
In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999

MODEL CONSTRUCTION FOR MODEL-INTERGRATED COMPUTING

Akos Ledeczi
Vanderbilt University
Nashville, TN 37235

akos@isis.vanderbilt.edu

Introduction

Complex computer-based systems are characterized by the tight integration of information
processing and the physical environment of the systems. Model-Integrated Computing (MIC) is well
suited for the rapid design and implementation of such systems. MIC employs domain-specific models
to represent the software, its environment, and their relationship. With Model-Integrated Program
Synthesis (MIPS), these models are then used to automatically synthesize the embedded applications
and generate input to system analysis tools. This approach speeds up the design cycle, facilitates the
evolution of the application and helps system maintenance, dramatically reducing costs during the
entire lifecycle of the system.

Creating domain-specific graphical model building, constraint management, and automatic
program synthesis components for a MIPS environment for each new domain would be cost-
prohibitive for most domains. Applying a generic environment with generic modeling concepts and
components would eliminate one of the biggest advantages of MIC – the dedicated support for widely
different application domains. An alternative solution is to use a configurable environment that makes
it possible to customize the MIPS components for a given domain.
 The Multigraph Architecture (MGA), being developed at the Institute for Software Integrated
Systems at Vanderbilt University, is a toolkit for creating domain-specific MIPS environments. The
MGA is illustrated in Figure 1.

Model
Interpretation

Model Interpreters

Models

MIPS
Environment

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Environment
Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Builder

Figure 1: The Multigraph Architecture

In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999

 The metaprogramming interface is used to specify the modeling paradigm of the application
domain. The modeling paradigm is the modeling language of the domain specifying the modeling
objects and their relationships. In addition to syntactic rules, semantic information can also be
described as a set of constraints. The Unified Modeling Language (UML) and the Object Constraint
Language (OCL), respectively, are used for these purposes in the MGA. These specifications, called
metamodels, are used to automatically generate the MIPS environment for the domain.
 The generated domain-specific MIPS environment is used to build domain models that are
stored in a model database. These models are used to automatically generate the applications or to
synthesize input to different COTS analysis tools. This process is called model interpretation.
 The ability to rapidly create domain-specific Model-Integrated Program Synthesis
environments makes Model-Integrated Computing a cost effective approach to a wide range of
applications. The key characteristics of a metaprogrammable MIPS environment are a rich set of
graphical formalisms, a powerful constraint management component, and an extensible, modular
architecture. Generic components that are able to configure themselves according to the given
modeling paradigm provide enormous flexibility.
 The MGA is gaining widespread acceptance in the engineering community. MGA applications
are being actively used in different domains at diverse places. The Saturn Site Production Flow system
monitors the manufacturing process and provides key production measures to managers in real-time
[1]. The system models describe the manufacturing processes down to the machine level, the buffers
between the processes, the instrumentation (i.e. PLCs), and how the information is to be presented to
the user. The model interpreters generate different configuration files and SQL database schema to
configure the SSPF client-server application. The program gathers the production information, stores it
in a real-time database and makes it available to any user in the plant. Within months of the start of
production use of the system, the Spring Hill site of Saturn Corporation reported a 10% productivity
increase. A second installation in Delaware took a couple man-weeks of modeling time and two hours
of installation. There was no need for any code modification illustrating the power of MIC.
 Other MIC applications include a system in production use by Boeing and NASA for Fault
Detection, Isolation and Recovery for the International Space Station [3], a tool used by Sandia
National Labs for system safety and surety [2], an integrated test information system at USAF Arnold
Engineering Development Center and a real-time vibration analysis system being used by NASA for
Space Shuttle Main Engine testing and by the USAF for jet engine testing [4]. Several ongoing
DARPA funded research projects are under way to extend the capabilities of the Multigraph
Architecture [5-6].

Model Construction

 Model construction is one of the key steps when creating an application using MIC. Model
building is the creation of representations that (1) describe an artifact using a certain formalism and (2)
satisfy constraints that capture the semantics of the domain. The MGA supports a primarily graphical
formalism for modeling. It provides a rich set of graphical idioms for the metamodeler to choose from
to implement the entities and relationships of the application domain. (Textual representations are also
supported when necessary.) An MGA modeling paradigm always contains a set of explicit constraints
expressed in the Object Constraint Language (OCL). These define the static semantics of the domain.
Note, however, that graphical idioms introduce additional (i.e. implicit) constraints into the modeling
paradigm.

