
Model-Integrated Parallel Application Synthesis

Akos Ledeczi
Department of Electrical and Computer Engineering, Vanderbilt University

akos@vuse.vanderbilt.edu

Abstract
Parallel computer architectures based on such

processors as the Texas Instruments TMS320C40, or the
Analog Devices ADSP21060, are characterized by high
performance and I/O bandwidth, flexible topology and
low cost making them ideal for embedded parallel signal
processing and instrumentation applications. However,
the software of such systems is difficult to manage by
conventional software engineering methods because of
the complexity of the large-scale parallel application and
the flexibility of the hardware topology. This paper
discusses the adoption of a model-integrated
programming environment, the Multigraph Architecture
(MGA), to this domain. Using the MGA, the parallel
application is automatically synthesized from high-level
system models and assigned to the available network of
processors.

1. Introduction

Parallel computer architectures based on such
processors as the Texas Instruments TMS320C40, or the
Analog Devices ADSP21060, are characterized by high
performance at low cost. These systems are highly
scalable, flexible and modular. The topology of the
network can be arbitrary, limited only by the maximum
degree of the nodes. The interconnection architecture can
be designed specifically for the given application. The
size of the network can be easily adjusted as the system
requirements change. Nodes can be added one-by-one at
any location in the network with an available
communication link. Furthermore, the multiple, high-
speed communication links of the processors can be used
to interface to external devices achieving high I/O
bandwidth.

These favorable characteristics make these processors
ideal for embedded parallel signal processing and
instrumentation applications. Systems can contain from a
couple of processors up to hundreds of nodes connected
by an interconnection network with flexible topology.
They are able to process data on multiple channels at high
data rates in real-time. However, the software of such
systems is difficult to manage by conventional software
engineering methods because of the complexity of the

large-scale parallel application and the flexibility of the
hardware topology.

Model-integrated programming is a promising new
software technology that is able to address the issues
associated with these systems. The Multigraph
Architecture [1-2] is a model-integrated programming
environment that has been applied successfully in diverse
fields, including process monitoring and control, fault
detection, isolation and recovery, and discrete
manufacturing. It suits parallel processing well. The
graphical, multiple-aspect, hierarchical system models
manage the software and hardware complexity of the
application, while the automatic system synthesizer and
the run-time environment provide process synchronization
and communication transparently. Embedded parallel
instrumentation and signal processing is a relatively new
area lacking a mature software engineering technology.
Model-integrated automatic system synthesis is a
promising technology that has great potential in this
domain. Applying the Multigraph Architecture to
embedded signal processing and instrumentation on
distributed memory multiprocessors with flexible
interconnection topology is in the focus of this paper.

2. The Multigraph Architecture

The Multigraph Architecture (MGA) provides a
unified software architecture and tools for: (1) building,
testing, and storing multi-aspect, graphical domain
models, and (2) transforming the models into executable
programs and/or extracting information for system
engineering tools [1-2]. The MGA has the following
functional components (Figure 1):
• Graphical Model Builder (GMB). The modeling

paradigm supported by the GMB includes concepts,
relationships, model composition principles,
constraints, and representation techniques that are
accepted and used in the application domain. The
GMB tool provides a customizable model building
environment for domain experts. It enforces domain-
specific constraints during model building, uses
domain-specific graphical formalism, and supports
checking the models against consistency and
completeness criteria.

• Model Database. The model database stores the
complex, multiple-aspect models. Typically, off-the-
shelf or public domain object oriented databases are
used for this purpose.

• Model Interpreters. Model interpreters synthesize
executable programs from domain models and
generate data structures for system engineering tools
that perform various analyses of the systems to be
built. Since the model interpreters capture the
relationship between the problem space and the
solution space, they are specific to the domain.

• Multigraph Kernel. The executable programs are
composed in terms of the Multigraph Computational
Model (MCM). The MCM is a macro-dataflow model
providing a unified system integration layer above
heterogeneous computing environments, including
open system platforms, parallel/distributed
computers, and signal processors. The run-time
support of the MCM is the Multigraph Kernel
(MGK). The MGK provides scheduling,
synchronization, and communication. The elementary
computations are carefully defined reusable code
components that are part of application specific run-
time libraries. The model interpreters synthesize the
applications by building the dataflow graph and
setting the parameters of the elementary computation
blocks.

