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Abstract—This paper discusses a method for fault detection and isola- variables, and transient analysis becomes critical for accurate
tion " Conﬁ'nuousldy”amg systems. A key anPeCt of this approach 'Sr:he fault isolation [1]. It follows then that the symbolic representa-
coupling of a qualitative diagnosis engine and a monitoring system that _. . . .
computes symbolic feature values through a signal-to-symbol transforma- tlon_Of the observations mUSt capture the transient dynamlcs.
tion on the continuously sampled measurement data. Signal analysis tech- ~ Fig. 1 shows the architecture o0RRNSCEND, a comprehen-
niques with a sound statistical basis are employed to generate reliable sym- sive model-based approach to diagnosis [1]. Vet the in-
bolic data. The methodology is evaluated on the diagnosis of engineeredput to the physical process under diagnostic scrutiny and vector
faults in the cooling system of an automobile engine that has been instru- ™" B ’
mented with temperature and pressure sensors. Results show the interde- ¥ IS the set of observations made on the system. An observer
pendency between modeling for diagnosis and the feature extraction sys-model (a set of differential equations) generates the expected
tem. system behavioj and an observer tracks the residuais y —

Index Terms—Fault diagnosis, feature extraction, instrumentation, to correct for small deviations in the estimated state vegtor
monitoring, symbolic signal analysis, transient analysis. . . . .

using a standard gain matrix scheme [3]. The residuals are also
input to the symbol generation unit that computes the symbols

. INTRODUCTION for the diagnosis modules.

Diagnosis of faults in engineering systems is the process of

detecting anomalous system behavior and isolating its cau process

This paper adoptsmodel-basedpproach to fault detection and

isolation (FDI) of continuous dynamic systems basecdana-

lytical redundancytechniques. The fault isolation algorithms observer symbol generation

apply qualitative constraint analysis methods that effectively re- . l lr

alize aparameter estimatioscheme. Model parameters corre- Obxserver .

spond directly to system components and estimated paramete model

values that deviate from their expected values implicate the as-

sociated components. The qualitative approach avoids difficul- diagnosis | M hypothesis | TP | hypothesis s
ties in the convergence, precision, and computational complex- model generation refinement

ity of established numerical parameter estimation methods, es-

pecially when system behavior is nonlinear. Because qualitatitie. 1. TRANSCENDarchitecture.

methods process input in symbolic fornsignal interpretation

step is required to compute symbolic feature values from con-The diagnosis model incorporates the dependency relations

tinuously sampled data usirgignal-to-symbotransformation between component parameters and the observed variables in

techniques. the form of atemporal causal grapfTCG), a directed graph
The current work focuses on the diagnosisabfupt faults ~Structure that captures algebraic and temporal constraints be-

that correspond to instantaneous and persistent parameter vaigen system variables [1], [2]. Fault detection triggers a fault

changes. Abrupt faults result in transient behavior of systdaglation scheme that consiststofpothesis generatioandhy-

pothesis refinementHypothesis generation uses the diagnosis
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internal combustion engine. Section IV presents experimentialious changes has been studied from the viewpoint of local
results, and section V presents a summary and conclusiongrefiuency analysis as well as statistical hypothesis testing [4].
this work. The experiments in this paper employ the hypothesis testing ap-
proach, where the signal is represented as a random process with
Il. SIGNAL-TO-SYMBOL TRANSFORMATION a known probability distribution. An abrupt change is modeled
In the design of the signal-to-symbol transformation, the s&8 a change in a parameter value of the probability distribu-
of symbols is determined by the hypothesis generation and fien. The signal is an independent random variable sequence
finement algorithms. The challenge is to design or select al- with probability density functioms (yx.), whered is the sig-

gorithms that compute these symbols from actual measuremegt model parameter that is being monitored for change. The

data. abrupt change detection problem can be formulated as a multi-
ple hypothesis testing problem. The change hypothéaisjs

A. Symbolic description of transient behaviors tested against the default hypothedis, [6]:

Fault detection is the task of identifying deviating measure- {H 0_o
0:V="0o

H1:9:91,

ments while monitoring system behavior. A deviating measure-

ment triggers the hypothesis generation process that takes as

input qualitative magnitude deviation valuesirmal high, and

low, represented by the symbolg’y “ +-” and “—” respectively. wheret, andf; represent the parameter value before and after

