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Abstract. Radio-interferometric ranging [2] offers an alternative to ter-
restrial GPS for localization and tracking in wireless sensor networks.
Because of the excessive computational costs of ranging and localiza-
tion, a PC class server is required to compute the locations using the
measurement data collected by the low-power resource constrained sen-
sor nodes. This report proposes an analytical location solver that would
fit in a low-power self-contained hardware implementation, analogous to
a GPS receiver. A technique to measure the speed and direction of the
moving node using the Doppler effect is also proposed.

1 Introduction

Radio-interferometric ranging [2] [1] is a novel technique that allows for fine-
grained localization and tracking of mobile wireless sensor nodes. This technique
relies on two nodes transmitting pure sine waves at close frequencies, thus gen-
erating an interference field. Receivers measure the phase of the low frequency
beat signal. The offset of phases measured at two receivers carry location related
information.

dABCD mod λ = ϕCD
λ

2π
, (1)

where A and B are the transmitter nodes, λ is the wavelength corresponding to
the average of the two carrier frequencies, ϕCD is the relative phase difference
measured by nodes C and D, and dABCD is the interferometric range (denoted
as q-range). The q-range is defined by the equation

dABCD = dAD + dBC − dAC − dBD (2)

where dXY is the Euclidean distance between X and Y .
Notice that Eq. (1) has an infinite number of solutions. To overcome this

problem, q-ranges are measured at different frequencies: it has been reported
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that measuring at eleven different channels yield good results in an environment
with moderate multipath.

When the locations of three of the four nodes contributing to a q-range
measurement are known, a quantity relating the positions of three nodes can be
derived. Without loss of generality, let us assume that the position of node A
is unknown, while the positions of the remaining four nodes are given. Let us
rearrange Eq. (2) such that the known quantities are on the left hand side:

dABCD − dBC + dBD = dAD − dAC

Let us denote the left hand side with the term t-range. The t-range dACD relates
the location of three nodes, constraining the location of node A on a hyperbola
(in two dimensions) with foci C and D.

dACD = dAD − dAC (3)

The t-range dACD can be computed from the q-range measurement and the
known anchor locations. Given multiple t-ranges, the position of the unknown
node can be computed as the intersection of the corresponding hyperbolae.

In the general case, however, calculating the target location this way have
drawbacks: 1) two conic sections can have as many as 4 points of intersection, and
2) analytical solution is not feasible. To overcome these problems, in Section 3
we propose to solve a special case analytically, where the two hyperbolae share a
focus. This approach yields unambiguous results, allows for analytical sensitivity
analysis and poses minimal limitations on the anchor placement.

In Section 2.2, we present a technique that uses the Doppler effect to compute
a speed-related quantity, denoted as the q-speed using the frequencies measured
by the receiver nodes at different frequencies. When the calculated locations
are available, q-speeds can be converted to velocity vectors (actual speed with
direction).

2 Intersection of hyperbolae

Theorem 1. Consider Figure 1: hyperbola hAB is defined by its foci A,B and
the distance RAB such that for any point X ∈ hAB, |AX| − |BX| = RAB.
Similarly, hAC is defined by the foci A,C, and the distance RAC . Given the
coordinates of A,B,C and the distances RAB , RAC , find the intersection points
of hAB , hAC .

Proof. The following equations hold for the hyperbolae:√
x2 + y2 −

√
(x− b)2 + y2 = RAB√

x2 + y2 −
√

(x− cx)2 + (y − cy)2 = RAC

moving
√

x2 + y2 to the other side and squaring we get:

x2 + y2 − 2
√

x2 + y2RAB + R2
AB = (x− b)2 + y2

x2 + y2 − 2
√

x2 + y2RAC + R2
AC = (x− cx)2 + (y − cy)2
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Fig. 1. Two hyperbolae given by their foci A, B and A, C.

We further adopt the following notation the foci, semimajor and semiminor
axis lengths of hAB , hAC :

AAB = RAB/2, AAC = RAC/2,

CAB = b/2, CAC = c/2 =
√

c2
x + c2

y/2,

BAB =
√

b2 −R2
AB/2, BAC =

√
c2 −R2

AC/2

We simplify the equations:√
x2 + y2RAB = bx− 2B2

AB (4)√
x2 + y2RAC = cxx + cyy − 2B2

AC

Next we equate the two equations and substitute one into the other:

(bRAC − cxRAB)x = 2B2
ABRAC + cyRABy − 2B2

ACRAB (5)

We substitute D,E as follows and rewrite (5)

D = cyRAB/(bRAC − cxRAB)
E = 2(B2

ABRAC −B2
ACRAB)/(bRAC − cxRAB)

x = Dy + E (6)

We substitute (6) into (4):√
(Dy + E)2 + y2 =

b

RAB
(Dy + E)− 2

B2
AB

RAB
(7)



4 Branislav Kusý and János Sallai

We further define:

F =
bE − 2B2

AB

RAB

and rewrite (7) into:

D2y2 + 2DEy + E2 + y2 =
b2D2

R2
AB

y2 + 2
bDF

RAB
y + F 2

which is a quadratic equation in y:

