
Autonomic Self-Healing for MANETs

J. Chaudhry1, Y. Lee2, K. Pence3, J. Sztipanovits2

1Università degli Studi di Trento, TN, Italy
2ISIS, Vanderbilt University, Nashville, TN, USA

3EECS-EngM, Vanderbilt University, Nashville, TN, USA

Abstract – Self-healing systems are considered as
cognation-enabled sub form of fault tolerance system. But
our experiments that we report in this paper show that self-
healing systems can be used for performance optimization,
configuration management, access control management and
many other functions. The exponential complexity that
results from interaction between autonomic systems and
users (software and human users) has hindered the
deployment and user of intelligent systems for some time. We
show that if exceptional complexity is converted into self-
growing knowledge, (policies in our case), can make up for
the initial development cost of building an intelligent system.
In this paper, we propose that AHSEN (Autonomic Healing-
based Self management Engine) clearly demarcates the
logical ambiguities in contemporary designs and shows its
performance through empirical results obtained through
experiments.

Keywords: Automatic Self-Healing, MANETs, Congestion
Control

1 Introduction
 As the complexity and size of networks increase so do
the costs of network management [1]. The preemptive
measures have done little to cut down on network
management cost. Hybrid networks cater with high levels of
Quality of Service (QoS), scalability, and dynamic service
delivery requirements. The amplified utilization of hybrid
networks i.e. ubiquitous-Zone based (u-Zone) networks has
raised the importance of human resources, down-time, and
user training costs [10]. The u-Zone networks are the fusion
of the cluster of hybrid Mobile Ad-hoc NETworks
(MANETs) and high speed mesh network backbones. They
provide robust wireless connectivity to heterogeneous
wireless devices and take less setup time. The clusters of
hybrid networks feature heterogeneity, mobility, dynamic
topologies, limited physical security, and limited
survivability [2] and the mesh networks provide the high
speed feedback to the connected clusters. The applications
of MANETs vary in a great range from disaster and
emergency response, to entertainment and internet
connectivity to mobile users.

 Autonomic Computing provides a cheaper solution for
robust network management in u-Zone networks in the form
of self-management. Self Management is a tool through

which performance of the computer systems can be
optimized without human user intervention. In [24] Turing
et. al. suggests that autonomic systems have exponential
complexity which can hamper the appropriate problem
marking and also raises the software cost. So it is critical to
provide incremental, low cost and time efficient solutions
along with minimizing the maintenance cost of the software.

 The u-Zone networks contain a highly vast variety of
devices connected to them. It is not apposite to address the
problems of each category of devices individually. We need
to have some general solutions that could entertain a certain
set of devices. Moreover, the probability of a management
solution made for one type of client would be appropriate
for another client is very low. The authors in [17] target the
self management in hybrid environment through a ‘divide
and conquer’ approach by using component-based
programming. They propose to rapidly divide the problem
into sub-domain and each domain is then assigned ‘sub
solutions’. The amalgamation of all ‘sub solutions’ gives the
final management solution to the client.

 Several network management solutions proposed in [4]
[5] [6] [7] are confined strictly to their respective domains
i.e. either mesh network or MANETs. A self-management
architecture is proposed in [3] for u-zone networks. We
have identified the following questions that are still to be
answered since there is only a limited amount of published
work on the topic:

1. If self-healing is one of the FCAPS functions (Fault,
Configuration, Accounting/Administration, Performance,
Security) than what is the physical location of self-
healing functions whether it should reside on the gateway
or at the client end?

2. How does the control, information etc flow from one
function to another? Especially how do Self-healing
functions interact with the other functions?

3. What are the calling signatures of self-healing functions?
If Self-healing functions are fault-removing functions,
than what are the functions of Fault Management
functions?

4. Are these sub-functions functionally independent? If yes,
then there is an evidence of lot of redundancy and if not
then how self-healing can be thought of an independent

entity in other words what is the true functionality
definition of self-healing?

