qa

between the two tanks is controlled by a valve Va. An outlet valve Vout located at the bottom

of tank 2 is used to empty the tank. Tank 2 is equipped with a sensor that measures the

output flow which is described by

Qout = Voutkout

√
ρgh2 + ξ(t) (2.1)

where Vout ∈ {0, 1} represents the outlet valve, kout is a linear gain, ρ is the density of the

water, g is the gravity constant, and ξ(t) is measurement noise.

Tank 1 Tank 2

Vin

Va

Vout

h
h1

h2

Figure 2: Two-tank system

The dynamic evolution of the system is described by

ḣ1 =
1

A
(Qin −Qa)

ḣ2 =
1

A
(Qa −Qout)

where A is the section of each cylindrical tank. There are four modes of behavior for the

flow Qa which depend on the water levels h1 and h2 as follows:

Qa =





0, if h1 < h and h2 < h

Vaka

√
ρg(h1 − h), if h1 > h and h2 < h

Vaka

√
ρg(h2 − h), if h1 < h and h2 > h

sign(h1 − h2)Vaka

√
ρg|h1 − h2|, if h1 > h and h2 > h

(2.2)

5



where Va ∈ {0, 1} and ka is a linear gain. The evolution of the continuous state x = [h1, h2]
T

can be described by

ẋ = fq(x(t), u(t)) + ν(t) (2.3)

where q ∈ {1, 2, 3, 4} is the discrete mode as described in (2.2) and ν(t) is assumed to be

process noise. For every mode, we have a set of ordinary differential equations and the system

transitions between modes based on x as described by (2.2). Clearly, these transitions are

autonomous since they depend on the continuous behavior of the system as described by the

guard conditions. Figure 3 shows a typical simulation of the system for x0 = [.2, .75]T for

a pulse input. The estimation objective is to predict the hybrid state from the input and

output flows.
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Figure 3: Simulation for the two-tank system (x0 = [.2, .75]T ).

In the hybrid system literature, it is often assumed that the state is directly observable.

However, in real-world applications, the state has to be reconstructed from the observations.

In this paper, we follow a Bayesian state estimation approach using a discrete-time repre-

sentation of the system dynamics. The continuous dynamics of the system can be described,

using zero-order hold sampling for example, by the discrete-time model

xt+1 = fq(xt, ut) + νt

yt = gq(xt) + ξt
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where νt and ξt denote process and measurement noise respectively. The evolution of the

discrete state can be described by the transition function

qt+1 = δ(qt, σt, xt).

A discrete transition occurs when either the controller issues an appropriate command or

when the continuous state satisfies the guard of the transition. In the tank system, for

example, a command that opens a valve causes a controlled transition. An autonomous

transition occurs when the water level exceeds h. We assume that control commands are

issued asynchronously and therefore, σt can be a null event.

Problem 2.1 The hybrid estimation problem is to compute the most likely hybrid state

st = (qt, xt) given the observation sequence Yt = (y0, y1, . . . , yt) the sequence of continuous

control inputs Ut = (u0, u1, . . . , ut), and the history of control events (σ1, σ2, . . .) up to time

t.

The most challenging aspect of every hybrid estimation algorithm is how to monitor the

autonomous mode transitions and use the appropriate mode q for updating the estimate of

the continuous state x. The probability of mode transitions triggered by control commands

can be usually computed by discrete estimation techniques based, for example, on hidden

Markov models. Let’s focus on autonomous transitions and define the mode transition

probability matrix with elements

Tij(xt−1) = p(qt = j|xt−1, qt−1 = i), i, j = 1, . . . , |Q|.

Let Gij be the guard corresponding to the transition from mode i to mode j. Assuming that

the system is at mode qi and that the probability of the transition qi → qj is equal to the

probability the guard Gij is satisfied, we have

Tij(xt−1) =
∫

Gij

p(xt−1|Yt−1, Ut−1, qt−1 = i)dxt−1 (2.4)

where p(xt−1|Yt−1, Ut−1, qt−1 = i) is the conditional density of the continuous state at time

t − 1. The above integral represents the probability of switching from mode qi to mode qj.