(1 + D2 − b2D2

R2
AB

)y2 + (2DE − 2
bDF

RAB
)y + E2 − F 2 = 0 (8)

The discriminant of (8) is denoted with Discy:

Discy = (2DE − 2 bDF
RAB

)2 − 4(1 + D2 − b2D2

R2
AB

)(E2 − F 2)

= 4(F 2 − E2) + 4D2(F 2+b2E2

R2
AB

− 2bEF
RAB )

Solutions of (8) along with (6) give us intersection points of the two hyper-
bolae:

y1 =
−(2DE−2 bDF

RAB
)+
√

Discy

2(1+D2− b2D2

R2
AB

)

y2 =
−(2DE−2 bDF

RAB
)−
√

Discy

2(1+D2− b2D2

R2
AB

)

2.1 Degenerate cases

The quadratic formula assumes that the all coefficient of Eq. 8 be finite, and
that the coefficient of y2 be non-zero. Otherwise the formula is not applicable,
and alternate ways of finding the solution need be used.

a. The coefficient of the quadratic term is zero. As the coefficient of the
quadratic term approaches zero, one of the solutions go to (minus) infinity. The
parabola becomes a line, hence the quadratic equation will behave like a linear
equation.

Testing for this degenerate case is carried out by checking if the coefficient
of the quadratic term is zero, i.e. if the following equality holds:

1 + D2 − b2D2

R2
AB

= 0

It can be shown that if the two hyperbolae have parallel asymptotes, the
above equality will hold.

There are two options to find the solution for this degenerate case:
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– Solve Eq. 8 as a linear equation.

(2DE − 2
bDF

RAB
)y + E2 − F 2 = 0 (9)

– Add a small number ε to RAB (or RAC), such that the coefficient of the
quadratic term becomes non-zero, and solve Eq. 8.

b. Non-finite coefficients. As the term bxRAC − cxRAB can be found in de-
nominators in all three of the coefficients, the coefficients go to infinity if this
term goes to zero.

Multiplying the coefficients with (bxRAC − cxRAB)2 will cancel out the de-
nominators and thus solves the problem. The coefficients can be further simpli-
fied by dividing them by (R2

ABR2
AC). The new coefficients, after simplifications,

are the following:

a = 4R2
AB(c2

x + c2
y) + 4b2

x(R2
AC − c2

y)− 8bxcxRABRAC

b = 4cy(R2
AB − b2

x)(bxcx −RABRAC − c2
x − c2

y + R2
AC)

c = (R2
AB − b2

x)((bxcx −RABRAC − c2
x − c2

y + R2
AC)2

−(cxRAB − bxRAC)2)

c.The discriminant is zero. The discriminant corresponding to the above
coefficients is

d = 16(c2
x + c2

y −R2
AC)(b2

x −R2
AB)((bx − cx)2 + c2

y

−(RAB − rAC)2) + (bxRAC − cxRAB)2

The first, second and third terms of the product are never zero unless the position
of the target coincides with anchor A or C, A or B, and B or C, respectively. The
last term can be zero without any such coincidences. As the last term approaches
zero, the two solutions, the correct and the false one, get closer to each other
and are more difficult to distinguish between them just by substituting back to
the original hyperbola equations.

2.2 Sensitivity analysis

The coordinates of the target are computed from the measured distance differ-
ences RAB and RAC . Formally, RAB and RAC are parameters of an algebraic
expression. Here we investigate how sensitive the calculated coordinates are to
the input parameters.

Let us rewrite Eq. 8 the following way.

a(RAB , RAC)y2 + b(RAB , RAC)y + c(RAB , RAC) = 0

The discriminant of the above equation, as a function of RAB and RAC has the
following form:

d(RAB , RAC) = b2(RAB , RAC)− 4a(RAB , RAC)c(RAB , RAC)
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Substituting the coefficients into the quadratic formula, we get the solution
for the y coordinate of the target as a function of the parameters:

y1,2(RAB , RAC) =
−b(RAB , RAC)±

√
d(RAB , RAC)

2a(RAB , RAC)

To analyze the sensitivity of the output to errors of the inputs, we take the
partial derivatives of y1,2(RAB , RAC) with respect to both parameters.

∂y1,2

∂rAB
=
− ∂b

∂rAB
± ∂d

∂rAB

1
2
√

d

2a
−

∂a
∂rAB

(−b±
√

d)
2a

∂y1,2

∂rAC
=
− ∂b

∂rAC
± ∂d

∂rAC

1
2
√

d

2a
−

∂a
∂rAC

(−b±
√

d)
2a

Since a(RAB , RAC), b(RAB , RAC), c(RAB , RAC) and d(RAB , RAC) are all
polynomials, the partial derivatives are exist and are finite except where a(RAB , RAC)
or d(RAB , RAC) is zero.