Figure 1. The Multigraph Architecture

3. Problem Statement

The objective of the research is to develop a
framework for automatic synthesis of large-scale, parallel
instrumentation and signal processing applications
characterized by high I/O bandwidth, computationally
intensive processing requirements, and frequently
changing software specifications and hardware
configurations. The target hardware platform is distributed
memory multiprocessors with flexible interconnection
topology. To achieve this goal, the following issues are
addressed:
• Representation. The application specifications must

be represented in a computer readable format to
facilitate automatic application synthesis.
Furthermore, the representation format must be easily
comprehensible by humans. In order to manage the
complexity introduced by low level parallel
processing and systems engineering issues, high level
system descriptions are needed. The specifications
must include the application requirements and the
available software and hardware resources. The
representation technique must provide means to
manage the complexity of the specifications
themselves.

• Automatic application synthesis. The parallel
instrumentation application must be automatically
synthesized from the high level system specifications.
The software system needs to be partitioned and
assigned to the hardware platform. Executables,
message routing information, and network loader
configuration are to be automatically generated. The
specific requirements of the process assignment and
the message routing strategy are as follows:

• Process assignment. Process assignment must be
carried out automatically in order to optimize the
performance of the synthesized system. A cost
function is needed that accurately describes the
quality of the assignment. Locating the optimal
solution cannot be guaranteed because the problem is
NP-complete. The search space must be restricted to
keep system synthesis time polynomially bound.

• Message routing. Deadlock-free wormhole routing in
networks with arbitrary topologies is an open
problem. Deadlock-freedom must be guaranteed.
Minimizing the communication overhead is critical to
the performance of the system.

 The following restrictions are placed on the problem
domain to keep the research well focused and the
problems in the preceding list manageable:
• Signal flow dominance. The class of targeted

applications are limited to signal flow dominant
systems. The structure of such systems can be
described by a signal flow graph.

• Static structure. The signal flow graph of the system
is static. Dynamic reconfiguration is not permitted.

• Continuous execution. The execution of the signal
flow graph is continuous. Processing of consecutive
input sets overlap in a pipeline fashion.

• Throughput. The objective of the system synthesis
process is to maximize system throughput. Real-time
constraints are not considered.

The solution domain is restricted by the following
factors:
• Task parallelism. The data parallel computational

model is not considered.
• Hardware platform. The target hardware platform is

distributed memory multiprocessors with flexible
interconnection topology.

The problem of automatically synthesizing large-scale,
parallel instrumentation and signal processing applications
for distributed memory multiprocessors with flexible
interconnection topology is solved in the framework of the
Multigraph Architecture (MGA). In order to manage the
high complexity of the system models, the declarative
modeling capabilities of the MGA are augmented by an
additional model organization principle: generative model
building. The parallel instrumentation domain mandates
three modeling aspects: signal flow, hardware, and
assignment constraints aspects.

It is the task of the model interpreters to partition the
signal flow graph and assign the partitions to the nodes of
the processor network while satisfying the assignment
constraints. A deadlock-free wormhole routing strategy
for networks with arbitrary topologies is developed and
integrated into the model interpreters. The output of the
MIPAS includes executables, a dataflow graph partition,
and a message routing map for each processor in the
system.

4. Modeling Paradigm

 The Multigraph Architecture (MGA) supports
declarative modeling of complex systems. It provides
several model organizational principles to manage the
complexity of the system models. Multiple aspects, model
types and instances support modular modeling. Model
references aid in the description of interactions between
modeling aspects. Hierarchy and multiple views provide
visibility control. While these are powerful techniques that
help the management of the complexity of the system
models, experience shows that there is a clear need for an
additional model organization principle primarily for
modeling repetitive structures. The following section
describes how generative modeling can satisfy this need,
and how it can be incorporated into the declarative
modeling environment of the Multigraph Architecture.