5. What if the self-management entity itself faces
management problem, how should they be tackled?

 The questions posted above, encourages us to propose
a flexible self-healing architecture [9] that can not only
define the individual functionality of the participating
management functions but also be lightweight for thin
clients. In this paper, we propose a flexible, autonomic, self-
management architecture for u-Zone networks that suits
clients with varying processing capabilities. We propose
that the Context Awareness and Self Optimization should be
an ‘always-on’ function whereas the other management
functions should be ‘on-demand’ e.g. Self Configuration,
Fault Management etc. This categorization of functions
equally distributes the self- management framework among
the clients without being a big liability on a software
platform of clients. The clients in a u-zone network contain
a high level of diversity so the management solutions should
be exclusive. In real time scenarios it is not lucrative to
exclusively tailor solutions for each client. For this reason,
we propose that almost all the on-demand functions should
be composed dynamically using dynamic component
integration [15]. This integration can be very time
consuming for the clients so transaction thrashing can take
place. The dynamic component integration for the on-
demand functions needs the mechanism for preventing the
thrashing [23]. We use the delay time-based peak load
control scheme in order to preventing the transaction
trashing caused by an enormous number of service requests
in u-Zone-based hybrid networks. The worker pattern [8],
connecter-accepter model [14], reactive [13] and proactive
[22] approaches are effective in combination but these are
not cost effective in real life applications. The use of a Peak
Load Control (PLC) mechanism manages the service
requests at the gateway. Depending upon the load on the
host gateway, the service requests are routed to the peer
gateways to eliminate the inconsistency and redundancy at
service level. We show the simulation result for proving the
stability of performance, According to our experimental
result, the proposed delay time algorithm can stably control
the heavy overload after the saturation point has been
reached and has significant effect on controlling peak loads.

 In section 2 we compare our scheme with some of the
contemporary solutions proposed. The proposed scheme
follows in section 3. An application scenario is discussed in
section 4. The implementation details and simulation results
are furnished in section 5. This paper ends with a
conclusion and discussion of future work.

2 Related Work
 In this section we compare our research with the
related work. The Robust Self-configuring Embedded

Systems (RoSES) project [11] aims to target the
management faults using self-configuration. It uses graceful
degradation as the means to achieve a dependable system. In
[12] the authors propose that there are certain faults that can
not be removed through configuring of the system, which
means that RoSES does not fulfill the definition of self
management as proposed in [16]. The HYWINMARC [3]
uses cluster heads to manage the clusters at local level but
does not explain the criteria of their selection. The
specifications of Mobile Code Execution Environment
(MCEE) are absent. Moreover the use of intelligent agents
can gives similar results as discussed above in the case of
[14] and [15]. To enforce the management at local level, the
participating nodes should have some management liberty.
However HYWINMARC fails to answer the questions rose
in the previous section. The Service Synthesizer on the Net
(STONE) project [12] explores new possibilities for users to
accomplish their tasks seamlessly and ubiquitously. The
project focuses on the development of context-aware
services in which applications are able to change their
functionality depending on the dynamically changing user
context.

3 Proposed Architecture
 In hybrid wireless networks, the network contains high
node density, scale, variable topology and hence mobility
issues. At node level, constraints like high hardware cost,
almost all nodes being powered by battery, low processing
speed and small memory size, limited transmission range,
low bandwidth rates, and power scarce are worth
mentioning. This variety of features, constraints and
capabilities pose a greater hindrance when proposing a
comprehensive management framework that could
accommodate most types of nodes. The most desired
characteristics of such architecture would be that it should
be lightweight and could expand its functionality
dynamically. This feature is missing in the related
literature.

 In this section we present the Autonomic Healing-
based Self management Engine (AHSEN). Figure 1 shows
the client and gateway self-management software
architectures. In a gateway assisted environment, it serves to
our advantage to do the bulk of the processing e.g. fault
analysis, solution composition etc. at the gateway level and
let the client do more important things like self monitoring,
optimization and local self management using the Normal
Functionality Model (NFM). When a mobile device comes
in the range of a gateway, upon configuration request, it is
provided with a Normal Functionality Model (NFM), which
is specially designed for certain device classes. The NFM
runs a self check and reports back to gateway SMF that
issues a client version of AHSEN. The client AHSEN
consists of two directory services for services and plug-ins,

client SMF is responsible mainly to host services, plug-ins,
and NFM.