For any target position, only one of the roots gives a correct result. It can be
shown that the correct solution is

y =
{

y1, RAC ≤ RAB
cx

bx

y2, RAC > RAB
cx

bx

(If RAC = RAB
cx

bx
the discriminant is zero, hence y1 and y2 are equal.) Similarly,

for the partial derivatives,

∂y

∂RAB
=

{
∂y1

∂RAB
, RAC ≤ RAB

cx

bx
∂y2

∂RAB
, RAC > RAB

cx

bx

and,

∂y

∂RAC
=

{
∂y1

∂RAC
, RAC ≤ RAB

cx

bx
∂y2

∂RAC
, RAC > RAB

cx

bx

The partial derivatives ∂y
∂RAB

and ∂y
∂RAC

evaluated at RAB and RAC cor-
responding to a given anchor placement and a reference point yields the the
sensitivity of the calculated coordinates to the error in the inputs if the target
is at the reference point.

The following plot of the partial derivatives illustrate the sensitivity of the
computation for target positions ([-200..200], [-200..200]) to parameters RAB and
RAC , respectively. The anchor nodes are A(0,0), B(100,0), C(60,80).

As we can see in the above example, the parallelogram defined by A, B, C and
the reflected image of A to the BC line is a region where both partial derivatives
are between -1 and 2. We have empirically verified that this parallelogram is a
safe region if the angle of BA and AC is obtuse. That is, if the target is within
this parallelogram, the amplification of ranging errors is less than twofold.
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Fig. 2. Sensitivity of the computation with respect to RAB and RAB . Contour curves
above 3 and below -3 are not plotted. The anchor nodes are A(0,0), B(100,0), C(60,80).

3 Moving Nodes

Fig. 3. Doppler compensation

Let A and X be the locations of an anchor and a target node. Let α be the
angle between

−−→
AX and the velocity vector −→v and −→va be the component vector

of −→v parallel with
−−→
AX. Let va = |−→va|, if −→va and

−−→
XA have the same direction

and va = −|−→va| otherwise. If t is the measurement time, the target covers the
distance |XX ′| = |−→v |t along the direction of −→v , and the distance xA = vat
along the direction of −→vA.

Theorem 2. Let us define a function

ε(α) = dAX′ − dAX − xa.

The extremal points of ε(α) are at a.) α = 0, and b.) α = arccos− dXX′
2dAX

.
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Proof. For the case shown in Fig. 3, we can use the definition of cosine and the
law of cosines, and calculate

|−→va|t = dXX′ cos α,

dAX′ =
√

d2
AX + d2

XX′ + 2dAXdXX′ cos α .

Since we are interested in the extremes of ε(α), let us differentiate both |−→va|t
and dAX′ :

d(|−→va|t)
d(α)

= −dXX′ sinα,

d(dAX′)
d(α)

=
√

d2
AX + d2

XX′ + 2dAXdXX′ cos α

= −dAXdXX′sinα√
d2

AX+d2
XX′+2dAXdXX′ cos α

Let us consider 2 cases:

|α| ≤ π
2 : we know that xa = |−→va|t, so we need to find the extremes of ε(α) =

dAX′ − dAX − |−→va|t. We do this by differentiating d(ε(α))
d(α) :

d(ε(α))
d(α)

= d(dAX′ )
d(α) − d(dAX)

d(α) − d(|−→va|t)
d(α)

= −dAXdXX′sinα√
d2

AX+d2
XX′+2dAXdXX′ cos α

+ dXX′ sinα

Now we let d(ε(α))
d(α) = 0. It is easy to see that either sinα = 0, or:

dAX√
d2

AX + d2
XX′ + 2dAXdXX′ cos α

= 1

from where cos α = − dXX′
2dAX

.
Since cos α is negative only for |α| > π

2 , the extremal point is attained at
±π

2 .
To summarize, ε(α) attains its minimum at α = 0 and its maximum at ±π

2
in this case.

|α| ≥ π
2 : similarly, xa = −|−→va|t, so we find the extremes of ε(α) = dAX′ −dAX +

|−→va|t:

d(ε(α))
d(α)

= −dAXdXX′sinα√
d2

AX+d2
XX′−2dAXdXX′ cos α

+ dXX′ sinα

Performing the same steps as in the previous case, we conclude that the
minimum is attained at α = π and the maximum is attained at cos α =
− dXX′

2dAX
. ε(α) has a local minimum at α = π

2 but this is definitely larger than
0 attained at α = 0.

Since ε(α) is larger for α = arccos− dXX′
2dAX

than at α = π
2 (proof of the second

case), we can conclude that ε(α) attains the global minimum at α = 0 and the
global maximum at arccos− dXX′

2dAX
.
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4 Conclusion

In this report, we presented an analytical solver that computes the intersection
of two hyperbolae in a special case when they share a common focus. We in-
tend to use this solver to compute mobile node locations in radio-interferometric
tracking, however, it is applicable to a variety of multilateration problems, e.g.
to solve TDOA equations analytically. We also introduced a method to calculate
the velocity vector of the tracked target using radio-interferometric frequency
measurement and the previously calculated node location. This approach, lever-
aging the Doppler effect, when coupled with the analytical location solver, can
be used to compute the location, speed and direction of the tracked node using
only two measurement rounds.
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