4.1. Generative Modeling

When several parts of a model have the same
components and structure, simple replicators could reduce
the complexity of the models. Instead of repetitively
building the same model for every occurrence, one copy
and the desired number of replications could be specified.
However, the interface of such replicators poses problems.
Since there is only one actual copy of the model, only one
connection can be made to each of its ports. Such a
connection could be interpreted as one connection to each
replicated instance or as a single connection to the first
instance. Some complicated constructs could be defined
for different cases, but the solution would not be intuitive
and easy to use. A situation similar to that of the
replicators exists with conditional model components
whose existence depend on some condition.
 Conditional models are very useful for modeling
complex systems. For example, changing requirements
and varying resources may force the user to change the
system models frequently. The required "size" of the
system changes most often. For instance, the number of
channels required in a multi-channel system can vary from
day to day. Similarly, the number of available hardware
resources, such as processing nodes, disk drives, printers,
etc., can also change frequently. Editing the system
models often is cumbersome and error-prone. A simple
solution is to model the biggest expected configuration
and conditionalize parts of it. Conditionals are similar to
replicators because they specify the number of
occurrences of a model component, which can be zero or
one. These two modeling constructs, replicators and
conditionals, can be combined and implemented with
generative modeling.
 With generative modeling, the user can specify model
structure, i.e. components and connections, by writing a
program in some language. Generative modeling is similar
to the generate statements of VHDL [3]. To interface this
style of model building to the declarative (graphical)
modeling paradigm of the MGA, the textual attribute
feature of the modeling environment is utilized.
 Each component of a Multigraph model can have
multiple textual attributes to capture information that
cannot be represented graphically. A varying number of
textual attributes are dedicated to generative modeling
depending on the type of the model component. Model
components with inner structure have a structure attribute
that is used to create new, or destroy existing connections
between parts of the given model. Every model
component has a repetition attribute, which expresses the
number of repetitions of the current model. A reference
attribute is assigned to models that contain references to
components in other aspects. Since model references can
be made only to graphically specified model components,
this attribute is used to refer to components specified by
generative modeling.

 These textual attributes are called generative attributes.
The language selected for generative modeling is C++
because it is widely used and compilers are readily
available.
 The primary modeling methodology in the Model-
Integrated Parallel Application Synthesizer is the only
method supported directly by the MGA: declarative
modeling. Generative modeling plays a secondary role. It
is reflected by the fact that generative modeling is
implemented through textual attributes which are assigned
to graphical model components. A totally new model
component cannot be generated, only replications of an
existing graphical model can be. This is intentional;
declarative modeling is a powerful methodology and its
usage is favored in the MIPAS. Generative modeling is
supported only to augment the capabilities of graphical
model building. Its main purpose is the compact
description of repetitive structures and the flexible
specification of conditional components.

This double paradigm, declarative and generative, has
a minor drawback. Neither the graphical, nor the textual
model representation contains all the information about
the system. Consequently, the models are hard to
comprehend by humans. The MIPAS contains a special
model interpreter dedicated to overcome this problem.
The Model Transformation Tool (MTT) converts these
mixed models to purely graphical representation by
evaluating the generative attributes and creating a new
model database. The MTT is described in greater detail in
the following section.

Generative modeling is very useful for reducing
complexity and speeding up the modeling process. Along
with the MTT, it transforms modeling into a two-stage
process. The user first creates the models with the mixed
declarative and generative specifications. Then the MTT
is used to transform the models. Then the user can apply
the Graphical Model Builder again to check the models
visually. While it is possible to modify the automatically
generated models, it is not considered to be a good
modeling practice, since the automatic transformation
works in one direction only. There is no support provided
to modify the original models automatically based on the
manual changes of the models generated by the MTT.

4.2. Modeling Aspects

The objective of this research is to automatically
synthesize large-scale instrumentation systems running on
distributed memory multiprocessors with flexible
interconnection topology. What do the system models
need to contain to achieve this goal? There are two main
aspects of the problem: the software and the hardware, i.e.
the signal processing and other computations that need to

be performed and the target hardware architecture.
Consequently, one modeling aspect is assigned to each.