The general idea of our estimation algorithm is that at every time step we evaluate the tran-

sition probability matrix based on the estimate of the continuous state. Then, we focus on

the most likely modes and we update the continuous estimate by conditioning our belief on

the new measurements using the corresponding flow conditions. Our current implementation

is based on a particle filtering approach described in Section 3. This approach allows the

efficient computation of the transition probabilities using Monte Carlo methods. The tran-

sition probabilities are then used to dynamically assign particles to the discrete modes, thus

focusing on the most likely transitions. Before presenting the hybrid estimation algorithm,

we discuss how we can improve the performance of the algorithm by transforming the guard

conditions so that they form a cover of the state space.
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Robustness of Hybrid Estimation

The probability of occurrence of the autonomous transitions is represented by the transition

probability matrix that can be computed at every time step as a function of the continuous

state. The estimation algorithm will be robust if small changes in the continuous state do

not result in large changes in the probabilities Tij. Practically, it is desirable to (1) avoid

chattering phenomena, where the probability mass oscillates between modes at every time

step, and (2) allow enough time after a mode change for the transient to converge to the

steady state behavior for that particular mode. These aspects of the algorithm can be

considerably improved by transforming the guard conditions so that they form a cover of

the continuous state space as explained in the following.
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h1 = 0.3 +  

h1 = 0.3 −  ε 
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Figure 4: Guard conditions that cover the state space

Figure 4 shows the estimated water level h1(t) for the two-tank example. Let’s assume

that h = .3. The system switches from q1 to q2 if h1(t) > .3 and from q2 to q1 if h1(t) < .3.

The estimation algorithm returns a probability distribution over possible continuous states

that approximates the actual state x(t) = [h1, h2]
T at every time step. If the transition

probability matrix T is computed using the original guard conditions, the performance of

the algorithm is degraded by the fast switching around t = 1380 (ms) and leads to chattering

between modes q1 and q2. While the most likely discrete state oscillates between q1 and q2,

the estimation of the continuous state is unreliable.

Hybrid estimation can be considerably improved by transforming the guard conditions to

form a cover of the state space as illustrated in Figure 4. The transition q1 → q2 occurs if

h1(t) > h+ε. Similarly, the transition q2 → q1 occurs if h1(t) < h−ε. The small variations of

the state around h1(t) = h− ε, for example, will not trigger any transitions since the system

is not in mode q2. The design parameter ε depends on the process and measurement noise.

The transition probability matrix can be represented by the transformed guard conditions

by equation (2.4). It should be noted that the continuity of analog-to-digital maps based on

covers of the state space has been studied using small topologies in [17].
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3 Particle Filtering for Hybrid State Estimation

In the following, we briefly describe an algorithm for hybrid estimation based on particle fil-

tering. In particle filters, complex integrals as that of equation (2.4) are computed efficiently

by approximating the belief state by finitely many samples. General process densities that

can represent the interaction between discrete and continuous dynamics in hybrid systems

can be used in an efficient manner. Detailed descriptions of particle filtering methods for

estimation of dynamical systems can be found in [4]. Our approach is similar to algorithms

with mixed-state and automatic model switching that have been successfully applied for

tracking of motion boundaries in video images [10, 2].

Let {s(k)
t−1, w

(k)
t−1, k = 1, . . . , N} denote the sample set at time t−1 where s

(k)
t−1 = (q

(k)
t−1, x

(k)
t−1) is

the kth sample of the hybrid state and w
(k)
t−1 its probability weight. The estimation algorithm

consists of the following steps:

1. Initialization t = 0.

i. sample s
(k)
0 , k = 1, 2, . . . , N from p(q0), p(x0) and set t = 1.

2. Prediction

i. apply p(st|s(k)
t−1) to compute each s̃

(k)
t .

ii. evaluate the importance weights w
(k)
t = p(yt|s̃(k)

t ).

iii. normalize the weights.

3. Resampling

i. resample N particles s
(k)
t from s̃

(k)
t .

ii. set t ← t + 1 and go to step 2.

Consider that at time t the prediction p(qt−1, xt−1|Yt−1, Ut−1) is represented by the sample

set {q(k)
t−1, x

(k)
t−1, w

(k)
t−1, k = 1, . . . , N}. The mode transition probabilities can be computed by

Tij(xt−1) =





∑
k∈Ĝij

w
(k)
t−1∑

k∈Î
w

(k)
t−1

i 6= j

1−∑
` 6=i Ti`(qt−1, xt−1) i = j

(3.5)

where k ∈ Ĝij ⇔ q
(k)
t−1 = i ∧ x

(k)
t−1 ∈ Gij and k ∈ Î ⇔ q

(k)
t−1 = i. Let (q

(k)
t−1, x

(k)
t−1, w

(k)
t−1) be the

kth particle and assume q
(k)
t−1 = i, then we sample from the ith row of the mode transition

probability matrix [Ti1, Ti2, . . . , Ti|Q|] to select the kth sample q
(k)
t for the discrete mode.