Figure 1: The AHSEN architecture of Client (a) and
gateway (b), and Component level Interaction Diagram (c)

 The plug-in and service pool contains the directory
information of related services provided by different service
providers. At client side, the plug-in manager hosts the
plug-ins downloaded from remote locations. At server side
it contains the directory service that contains the plug-in
information. The Normal Functionality Model (NFM) is a
device dependent ontology that is downloaded, along with
SMF, to the device at the network configuration level. It
provides a mobile user with an initial default profile at
gateway level plus device level functionality control at the
user level. The NFM contains specifications of the normal
range of functional parameters of the device, services
environment, security certificates and network standards.
The SMF constantly traps the user activities and sends them
to the SMF at the gateway while hosting the executables.
The SMF at gateway directs the trap requests to the context
manager who updates the related profile of the user.

Besides the periodic context update (∑i) the client SMF also
sends anomaly report to server SMF (∑j) which is
forwarded to the rule-base for case-based reasoning. If the
match is found, its related healing policy is forwarded to the
mobile device. In case the problem which is reported by the
client SMF, the heuristics are used to determine the cause
and solution for the problem reported. The Rule-info
Manager collects the results from the rule-base, solution
skeleton (which is a policy guideline provided by a third
party vendor for problem resolution) and matches it against
the components information listed in the directory service
using the scheme proposed in. The rule engine composes
the components together and generates a healing policy
which is stored in the policy base and eventually forwarded
to the mobile device. This way, the self managing software
grows its knowledge repository. The benefit of using the
rule engine is that for every condition there can be several
execution components. When the condition part is prepared
in the rule engine, a part of it is sent to the rule base. By
doing this we increase the rule repository and increase the
probability of the fault being detected. The rest of the policy

is stored in the policy repository for the mobile device’s
direct use and the condition part serves an extra job of fault
detection in the rule-base.

 A detailed architecture of the Self Management
Framework (SMF) is divided into two parts: Analyzer, Load
Manager. The Analyzer is consisted of The Root Cause
Analyzer, RCF Manager, Scheduler, Binding. The man
parts of Load Manager are the Traffic Manager, Worker
Manager. The Root Cause Analyzer is the core component
of the problem detection phase of healing. The State
Transition Analysis based approaches [19] might not be
appropriate as Hidden Markov Models (HMMs) take long
training times along with exhaustive system resource
utilization. The profile based Root Cause Detection might
not be appropriate mainly because of the vast domain of
errors expected [20, 21]. Considering this situation, we use
the meta-data obtained from NFM [10] to trigger the Finite
State Automata (FSA) series present at the Root Cause
Analyzer. In the future we plan to modify the State
Transition Analysis Tool [19] in lines of on fault analysis
domains. After analyzing the root-cause results from the
Root Cause Analyzer (RCA), the Root Cause Fragmentation
(RCF) manager in cooperation with the Signature
Repository and Scheduler search for the already developed
solutions else it arranges a time slot based scheduler for
plug-ins. The RCF Manager uses heuristics and gathers all
the possible problem causes and their solutions from the
already given rule base and hands the context to the
scheduler. The scheduler uses the time slot-based
mechanism [9] to gather component context and forward it
to the binding engine. The binding engine generates an
XML file containing the execution sequence and feedback
mechanism. We call this part an analyzer and use it for
autonomic self management in ubiquitous systems. The
Traffic Manager manages the traffic directed to the service
gateway.

4 Application Scenario
 The Traffic Manager receives SOAP (spell out
acronym on first use) requests from many devices within a
cluster and redirects them to all the other internal parts of
SMF. The Acceptor thread of the Traffic Manager receives
a SOAP request (service request) and then puts it into the
Wait Queue. The Wait Queue contains the latest context of
the gateway load. If the gateway is in a saturated state, the
service request is handled by the self-aware sub module.
The figure 2 is the pseudo code of self-aware sub-module in
WorkerManager’s Delay Time Algorithm. Let a service
request (SR1) arrives at the gateway. At first the SR1 is
checked if it contains the comebacktime stamp (for fair
scheduling). If the comebacktime is ‘fair’ (that is the service
request is returned after the instructed time), it is forwarded
to the Wait Queue else it is accessed against the work load
of the Worker Manager. The Acceptor is updated about the

latest status of the Worker Manager. The Acceptor evaluates
the intensity of current workload (how long it will take to
free resources) and adds buff (buffer is the time to give
some extra room to gateway) to the time. The aggregate
time is assigned to SR1 and the service request is discarded.