The signal flow graph is a widely accepted way of
describing instrumentation/signal processing systems. The
first modeling aspect, the Signal Flow Aspect, closely
resembles a signal flow graph. The Hardware Aspect
describes the available hardware resources and their
interconnection topology. These two aspects of the system
are not independent. Different elements of the signal flow
graph may have certain hardware resource requirements.
They constitute assignment constraints that must be
satisfied during system synthesis. The third and final
aspect of the system models describe these resource
requirements. It is called the Assignment Constraints
Aspect.

4.2.1. Signal Flow Aspect. The signal flow models
consist of predefined atomic and user-defined aggregate
components. The primitive and the compound are the
aggregate model components of the Signal Flow Aspect.

The primitive is the lowest level computational block.
It contains atomic objects only. It does not have any
connections. It has different textual and numerical
attributes associated with it, such as a script, a priority,
etc. In addition to atomic objects, the compound contains
user-defined components, i.e. previously defined
primitives and compounds. Compounds containing
compounds create the model hierarchy.

The signal flow model of a system must have exactly
one top level compound model containing every lower
level model. This hierarchy is best described by a tree.
The nodes of this tree are the compound and primitive
models. The children of a node are the aggregate models it
contains. The root of the tree is the top level compound
model. The leaves are the primitive models.

Primitive models correspond to actornodes in the
Multigraph Computational Model (MCM) [4]. The most
important attribute a primitive model has is the script. The
script is a subroutine written in a procedural or functional
language that is executed every time the actornode is
fired. The script attribute contains the name of the
subroutine and the object or library file name where it is
located. A related attribute is the estimated execution
time. This is needed by the system synthesizer to ensure
good processor allocation.

The atomic objects that primitives can contain are the
input and output signals, and the input and local
parameters. The input and output signals constitute the
data interface of the primitive. They correspond to
actornode ports in the MCM. The Multigraph Kernel
(MGK) provides a set of functions to access these "data
ports" to receive or propagate data at runtime. At higher
levels of the model hierarchy, the icons corresponding to
the input and output signals are connected to create the
signal flow graph. The attributes of input and output

signals include data rates. These are needed by the system
synthesizer to ensure good allocation of communication
resources.

The local and input parameters of the primitive model
are used to assemble the actornode context. Local
parameters have data types and values specified by the
user. Input parameters are used to propagate the value of a
local parameter specified at a higher level of the model
hierarchy down to the primitive model. The local and
input parameters can have simple data types, e.g. integers
or doubles, or pointers to more complicated, user-defined
types.

Compounds may contain primitives, compounds, and
atomic objects. These atomic objects can be input, output
and local signals, input and local parameters, and
conditions. Local signals correspond to datanodes in the
MCM. Their attributes include data type and buffer
length. Input and output signals describe the data interface
of the compound model. Icons representing primitive and
compound components have ports for their input and
output signals (and for their input parameters). The signal
flow is modeled by connections between selected types of
atomic components and ports of aggregate components
(primitives and compounds). These connection constraints
ensure that the resulting dataflow graph is bipartite as
required by the MCM: actornodes are connected to
datanodes and vice versa.

The value of each local parameter needs to be
propagated down all the way to the primitive, where it
becomes a parameter for the script as part of its context.
This is modeled by connections between local and input
parameters. As an example, consider a primitive model
corresponding to a simple amplifier actornode. It has one
input signal for the input data, one input parameter for the
gain, and one output signal for the output data. Several
instances of this model can be used in different compound
models. For each instance, a local parameter needs to be
defined and connected to the input parameter of the
amplifier primitive. The value of this local parameter is
the gain, which can be different for each instance of the
amplifier.

Generative modeling is supported through generative
attributes in the MIPAS. In the signal flow aspect, every
primitive, compound, input, output and local signal, and
input and local parameter has a repetition textual attribute.
This is specified as a C++ function body that returns an
integer, the number of repetitions of the model
component. The repetition generative attribute defaults to
"return 1;".

Model connections can be specified in the structure
attribute. Only compound models have inner structure,
therefore, only they have this attribute. The structure
attribute is specified as a C++ function body. In the code,
components of the current model can be accessed by
name. Connections can be created or destroyed by calling

the predefined functions Connect(a,b) and
Disconnect(a,b). These are overloaded C++ functions.
They allow parameter type combinations for all legal
connection types. For example, input signal to input signal
port, output signal port to local signal etc.