Suppose that q
(k)
t = j, then we sample from the density pij(xt|x(k)

t−1) = p(xt|x(k)
t−1, qt−1 =

i, qt = j) to compute the kth sample x
(k)
t for the continuous state. Next, we compute that

importance weights, normalize, reinforce the predicted state using the observations, and

resample the particles as described in the above algorithm.

The mode of the system is computed using the particles as the most likely mode at every

time step and the continuous state is computed using only particles from the most likely

mode, that is

q̂t = arg max
i

∑

k∈Q̂i

w
(k)
t (3.6)
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and

x̂t =

∑
k∈Q̂ w

(k)
t x

(k)
t

∑
k∈Q̂ w

(k)
t

(3.7)

where Q̂i = {k|q(k)
t = i} and Q̂ = {k|q(k)

t = q̂t}.

Example In the following, we describe the application of the estimation algorithm to the

two-tank system shown in figure 2. The observation history is generated using a Mat-

lab/Simulink model of the system. The hybrid estimation algorithm estimates the the

mode of the system and the water levels given the input and output flow (shown in figure 3).

We assume that the initial state is described by q0 = 3 and x0 ∼ N (µ, P ), with µ = [.2, .75]T

and P = diag(.1, .1). We sample N = 100 particles from the distribution of the initial

conditions to get

{s(k)
0 = (q

(k)
0 , x

(k)
0 ), w

(k)
0 = 1/N, k = 1, . . . , N}.

Given the sample set {q(k)
t−1, x

(k)
t−1, w

(k)
t−1, k = 1, . . . , N}, we compute the transition probability

matrix using equation (3.5). Let the kth particle be (q
(k)
t−1, x

(k)
t−1, w

(k)
t−1), and assume q

(k)
t−1 =

i, then we sample from the ith row of the mode transition probability matrix to select

the kth sample q
(k)
t for the discrete mode. Suppose that q

(k)
t = j, then we sample from

pij(xt|x(k)
t−1, ut−1) = p(xt|x(k)

t−1, ut−1, qt−1 = i, qt = j) to compute the kth sample x
(k)
t for the

continuous state. The density pij(xt|x(k)
t−1, ut−1) is computed using the flow condition of

the mode j from equation (2.3) by assuming zero-mean Gaussian process noise. Next, we

set s̃
(k)
t = (q

(k)
t , x

(k)
t ) and we evaluate the importance weights using the likelihood function

w
(k)
t = p(yt|s̃(k)

t ) derived from (2.1) by assuming zero-mean Gaussian measurement noise.

Finally, we resample the N particles to multiply particles with high importance weights

and eliminate particles with low importance weights [7]. The estimated hybrid state of

the system, computed using (3.6) and (3.7), is shown in figure 5. As it can be seen by

comparing the simulation in figure 3 and the estimation results, although there is initially

some estimation error due to the uncertainty of the initially condition, we are able to track

the hybrid state of the system.
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Figure 6: Liquid oxygen (LOX) tank system

4 The Propulsion System Domain

In order to illustrate the use of the hybrid estimation approach in our diagnostic architecture,

we present an application related to rocket propulsion. All space launch vehicles that reach

Earth orbit do so by carrying large quantities of oxygen which is combined with a fuel and

burned to produce thrust. The oxygen is stored in the form of liquid oxygen (LOX) at a

temperature several hundred degrees below that of the launch environment.

Figure 6 illustrates the LOX venting system for the X-34, an experimental, rocket-powered

vehicle designed for NASA. When the pneumatic valve is open, the LOX tank can vent to

the atmosphere. The vehicle’s control system does not directly actuate the pneumatic valve.

Instead, the pneumatic valve opens when it is pressurized by the pneumatic system to its

left. The pneumatic tank and regulators provide high pressure gas to the solenoid valve.

When the control system opens the solenoid valve, the pneumatic valve is pressurized and

opens. There are a wide variety of failures possible within this system. The pneumatic valve

might fail to open because either of the valves is stuck closed, either of the regulators are

too low, or the pneumatic tank is leaking. The pneumatic valve might stay open because it

is stuck or the solenoid valve is stuck open, and similarly might open or close more slowly

than originally anticipated. The LOX tank may also lose mass because the pneumatic valve

is leaking, the LOX tank is leaking, or components downstream of the Engine Inlet, Dump

or HiPrHe lines (not shown) are leaking. A slowly actuating pneumatic valve might be

compensated for by the control system, whereas a leaking LOX tank is not recoverable and

a potential safety hazard. Detection and diagnosis rely heavily upon estimating the mass

of LOX and gaseous oxygen (GOX) in the tank, a task complicated by the fact that the

propulsion system is described by a 10th order hybrid system with nonlinear dynamics and

both commanded (venting, not-venting) and autonomous (boiling, not boiling) transitions.