 When the system is ready to accept the service request,
the Traffic Manager gets a Worker Thread from a thread
pool and run it. The Worker Thread gets the delay time and
the over speed from the WorkerManager. The admission to
other internal parts SMF is controlled by the Worker Thread
that accepts the arriving requests only if the over speed
OS(ti+1) at the time ti+1 is below zero and the delay time D(ti)
at the time ti is below the baseline delay δ. Otherwise the
requests have to sleep for the delay time calculated by the
WorkerManager. After the Worker Thread sleeps for the
delay time, the Worker Thread redirects the requests to the
Root Cause Analyzer, the RCF Manager, and the Scheduler.
Finally, the Worker Thread adds the number of processed
transaction after finishing the related transaction. After
sleeping during interval time, the WorkerManager gets the
number of transactions processed by all Worker Threads
and the maximum transaction processing speed configured
by a system administrator. And then, the WorkerManager
calculates the TPMS (Transaction per Milliseconds) by
dividing the number of transactions by the maximum
transaction processing speed and calculate the over speed
OS(ti+1) that means the difference of performance
throughput at the time ti+1 between the TPMS and the
maximum transaction processing speed during the
configured interval time. If the value of the over speed is
greater than zero, the system is considered as in an overload
state. Accordingly, it is necessary to control the overload
state. On the contrary, if the value of the over speed is zero
or less than zero, it is not necessary to control the
transaction processing speed. For controlling the overload
state, this paper uses the delay time algorithm of the
WorkerManager.

 A new delay time D(ti+1) at the time ti+1 is dependent
on D(ti), which means the delay time at the time ti. The
N(ti+1) means the number of active Worker Threads at the
time ti+1. If the D(ti) is zero, D(ti) must be set one. If the
OS(ti+1) is below zero and the delay time D(ti) at the time ti
is greater than the baseline delay δ. On the contrary, if the
D(ti) is below the baseline delay, D(ti+1) is directly set zero.
In other words, because the state of the system is under
load, the delay time at the time ti+1 is not necessary.
Accordingly, the Worker Thread can have admission to
other internal parts SMF. The baseline delay is used for
preventing repetitive generation of the over speed generated
by suddenly dropping the next delay time in previous heavy
load state. When the system state is continuously in a state
of heavy load for a short period of time, it tends to
regenerate the over speed to suddenly increment the delay
time at the time ti and then suddenly decrement the delay

time zero at the time ti+1. In other words, the baseline delay
decides whether the next delay time is directly set zero or
not.

Figure 2: The Pseudo Code for Self-Aware Module and
WorkerManager's delay time Algorithm

 The β percent of the Figure 2 decides the slope of a
downward curve. However, if the delay time at the time ti is
lower than the baseline delay then the new delay time at the
time ti+1 is set to zero. Accordingly, when a system state
becomes heavy overloaded at the time ti, the gradual
decrement by β percent prevents the generation of repetitive
over speed caused by abrupt decrement of the next delay
time. Once the service request is received by the worker
thread the analysis of the cause of anomaly starts. As
proposed in [18] the faults can be single root cause based or
multiple root cause based. We consider this scenario and
classify a Root Cause Analyzer that checks the root failure
cause through the algorithms proposed in [17]. After
identifying the root causes, the Root Cause Fragmentation
Manager (REFRCF Manager) looks up for the candidate
plug-ins as solution. The RFCRCF manager also delegates
the candidate plug-ins as possible replacement of the most
appropriate. The scheduler schedules the service delivery
mechanism as proposed in [18]. The processed fault
signatures are stored in signature repository for future
utilization. Let, N is concurrent service requests at the
server at full time. This means that as soon as one thread
finishes its execution, a new one will take its place. This
assumption is made in order to insure that we analyze the
worst case scenario of performance time with N service

requests in execution queue. This means that the execution
of a service request is done from its first until its last
quantum (subparts of a service request i.e. analyze,
evaluate, categorize etc) in the presence of other N-1 service
requests.