Compound models can contain one or more conditions.
Conditions are atomic objects. They contain a user
specified numerical value. This value can be accessed by
name in the repetition and structure attributes. Generative
modeling and conditions provide a very flexible and
powerful modeling technique.

4.2.2. Hardware Aspect. The MIPAS target hardware
platforms are distributed memory multiprocessors with
flexible interconnection topology, such as TMS320C40 or
SHARC networks. The key information the models need
to capture are the topology of the network and the
available resources.

The hierarchy of the hardware aspect is organized in a
manner similar to that of the signal flow. The concept of
the two user-defined components, the node and the
network, is similar to that of the primitive and the
compound.

A node can have only atomic parts, e.g. communication
links, while a network can have node and network
components as well. Node models correspond to
processors, while network models describe uni- or
multiprocessor boards, subsystems, systems, etc.

The communication links of nodes have maximum data
rate attributes specifying their speed. The nodes have
attributes specifying their performance. These are needed
by the system synthesizer for resource allocation.

Networks can have node, network, as well as
communication link components. Nodes and networks can
have resources attached to them. Resources are atomic
objects. Their only attributes are their names. They
represent special capabilities of nodes or networks, for
example, such devices as A/D converters, disks, or
printers attached to them. They can be used in the
assignment constraints aspect to express resource
requirements of different blocks of the signal flow model.

Generative modeling in the hardware aspect is similar
to that in the signal flow aspect. Nodes, networks, and
ports have the repetition attribute. Networks have the
structure attribute as well.

4.2.3. Assignment Constraints Aspect. The Assignment
Constraints Aspect constitutes a two-level hierarchy. The
top level model, called configuration, contains a set of
lower level models, called rules and the bans. Rules
specify positive assignment constraints, e.g. that a given
signal flow module must be assigned to a given hardware
module. Bans specify negative assignment constraints, e.g.
that a given signal flow module must not be assigned to a
given hardware module.

Rules and bans can have references to user-defined
signal flow model components and to user-defined
hardware model components. Rules can have resource
requirement parts. Resource requirements are atomic
objects, they represent special needs of the signal flow
components. A model component can be referenced as a
type or as an instance. Assigning a specific computation to
a specific processor requires instance references. But
assigning a type of computation, e.g. a generic FFT
primitive, to a class of nodes, e.g. digital signal
processors, requires type references.

A rule must contain one or more signal flow
references, and can contain one or more hardware
references. The signal flow references of a rule mean that
the run-time objects corresponding to the (type of) signal
flow components must be assigned to the same node. If
the rule contains a hardware reference that means that the
run-time objects must be assigned to one of the processors
specified by the reference. If there are more then one
hardware references, then the assignment can be made to
any one of them. If the rule contains resources
requirements, that means that the assignment must be
made to a node containing all the specified resources or to
a node specified by a hardware reference.

These relations can be expressed by the logical
expression:

[SF1 ∧...∧ SFn]→[HW1 ∨ ... ∨ HWm ∨ HWnode{RS1 ∧...∧ RSl}]

meaning that run-time objects corresponding to SFi signal
flow component references (type or instance) must be
assigned together to one of the processors corresponding
to HWj hardware model component references (type or
instance) or any of the processors having every RSk

resource. The hardware and/or the resource component
part can be omitted, but at least one signal flow
component must be present.

A ban must contain one or more signal flow references,
and one or more hardware references. The signal flow
references of a rule mean that none of the run-time objects
corresponding to the (type of) signal flow components
may be assigned to any of the processors specified by the
hardware references.

These relations can be expressed by the logical
expression:

~{[SF1 ∨ ... ∨ SFn]→[HW1 ∨ ... ∨ HWm]}

meaning that none of the run-time objects corresponding
to SFi signal flow component references (type or instance)
may be assigned to any of the processors corresponding to
HWj hardware model component references (type or
instance).

Every rule and ban has a reference generative attribute.
It is used to reference generative model components of

other aspects. The reference attribute specializes the
meaning of the graphically generated references. It can
either modify the current rule (ban) or create a new one.