In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999
 The metaprogrammable model builder works with the following concepts: Paradigms,
Categories, Atoms, Models, Ports, Aspects, Attributes, Hierarchical Containment, Connections,
References, and Conditionals. Figure 2 illustrates the complex relationships among these constructs.
The Paradigm defines the entities and relationships allowed in the given domain. Related models are
grouped into Categories. Each Category has its own model hierarchy. Each Paradigm has a fixed set of
Categories. For example, in the parallel instrumentation domain we could have a signal flow Category
containing the hierarchical signal flow of the application, and a hardware Category describing the
topology of the parallel DSP network.

Figure 2: Modeling Concepts

 The basic modeling objects are Atoms and Models. Atoms are the elementary objects – they do
not contain parts. Each kind of Atom is associated with an icon and can have a predefined set of
attributes. The attribute values are user changeable. A good example for an Atom is an NAND or OR
gate in a gate level digital circuit model.
 Models are the compound objects in our framework. They can have parts and inner structure.
The modeling paradigm determines what kind of parts are allowed in Models, but the modeler
determines the specific type and number of parts a given model contains (of course, constraints can
always restrict the design space). For example, if we want to model digital circuits below the gate
level, then we would have to use Models for gates that would contain transistor Atoms.
 This containment relationship creates the hierarchical decomposition of the Models. If a Model
can have the same kind of Model as a contained part, then the depth of the hierarchy can be
(theoretically) unlimited. Any object must have at most one parent, and that parent must be a Model.
At least one Model does not have a parent, it is called a root Model. A good example for this
containment hierarchy is a modeling paradigm for the production flow of discrete manufacturing, such

In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999
as a car assembly plant. The top-level (i.e. root) process Model corresponds to the whole plant. This
Model contains Models corresponding to different parts of the plant, such as powertrain and body
systems. These in turn contain sub-process Models and so on, all the way down to the machine level
[1]. Hierarchy is an effective method for controlling the complexity of the models themselves.
 The Paradigm can specify that instances of certain kinds of Atoms appear on the outside
interface of the container model as Ports. The primary purpose of Ports is to enable making
Connections to Models.
 Aspects provide primarily visibility control. Every Model has a predefined set of Aspects. Each
part (and Connection) can be visible or hidden in an Aspect. Every part (and Connection) has a
primary aspect where it can be created or deleted. The set of Aspects of a Model must be a subset of
the set of Aspects of any one of its parts. In other words, a part must have the same Aspects as its
parent but it can have extra aspects as well.
 The simplest way to express a relationship between two objects in the MGA modeling
environment is with a Connection. Connections can be made between Atoms, Atom References
(explained later), and Ports. A Model cannot be connected directly, only through one of its Ports.
Connections can be directed or undirected. Connections can have Attributes themselves. In order to
make a Connection between two objects they must have the same parent in the containment hierarchy
(and they also must be visible in the same Aspect, i.e. the primary Aspect of the Connection). The
paradigm specifications can define several different kinds of Connections. It is also specified what
kind of object can participate in a given kind of Connection. The signal flow paradigm provides a good
example. Signal flow Models contain input- and output signal Atoms and they appear as input- and
output Ports on their outside interface. Signal flow Connections can only be created between input- and
output signals and input- and output ports. Connections can further be restricted by explicit Constraints
specifying their multiplicity, for instance.
 A Connection can only express a relationship between objects contained by the same Model.
Note that a Root Model, for example, cannot participate in a Connection at all. In our experience, it is
often necessary to associate different kinds of model objects in different parts of the model hierarchy
or even in different model hierarchies (Categories) altogether. References support this kind of
relationships well.
 References are similar to pointers in object oriented programming languages. A reference is not
a "real" object, it just refers to (points to) one. In MGA, a reference must appear as a part in a Model.
This establishes a relationship between the Model that contains the reference and the referred to object.
Atoms, Models and references themselves can be referred to. References can be connected just like
regular model objects. Atom (and Atom reference) references can be connected directly. Model (and
Model reference) references get copies of the Ports of the referred Model. These Ports can then
participate in Connections. A reference always refers to exactly one object, while a single object can be
referred to by multiple references.
 Connections and references model relationships between at most two objects. Conditionals can
be used to express association among two sets of objects. The first set is the so-called Controller. This
set must consist of the same kind of model objects (Atoms, Models or references). Usually the
Controller set has a single element. The items in the second set are called the parts of the Conditional.
These can be of several different kinds of objects and Connections (defined in the paradigm
specifications). Both of the sets must have at least one element.
 The name Conditional comes from the most typical use of this modeling construct. We can
describe a dynamic system by modeling it with a state machine and associate the states with parts of
the system models. In this case, the states are the Controller objects of the Conditionals and the parts