• k index variable spanning the service requests:
1<=k<=N

• Sj CPU quantum length for server j (sisolated
represents that value for a specific isolated
server)

• Ikj the number of cycles the kth service request
needs to complete on server j.

• ik_isolated represents that value for a specific
isolated server

As soon as the execution queue is in a stable state, the time
needed for the kth service request to complete in the
presence of other N-1 service requests is

tk =ikj*sj*N (1)

The ikj * sj this product represents in fact the execution time
of the kth service request in isolation conditions (executed
alone, without any other concurrent thread). This product tk

isolated=ik isolated * sisolated is evaluated on an out of core server
and is used as the base value for the load prediction. These
two formulas are rather trivial and are standard results of
queuing system. They mean that the prediction time for the
execution depends on the total amount of connected service
requests on the server.

Now a transaction is completed client request, and
considering that the kth client permanently issues the same
request to the server, then the number of transactions (Tx)
that may be completed for k clients in interval T is

Txk =T / ikj*sj*N (2)

from 1,

 Txk = ∆ * T/ tk isolated*N (3)

Where ∆ is coefficient of CPU utilization. We can write 3
as,

 TxcpuK= ∆ * T / tk isolated*N (4)

 From equation 4, it means that the execution time for a
transaction depends upon the number of service requests in
the active queue. So we can calculate the estimated time a

CPU needs in order to get free from the requests in the
active queue.

Let, there be N number of service requests present in the
active queue. In time tk1, the service request sk1 is being
executed, the KN-1 service requests will reside in the
memory.

• Msk memory size kth service request. Msk >=1

• Bk branch statements in Msk in kth service
request. Bk >=0

• Ttpbk the Time needed per transaction.

Txmemk = Ø *(((Msk * Bk)/ Ttpbk) *N) (5)

Where Ø is coefficient of CPU utilization. Let, u(t) denote
load of service request. We can normalize the service
request as

y(t) = (u(t)-umin(t)) / umax(t) (6)

Where umin(t) and umax(t) denotes the minimum and
maximum load of the service request. According to equation
6, different service request traces and be compared with
each other, while the impact of their internal analysis is
eliminated. If we define Tk as the kth threshold for k=0,1,2…,
k, then a function ytk=(t) is defined by

iff y(t) >= Tk ytk(t) = 1 else ytk(t) = 0 (7)

Generally Tk=k*(1/k) Assuming yTk(t) = 1 . From 6 and
7 we can say

 y(t) <= (u(t)-umin(t)) / umax(t) (8)

Or we can say,

Tnwbuff k = δ * {(u(t)-umin(t)) /(umax(t))} (9)

where δ is coefficient of CPU utilization.

So combining 4, 5, 9 we get,

Tcomeback = Txcupk + Txmemk + Tnwbuffk (10)

Tcomeback = {∆ * T/ tk isolated*N} + {Ø *(((Msk * Bk)/
Ttpbk)*N)} + {δ * ((u(t)-umin(t)) /(umax(t)))} (11)

Now we know that the service request has exponential
distribution and the arrival rate has poison distribution. So
we can say that the RTD (Round Trip Delay)

 RTD = Tcomeback + queuing delay + ηf + ηs (12)

Where ηf is the propagation delay from server to the
bottleneck link buffer that is the gateway buffer, and ηs is
the propagation delay over the return path from the
bottleneck link buffer to the client (the service request
generator).

RTD = {∆ * T/ tk isolated*N} +

 {Ø *(((Msk * Bk)/ Ttpbk)*N)} +

 {δ * ((u(t)-umin(t)) /(umax(t)))} +

 queuing delay + ηf + ηs (13)

And efficiency is calculated as

E(S * N) = (N * Ts) / (S *1 *T(S *1))

≈ (N * Ts) / ((S) S *T) (13)

In this expression, the range for S is
1..

N
n

⎡
⎣⎢

⎤
⎦⎥ and the range

for N is []1.. * logk Nn which is less then []2log n
nN for

HYWINMARC [3] based, and

2

2 log
2

n
n

n
N N⎡ ⎤+⎢ ⎥⎣ ⎦ for

RoSeS [13] based solutions.