The hypothesis generation algorithm then identifies a set of p83 change, respectively. The central quantity in constructing

sible fault candidates and for each candidate computes a fal test statistic is théog-likelihood ratiq s(y) = In izégz;

signaturefor all measured variables. The signature is the pre; . S . k

diction of signal behavior immediately after the point of failur:alahe cumulaﬂve log-likelihood rauoSf - Zi:ﬂ' si» (where

and is a tuple of magnitude and first and higher order deriva-= In 2:;—8; andj, k define a discrete time window) shows

tive values expressed a8"; “ +" and “—” symbols. Conflicting a negative drift before a change #h and a positive drift af-

qualitative influences may lead to an unknown prediction fortarwards. This property is the basis for thesum algorithm

variable, indicated by the symbol™ with decision functionS%. In diagnosis problem solving, is
During hypothesis refinement the signatures are matchatbwn, but the magnitude of the parameter change, andlthus

against the symbolic signal features. In the present impleménnot known. For this case the decision function is modified to

tation these symbolic features include the qualitative magnitudse the maximum likelihood estimate @f, and the resulting

and slope values, where slope values are computed only affigorithm is theGeneralized Likelihood Rati@GLR) ([6]):

an initial magnitude deviation has been detected. Higher or-

der features are not computed, blRANSCENDS progressive 9k ZIIgjfclgk Sélp Sf .

monitoring mechanism exploits higher order derivative values -

in_ the signature_ba;ed on the noti(_)n that as_time Progressss stopping rule is given by, = min{k : g, > h}, wheret,
hlghe_r order derlyatlves will |_ncreasmgly contn.bute .to the d(?g thedetection timand? is a predefined threshold.

scription of the signal behavior [1]. Hypothesis refinement is gig 2 shows the GLR applied to a signal with additive noise.
further enhanced 'If'dISCOI’]tII’IUOUS ghanges in the signals candbg)ver signal-to-noise ratio implies a longer delay in change
detected. An additional symbok”, indicates an abrupt mag- yetection. A closed form expression for the decision function

nitude change in the signal. _ _ for this change detection problem can be found in [4].
The computation of the symbols listed above constitute the

signal-to-symbol transformation algorithms. The symbolic val- Step signal with 0=0.2 Step signal with 0=0.4
ues are assigned based on signal statistics but do not have ars 15
uncertainty factor or probabilistic attribute. The specific algo=. O;W - O;
rithms are discussed next. = =7,
~05 -05
B. Magnitude changes and discontinuities o s 00 50 o prs 00 50

Detecting a change in a signal implies the use of a decision®®
function to determine whether the signal is deviating from its 4
normal behavior or not. The decision function uses a thresholgd
that provides a design trade-off between sensitivity to changes100
and the rate of false alarms of the detector. The threshold value ¢, oL, w0 20 5 P T o
is typically based on theignal-to-noise ratimf the signal, and " "
the performance of the detector can be analyzed if the noﬁ@ 2. Detection of a step change in a signal with a GLR detector, for two
model is known. In general it is not desirable to attenuate thegels of additive Gaussian noise. The change pointis at n = 50.
noise with a linear filter because that also smoothes nonlinear
transient dynamics such as discontinuities.

Because a threshold crossing does not preserve inforrfTa-
tion on the nature of the change, the labeling of discontinu-To design a slope estimator consider first the ideal discrete-
ous changes must occur in parallel. The detection of discdime differentiator with frequency respongg(e’v) = jw, for