In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999
are the model objects and connections that are present in the given state. A restriction similar to that of
Connections is that all the Controllers and parts of a Conditional must have the same parent and must
be visible in the same Aspect.
 Some kinds of information do not lend themselves well to graphical representation. The MGA
provides the facility to augment the graphical objects with textual attributes. Most modeling objects
(Atoms, Models, References, and Connections) can have a set of Attributes. The kinds of Attributes
available are text fields, multi-line text areas, toggle switches, and menus.

Example Application Domain

 Figure 3 displays an example model using the modeling paradigm developed for the Activity
Modeling Tool (AMT), a software environment for process monitoring in chemical plants currently
being developed for the DuPont DMT Plant in Old Hickory, Tennessee. The AMT makes it possible to
rapidly create custom monitoring and simulation applications. The user models what data points she
needs from the Vantage real-time database, what kind of processing needs to be done, what input and
output Speedup, a COTS external simulation package, needs, and how the user interface should look
like. The custom application is then automatically synthesized from these models and different
libraries including the Vantage interface-, the Speedup interface-, the configurable GUI-, a dataflow
kernel-, and others libraries that may contain any additional application-specific code. The output of
this translation process are different configuration files and C++ code which is automatically compiled
and linked together with the above libraries.

Figure 3: Modeling Example

In the Proceedings of the 13th International
Conference on Systems Engineering
Las Vegas NV, August 1999
 Some of the modeling concepts are illustrated by the above figure. The AMT paradigm has two
categories of models: Activities and Signal Types. The models browser in the lower left hand corner
displays the categories with separate tabs. Each category has its own hierarchy of models. The window
in the upper right hand corner displays the set of atoms that are available in the current aspect of the
current model, i.e. the active model in the main window. The Signal Flow aspect of the Compound
model called System is shown in the large window in center of Figure 3. In this model, you can see
examples for atoms, models, ports and connections.

Conclusions

Model-Integrated Computing (MIC) is well suited for the rapid design and implementation of complex
computer-based systems characterized by the tight integration of information processing and the
physical environment. Using a configurable MIC environment, that makes it possible to inexpensively
customize the components for a given domain, provides a cost-effective solution. In the Multigraph
Architecture (MGA), the same exact modeling environment is used in widely different domains,
including even the metamodeling domain [7], as illustrated by Figures 2 and 3. The rich set of general
graphical modeling formalisms and the flexible constraint management make the MGA fit a wide
range of application domains.

References

1. Long E., Misra A., Sztipanovits J.: "Increasing Productivity at Saturn", IEEE Computer, August,
1998

2. Davis J., Scott J., et al.: "Integrated Analysis Environment for High Impact Systems," Proceedings

of the Engineering of Computer Based Systems Conference, Jerusalem, Israel, April, 1998

3. Carnes J. R., Misra A.: "Model-Integrated Toolset for Fault Detection, Isolation and Recovery

(FDIR)", Proceedings of the International Conference and Workshop on Engineering of Computer
Based Systems, Friedrichshafen, Germany, March, 1996.

4. Abbott B., Bapty T., et al.: "Model-Based Approach for Software Synthesis", IEEE Software, May,

1993

5. Sztipanovits J., Karsai G., Bapty T.: “Self-Adaptive Software for Signal Processing,”

Communications of the ACM, Vol. 41, No. 5, pp. 66-73, May, 1998.

6. Bapty T., Scott J. et al.: "Uniform Execution Environment for Dynamic Reconfiguration,"

Proceedings of the Engineering of Computer Based Systems Conference, Nashville, TN, March,
1999

7. Nordstrom G. et al: "Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling

Environments," Proceedings of the Engineering of Computer Based Systems Conference,
Nashville, TN, March, 1999