5 Simulation Results
 In order to prove performance stability of the self-
aware PLC-based autonomic self-healing system, we
simulated the self-aware delay time algorithm of the
WorkerManager. The maximum speed, δ and β for delay
time algorithm are configured 388, 100ms, and 0.75
respectively. The figure 3.a shows that the gateway with
PLC scheme is more stable than the one without PLC
mechanism. The standard deviation at the gateway without
PLC is more than 58.23 whereas the deviation in
performance cost at the gateway with a PLC mechanism is
24.02 which proves the argument posted in the previous
section that a PLC mechanism provides stability to
gateways in u-zone based networks. The figure 3.b shows
that applying self-aware sub module to the PLC mechanism
gives stable performance than applying PLC algorithm only.
The stability in the cost function with time shows that the
cost is predictable over time scale. Although the cost of
applying PLC mechanisms with a self-aware module is
more than without it, the self-aware PLC gives more
stability hence is more suitable in unpredictable, dynamic,
and highly heterogeneous u-Zone Networks. The figure 3.c
shows the gateway CPU performance. Whenever the
gateway probability rises, it is reduced by the algorithm
proposed in this paper whereas the gateway without self-

aware algorithm goes into a crash state. We also get the
results obtained from different experiments with varying
parameters. We observe that increases in users increases the
throughput. Increasing the β increases the capacity of the
gateway to entertain a denser flux of service requests and
hence increases the throughout. According to our
experiments, the most important factor is the Maximum
Speed configuration of the WorkerManager, while α and β
are not directly related to the efficiency of the
WorkerManager. From the experiments, we also check
CPU usage and estimation of throughput when the proposed
algorithm is in use and when it is not in use. The result is
that when the maximum speed of WorkerManager is low,
the throughput is low and vice versa. And there is also
marked difference between the maximum throughput with
no sleep times and throughout with different parameters and
in the presence of sleep times. The proposed scheme gets
12% improvement in the existing scheme of no sleep-based
date dissemination techniques.

Figure 3: The Simulation Results for gateway performance
stability

6 Conclusion and Future Work
 In this paper we identify the role of self-healing which
is mostly misunderstood among the modern day systems.
This misunderstanding creates many logical problems
especially in fault mapping, functional classification and
categorization. We propose an Autonomic Healing-based
Self-management Engine (AHSEN) that tackles the problem
through a ‘divide and conquer’ paradigm. We split the
problem into smaller segments for coping with the wide
variety of problems in a hybrid network. The self-
management networks carry exponential complexity in their
functionality. We propose to employ a self-aware load

control scheme to manage the functionality of AHSEN. The
simulation results show encouraging results and comparison
with modern day solutions shows the significance of our
work. In future we aim to study the effect of trust based
interaction in the self-healing systems along with the
signature independent anomaly identification at NFM level.
We also aim to use the PLC mechanism to route the service
requests launched in the sgateway’s saturated state to the
peer gateways so that the load on the host gateway can be
distributed to the peer gateways.

Acknowledgments
This work was supported in part by TRUST (Team for
Research in Ubiquitous Secure Technology), which receives
support from the National Science Foundation (NSF award
number CCF-0424422), and NSF S&T Center.