Slope estimation
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|w| < 7. The filter that exhibits this response is noncausal afellts introduced in a controlled experiment will not perma-
has infinite length, and any practical slope estimator will be aently damage the device. Based on these considerations and
approximation of the ideal differentiator. The first-order difthe available expertise and parts, an automobile internal com-
ference operatot)/(n) = y(n) —y(n — 1), is an example of a bustion engine, specifically a Chevrolet V-8, was selected as the
straightforward approximation. This operator has frequency mevice under test.
sponseH (e/“) = 1 — cosw + j sinw, which approximates the The diagnosis experiments discussed in this paper relate to
ideal response for low frequencies « ), but deviates signifi- the engine cooling system. In an automotive cooling system
cantly from the ideal filter whew approaches (e.g., [7]). The a liquid coolant is pumped through a pressurized closed loop
accuracy of the estimator is improved by increasing the sato-remove heat from the engine block and dissipate it through
pling rate. However, the main problem with the difference opehe radiator. A schematic of such a cooling system is shown
ator is the sensitivity to noise, a consequence of the strict high-Fig. 4. Fault detection and isolation in this system presents
pass characteristic. For diagnosis, robust feature extractiomisombined mechanical, thermal, and fluid flow problem, and
crucial, and low sensitivity to noise is an important design gotide diagnosis model captures mechanical, thermodynamic, and
of the estimator. The solution taken here is to use a linear finftgdraulic aspects of the cooling system operation. The model
impulse response filter that minimizes the noise power gainiitludes the lower and upper hose, the radiator, the thermostat
the derivative signal [8]. The coefficients for an unbiased mirgnd the pump as components that may fail, possibly in more
mum variance derivative estimate filter are found as the solutittran one way. Each component has multiple model parameters
of a linearly constrained least squares problem [9]. A filter withssociated with it. The cooling system operation and the diag-
more coefficients will have a more robust derivative estimateosis model are described in detail in [4]. A number of faults
Higher order derivative estimation filters can be found in a siman be introduced into the cooling system without damaging the
ilar way by modeling the signal as a piecewise polynomial wittngine, provided the temperature of the engine block does not
the same degree as the order of the desired derivative. exceed certain limits. Examples are: thermostat failure (open
Fig. 3 illustrates derivative estimation with the filter and ther closed), broken hose or failed hose connection, radiator leak,
first-order difference operator for a signal without and withump or fan belt failure, and clogged radiator.
noise.
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gsz Fig. 4. Engine schematic with sensor placement (T1, T2, P1, P2).
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| /\W B. Experimental Setup

0 50 100 150 0 50 100 150 The testbed is made up of the engine, bolted to a frame and
! ! connected to an exhaust system, and an instrumentation system
Fig. 3. Comparison of derivative estimation with a first-order difference oper%t'zit ConSIS,t§ _Of a personal computer egmpped with an internal
tor, and an unbiased minimum variance derivative estimate fifiex(). data acquisition board (Data Translation, DT3001-PGL), and
data acquisition software (Data Translation). A custom built
external enclosure provides connectors for the sensors and holds
I1l. EXPERIMENT DESIGN AND TESTBED a screw terminal interface to the data acquisition board. All
IMPLEMENTATION sensor leads are shielded to reduce electrical interference from
the ignition system. The coolant temperature and pressure are
measured at several places in the cooling system circuit (see
Evaluating TRANSCEND on a real system requiresdeevice Fig. 4) and chosen by our expert for ease of sensor installation
under testthat exhibits complex dynamic behaviors and prand discriminating ability.
vides challenges similar to those that might be encountered in &wo temperature sensors have been installed, one in the ther-
complex industrial system. Knowledge about the system shoutstat housing downstream from the thermostat (T1), and a
be sufficient so that a well defined dynamic model can be caecond in the intake manifold, just upstream from the thermo-
structed. Practical considerations also demand that sensorssiat (T2). T2 is close to the cylinder heads where the coolant
troduced in the system will not affect its operation and th&mperature is highest. The sensors are rugged transition joint

25)

fvm'(g) (L
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A. Selection of the device under test
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probe type thermocouples with ungrounded junction and statime at which the initial deviation is detected and hypotheses
less steel sheath (Omega TJ-36CXSS-18U). Cold junction cogeneration is triggered. An abrupt change is detected in each
pensation circuitry for the thermocouples is built onto the scrgwessure signal during step 0 also. At step 1, slope detection
terminal. The response time for this thermocouple configuria-triggered for the pressure signals and hypotheses refinement
tion, with both sensors immersed in coolant fluid, is in the order initiated which completes at step 2. Monitoring of a signal
of a few seconds, which is sufficient to capture the thermal tras-suspended when specific transient characteristics have been
sients. detected, e.g. the signal is moving towards steady state, or cer-
Two pressure sensors have been installed, one in the inttkie second order phenomena have been detected. The stopping
manifold next to the thermostat housing (P1), providing a pressnditions are evaluated on a per signal basis. In this example
sure measurement immediately downstream of the thermostatnitoring is suspended earlier because of the dynamics that
and a second in the lower radiator hose immediately after thesult from closing the valve. Fig. 5(c) shows the fault isolation
radiator outlet (P2). The sensors are amplified voltage outpeasults. The table shows the symbolic values for the measure-
transducers, suitable for harsh environments, and measurerabnt data at step 2 and the fault signatures of the remaining
solute pressure up to 345 kPa (Omega PX176-050A5V). Tieeult candidates. Fault signatures for this example include up
measurement bandwidth is 50 Hz, sufficient to capture the néathe second order derivatives. The diagnosis is accurate be-
instantaneous pressure changes due to large leaks in the systamse it includes the actual fauk;...—. The negative sign
Operable temperature range is up to 225with a temperature indicates a decrease in the leak resistance, in effect, a decrease
compensated range up to 85. from an infinitely high value when the valve is closed, to a finite
During the experiments the engine is operated in steady steadiie when the valve is opened. Fault isolation also generated
and without load. It is assumed that faults are introduced aftgre spurious candidatd;.,,;_ ...+, an increase in the radiator
the cooling system has reached a known steady state. Underahiglow inertia, that cannot be distinguished from the true fault
condition the steady state values become the nominal valugih this set of observations. The complete hypothesis refine-
Fault isolation is currently performed off-line on collected datanent process for this fault is described in [4].
The sample time, 0.02 s, was established empirically. Symbolid=ig. 6 depicts the results for a small leak. No discontinu-
feature values are computed every second, thus subsamplingthe change is detected at the point of failure, and the temper-
actual sensor data. A median filter of length 5 is applied to alture measurements do not change significantlyhe moni-