The reference attribute contains a C++ function body.
The predefined function Refer(ref,i) is used to specify the
instance of a model the graphical reference points to. For
instance, if a rule contains a reference FFT to a signal
flow compound FFT and the repetition attribute of this
model specifies 5 instances, then the reference attribute
Refer(FFT,3) specifies that the FFT reference points to
the fourth instance of the FFT compound. A single
reference can have several instantiations by multiple
Refer(ref,i) calls.

5. Model Interpretation

The task of the model interpretation in the Multigraph
Architecture is to synthesize applications from the
domain models and run-time libraries, and to produce
input to various system engineering tools. In the case of
the parallel signal processing domain, there are two
different model interpreters and a model analysis tool
responsible for distinct tasks. Figure 2 illustrates their
location in the overall structure of the Model-Integrated
Parallel Application Synthesizer (MIPAS).

5.1. The Model Transformation Tool

The task of the Model Transformation Tool (MTT) is
to visualize generative models to help debug system
models. The models in the MIPAS are mixed declarative
(graphical) and generative (textual). It is relatively easy to
make a mistake, which can go undetected in the modeling
phase, because of this double paradigm. The MTT takes
the system models, evaluates the generative attributes of
the model components, and generates a new set of models
that are purely declarative (graphical) and, therefore,
easier to debug.

The MTT has two main parts. The first one evaluates
the models and creates the second part, a C++ program,
automatically. It generates data structures based on the
models, and writes wrappers around the function bodies
specified by the user as generative attributes. The
generated program contains the predefined functions for
each aspect and a main function. The main function
creates the appropriate number of replications for each
model component by calling the functions created from
the repetition attributes, makes the additional connections
using the functions generated from the structure attributes,
and creates the references specified by the reference
attributes. This second part lays out the model
components and routes the connections automatically for
the GUI of the model builder. The generated C++
program is compiled, linked, and executed. Syntax errors

in the user-specified attributes cause compiler or linker
errors. Since these errors are not easy to trace back to the
models, a tool is needed to locate the original errors in the
model specifications automatically.

5.2. The Parallel Application Builder

The primary model interpreter in the MIPAS is the
Parallel Application Builder (PAB). It is responsible for:
(1) creating the macro dataflow graph corresponding to
the signal flow models, (2) partitioning the graph, (3)
assigning the partitions to the nodes of the processor
network specified in the hardware models while satisfying
the requirements specified in the assignment constraint
models, (4) creating the executables for the nodes, and (5)
providing the hardware description and communication
information to the Graphical Configuration Manager
(GCM), the model analysis tool responsible for hardware
diagnostics and model verification, message routing, and
network loader configuration (Figure 2).

The PAB first creates a signal flow builder object
network corresponding to the signal flow models residing
in the model database. There is a builder object
corresponding to every model object, including
compounds, primitives, signals, parameters, and
conditions. The generative attributes are evaluated to
create the currently required number of builder objects.
Either the original models, or the models generated by the
Model Transformation Tool (MTT) can be provided to
the PAB. The resulting builder object network is a tree,
the root of which is the top level model builder
corresponding to the top level signal flow model.

Figure 2. The MIPAS Architecture

The PAB creates the connections specified in the
generative attributes of the models. The program checks
every model connection (signal and parameter) for

datatype consistency and creates the appropriate
connections in the builder network as well. All direct
connections (between primitive input and output signals
and local signals, and between local parameters and
primitive input parameters) corresponding to the
connections in the dataflow graph are generated bypassing
the hierarchy. Next the corresponding MCM objects are
created: actornodes for primitives, datanodes for direct
signal connections (or local signals), and contexts for
parameters. Then the actornodes and datanodes are
connected to form the dataflow graph.

The next step is to make a builder network for the
hardware models. This is performed similarly to the signal
flow model interpretation: a builder tree is created, where
the nodes are the network, node, communication link, and
resource component builders. All the connections between
model components and the direct node to node
connections are generated as well.

The PAB evaluates the rules and bans of the
assignment constraints configuration and provides each
signal flow primitive builder with a list of hardware node
builders the corresponding actor can be assigned to.
Infeasible requirements are detected at this point. Since
the assignment problem is NP-complete, the PAB
employs a heuristic procedure to partition the dataflow
graph and assign the subgraphs to the hardware nodes. It
utilizes the hierarchy of the signal flow models to cut the
search space and guide the search. The approach to the
assignment problem is beyond the scope of this paper. It is
described in detail in [5].