References
[1] Firetide www.firetide.com.
[2] Doufexi, A. Tameh, E. Nix, A. Armour, S. Molina,
A. “Hotspot wireless LANs to enhance the performance of
3G and beyond cellular networks”, Communications
Magazine, IEEE, Publication Date: July 2003, Volume: 41,
Issue: 7, On page(s): 58- 65 .
[3] Shafique Ahmad Chaudhry, Ali Hammad Akbar, Ki-
Hyung Kim, Suk-Kyo Hong, Won-Sik Yoon,”
HYWINMARC: An Autonomic Management Architecture
for Hybrid Wireless Networks” Network Centric Ubiquitous
Systems (NCUS 2006).
[4] Burke Richard, 2004, "Network Management. Concepts
and Practice: A Hands-on Approach", Pearson Education,
Inc.
[5] Minseok Oh. Network management agent allocation
scheme in mesh networks Communications Letters, IEEE
Volume 7, Issue 12, Dec 2003 Page(s):601 – 603
[6] Kishi Y. Tabata, K.; Kitahara, T.; Imagawa, Y.; Idoue,
A.; Nomoto, S.; Implementation of the integrated network
and link control functions for multi-hop mesh networks in
broadband fixed wireless access systems Radio and Wireless
Conference, 2004 IEEE 19-22 Sept. 2004 Page(s):43 - 46
[7] S. Yong-Lin, G. DeYuan, P. Jin, S. PuBing, A mobile
agent and policy-based network management architecture,
Proceedings, Fifth International Conference on
Computational Intelligence and Multimedia Applications
ICCIMA 2003, 27-30 Sept. 2003, Page(s):177-181.
[8] Robert Steinke, Micah Clark, Elihu Mcmahon, “A new
pattern for flexible worker threads with in-place
consumption message queues“, Volume 39 , Issue 2 (April
2005) Pages: 71 - 73 Year of Publication: 2005.
[9] Junaid Ahsenali Chaudhry, and Seung-Kyu Park, Some
Enabling Technologies for Ubiquitous Systems, Journal of
computer Science 2 (8): 627-633, 2006.
[10] Junaid Ahsenali Chaudhry, and Seungkyu Park, "Using
Artificial Immune Systems for Self-healing in Hybrid

Networks", in Encyclopedia of Multimedia Technology and
Networking, Published by Idea Group Inc., 2006.
[11] Shelton, C. & Koopman, P., "Improving System
Dependability with Alternative Functionality," DSN04, June
2004.
[12] Morikawa, H. (2004). The design and implementation
of context-aware services. Proceedings of IEEE saint-w
2004, 293 – 298.
[13] D. C. Schmidt, “Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event Handler
Dispatching,” in Pattern Languages of Program Design (J.
O. Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading,
MA: Addison-Wesley, 1995
[14] D. C. Schmidt, “Acceptor and Connector: Design
Patterns for Initializing Communication Services,” in Pattern
Languages of Program Design (R. Martin, F. Buschmann,
and D. Riehle, eds.), Reading, MA: Addison-Wesley, 1997.
[15] Junaid Ahsenali Chaudhry, Seungkyu Park, "A Novel
Autonomic Rapid Application Composition Scheme for
Ubiquitous Systems", The 3rd International Conference on
Autonomic and Trusted Computing (ATC-06), 2006
[16]Wolfgang Trumler, Jan Petzold, Faruk Bagci, Theo
Ungerer, AMUN – Autonomic Middleware for Ubiquitious
eNvironments Applied to the Smart Doorplate Project,
International Conference on Autonomic Computing (ICAC-
04), New York, NY, May 17-18, 2004.
[17] Gao, J.; Kar, G.; Kermani, P.; Approaches to building
self-healing systems using dependency analysis, Network
Operations and Management Symposium, 2004. NOMS
2004. IEEE/IFIP Volume 1, 19-23 April 2004 Page(s):119 -
132 Vol.1
[18] Junaid Chaudhry, and Seungkyu Park, "On Seamless
Service Delivery", The 2nd International Conference on
Natural Computation (ICNC'06) and the 3rd International
Conference on Fuzzy Systems and Knowledge Discovery
(FSKD'06) 2006.
[19] Ilgun, K.; Kemmerer, R.A.; Porras, P.A., "State
transition analysis: a rule-based intrusion detection
approach," Software Engineering, IEEE Transactions on ,
vol.21, no.3pp.181-199, Mar 1995.
[20] T. F. Lunt, “Real-time intrusion detection,” in Proc.
COMPCON, San Francisco, CA, Feb. 1989.
[21] T. F. Lunt et al., “A real-time intrusion detection expert
system,” SRI CSL Tech. Rep. SRI-CSL-90-05, June 1990.
[22] J. Hu, I. Pyarali, and D. C. Schmidt, “Applying the
Proactor Pattern to High-Performance Web Servers,” in
Proceedings of the 10th International Conference on Parallel
and Distributed Computing and Systems, IASTED, Oct.
1998.
[23] P. J. Denning: Thrashing: Its Causes and Prevention.
Proc. AFlPS FJCC 33, 1968, pp, 915-922
[24] Turing, Alan M., On Computable Numbers, with an
Application to the Entscheidungs Problem. Proceedings of
the London Mathematical Society, 2 (42):230-265, 1936.