signals to remove outliers. toring system is tuned so that 8™slope symbol is generated
for an absolute slope value 0.05 . With a derivative filter of
IV. RESULTS length 25 the derivative signal still takes quite long to converge

The methodology described above is illustrated with two e} this value since the derivative reachieasymptotically. A
periments. In each experiment a different type of coolant leSiNPIe heuristic that requires consecutive derivative values to
fault is introduced by draining coolant from the system throu gl within the threshold interval increases the sensitivity, and

a valve. The model parameter associated with a leak fault id%§ 0" Slope symbol s first computed at step 15. The fault iso-
resistance, Ri.q:’. The lower hose of the cooling system is fitJation results are less specific for this fault, additional discrimi-

ted with a T-junction coupling to which a valve can be attachef@ting information from the discontinuous behavior is lacking.

A large leak, which mimics a hose puncture or a failed hose
connection, is created by using a high outflow lever operated
gate valve that can be opened and closed very fast. A small |eau—he development of a suitable testbed is vital to demonstrate
is created by using a ball valve that can be controlled more ptge utility of research results in monitoring and diagnosis of
cisely. A small leak in the lower hose is very similar to a leak ifomplex dynamic systems. The study of qualitative analysis
the bottom of the radiator itself. methods that require symbolic feature values computed from
Fig. 5 shows the result of the large leak scenario. When tig@l data, and their comparison with predictions generated by
valve is opened, coolant drains from the system very quickiie model lead to new insights on model building and the use
The valve is closed again after a few seconds so that soffiesignal analysis algorithms. Sophisticated signal-to-symbol
coolant remains in the system and overheating of the engm@nsformation methods are critical to compute robust feature
is avoided. The transients that result from closing the valve af@ues.
ignored. Fig. 5(a) shows a graph of the measurement data durlhe experiments illustrate the interdependency of modeling
ing the transient. The rapid decrease in pressure and a slo@d instrumentation of a system under diagnostic scrutiny. A
increase in temperature can C|ear|y be seen. The level of p[’@g[ameter Change that results in transients with dynamic effects
ical detail in the model is such that a large leak correspondséceeding the measurement bandwidth of the system, should
a discontinuous pressure decrease, and thus should be capRE@spond to a structural change in the model. A model switch-
accordingly. Fig. 5(b) shows the output of the signal to symbil9 approach will be incorporated into the diagnosis system by
transformation algorithms for theR_RNSCENDdiagnosis steps. considering hybrid modeling techniques that are being devel-
The steps to which these symbols correspond are indicated®B8d in other work [10]. Analysis of the model will then pro-
time points in the graphs of Fig. 5(a) also. The rate at which tMisle information on the appropriate signal-to-symbol transfor-
symbols are computed corresponds to the model, i.e., the sigiation algorithms that should be applied to the signals, e.g.,
to-symbol transformation is designed to detect a diScontinuousThe system is in fact still moving towards steady state asymptotically, hence
change within one RANSCEND step. Step 0 is defined as thehe barely noticeable slope in the temperature data.

V. CONCLUSIONS
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Fig. 5. Fault detection and isolation for a large leak in the lower hose.
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Fig. 6. Fault detection and isolation for a small leak in the lower hose.
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