An alternative to the traditional assignment procedure,
where one assigns processes to a preconfigured hardware
platform, is hardware topology synthesis. The input to this
procedure is the signal flow graph and a set of nodes.
Hardware topology synthesis creates the processor
interconnection network. It tries to match the topology of
it to that of the signal flow graph. This problem is NP-
complete as well, therefore, a heuristic approach must be
used.

The PAB implements hardware topology synthesis
utilizing the hierarchy of the signal flow models as a user-
defined heuristic. The approach is described in [5].

Once the assignment is completed, the PAB generates
a makefile to link the appropriate MGK and the required
object and library files to create the executable for each
processor. Then the make utility is executed.

Before activating the dataflow graph and starting the
execution of the application, message route generation and
network loader configuration needs to be performed.
These tasks are carried out by a model analysis tool, the
Graphical Configuration Manager (GCM).

The PAB generates input information required by the
GCM. The program is capable of comparing the actual
hardware configuration to the hardware models,
generating network loader configuration files and

deadlock-free message routing for wormhole and store-
and-forward routers [5-6].

The purpose of comparing the hardware models to the
actual processor network is twofold. First, it validates the
models and second, it diagnoses the hardware itself.
Another important task of the GCM is network loader
configuration. The program is capable of generating
configuration files for different loaders. The most
important task of the GCM is deadlock-free message route
generation.

Deadlock avoidance with store-and-forward and virtual
cut-through routing is simple with a careful message
buffer allocation strategy. Wormhole routing, the most
efficient message routing method, is, however, deadlock-
prone. The two known deadlock avoidance methods
cannot be utilized. Virtual channels require hardware
support not available on the MIPAS target platforms.
Topology-based deadlock avoidance is too restrictive for
the purposes of the MIPAS.

Partially connected message routing can be used in the
MIPAS because the PAB provides not only the
description of the hardware, but also the list of processors
that need to communicate with each other. In [5], it is
shown that partially connected minimal deadlock-free
routing is NP-complete. Consequently, a non-minimal
approach must be used. A partially connected, non-
minimal message routing strategy, that guarantees
deadlock-freedom and provides comparable, in many
cases smaller, communication overhead than minimal
routing strategies, is introduced and evaluated in [5]. The
GCM incorporates this algorithm to generate deadlock-
free message routing for wormhole routed networks.

6. Conclusions

This paper has discussed the adoption of a model-
integrated programming environment, the Multigraph
Architecture, to the parallel instrumentation and signal
processing domain. The target hardware architecture is
distributed memory multiprocessors with flexible
interconnection topology. The declarative modeling
methodology of the Multigraph Architecture (MGA) has
been extended by generative capabilities providing a
powerful new paradigm. This research has solved the
previously open problem of deadlock-free wormhole
routing in networks with arbitrary topologies. Process
assignment has been solved automatically by a non-
optimal, heuristic search procedure and by hardware
topology synthesis. Both algorithms utilize the
hierarchical structure of the system models providing a
user-defined, application-specific heuristic.

7. References

[1] Sztipanovits, J., "MULTIGRAPH: An Architecture for
Model-Integrated Computing," Proceedings of the
International. Conference on Engineering o Complex Computer
Systems, Ft. Lauderdale, FL, November 1995
[2] Karsai, G., "A Visual Programming Environment for
Domain-Specific Model-Based Programming," IEEE Computer,
March 1995
[3] Perry, D., VHDL, McGraw-Hill, 1991
[4] Abbott, B. A., et al., "Model-Based Software Synthesis,"
IEEE Software, May 1993
[5] Ledeczi, A., "Parallel Systems with Flexible Topology,"
Ph.D. Dissertation, Dept. of Electrical and Computer
Engineering, Vanderbilt University, December 1995
[6] Ledeczi, A., Abbott, B. A., "Parallel Systems with Flexible
Topology," Proceedings of the Scalable High-Performance
Computing Conference, Knoxville, TN, May 1994