The particle filtering algorithm presented in section 3 is used for fault detection using an

observer-like scheme as shown in figure 7. The particle filter algorithm plays the role of a

hybrid observer which is computing the most likely discrete mode q̂ and continuous state

x̂ and is generating the expected output ŷ based on the plant model. The residual signal
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rt = yt − ŷt is then thresholded, after low-pass filtering, to detect possible failures. Fault

detection and isolation is performed by considering both the residual rt and the mode q̂t.

For example, the observer may not be able to perfectly track fast transients after each mode

transition and therefore, the residual exceeding the threshold immediately after a mode

transition does not necessarily correspond to a fault. Also information about the modes for

which the discrepancy is present can be used for fault isolation. A leakage in a pneumatic

valve, for example, will cause a discrepancy only if the valve is closed. Our diagnostic

system is using a feature extraction algorithm and a neurofuzzy classifier to compute the

probability of the fault hypotheses based on the residual signals generated by the hybrid

estimation algorithm; details are out of the scope of this paper. In the following, we present

simulation results for the propulsion system for two scenarios (1) normal behavior, and (2)

leakage in the pneumatic valve.

Plant

Hybrid 
Observer

u

-

y

ŷ
Fault 

Detection

q̂

r

Figure 7: Fault detection using hybrid observer

Simulation Results

We have tested extensively the particle filtering algorithm for state estimation of the propul-

sion system domain. Here, we present simulation results for a subsystem of the propulsion

domain consisting of the LOX tank and the pneumatic valve. This subsystem interacts with

the high pressure pneumatic tank only via the command that controls the solenoid valve

that in turn, drives the pneumatic valve. This subsystem is best described as a hybrid sys-

tem with autonomous transitions between the discrete modes corresponding to the oxygen

boiling or not boiling in the tank. The continuous dynamics of the subsystem are described

by a set of 4th order nonlinear differential equations that are discretized using a sampling

period T = 100ms. The discrete modes correspond to the oxygen boiling or not, which is

determined by a nonlinear guard of the form Psat ≥ PGOX where the saturation pressure

Psat is approximated using a 5th order polynomial of the LOX temperature, while the GOX

pressure PGOX dependes on the GOX mass and temperature using the ideal gas law. The

outputs are the GOX pressure and temperature and are contaminated with Gaussian noise.

Normal behavior. We have demonstrated that the algorithm can track the state in the case

when there are no faults in the system. The continuous states corresponding to the LOX

and GOX masses are shown in figure 8. The expected venting pressure, as computed using

12



the estimated state, is plotted versus the actual venting pressure and the discrete mode

are shown in figure 9. The simulation was performed using N = 100 particles, requiring

approximately 2500s for a time horizon of 9000s in a PC workstation using Matlab.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16
x 10

4

t (s)

LO
X

 M
as

s 
(lb

m
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t (s)

G
O

X
 m

as
s 

(lb
m

)

Figure 8: LOX and GOX mass
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Figure 9: Discrete mode and venting pressure

Pneumatic valve leakage. The estimation algorithm can be used also to detect continuous

faults such as leakage in the pneumatic valve. The valve leakage was simulated by including

an additive term in the equation that represents the flow balance when the pneumatic valve

is closed. Figure 10 shows the expected and the actual venting pressure. The estimated

discrete mode and the residual signal computed as the difference between the actual GOX

pressure and the expected are also shown. Whenever there is no boiling then the actual

pressure is less than the expected one and a fault is detected.

5 Conclusions

Monitoring and diagnosis of embedded systems depends crucially on the ability to estimate

the hidden hybrid state from the available measurements. In this paper, we have presented

a particle filtering based method and demonstrate the algorithm using a two-tank example

and a rocket propulsion system. The algorithm can be applied in the case of autonomous

transitions, nonlinear system dynamics, and non-Gaussian noise. Performance characteri-

zation of the algorithm is an important and open problem. Convergence of the algorithm
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Figure 10: Expected vs. actual venting pressure, residual, and estimated discrete mode in

the case of leakage

depends crucially on the number of particles that, in turn, depends on the dimension of the

continuous state space and number of discrete modes. We have observed that the time in-

terval between discrete transitions also affects the performance of the algorithm. Currently,

we address some of these problems by increasing the number of particles and/or assigning a

small number of particles at every mode even if the measurements indicate that some of the

modes are not probable. Theoretical aspects regarding the performance characterization of

the approach are subjects of current and future research.
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