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Abstract u y

process

TRANSCEND, our system for fault detection and
isolation of complex dynamic systems, uses a model based observer

symbol generation

approach to predict and analyze transient effects resulting w1

from abrupt faults in the system. Abrupt faults are observer

attributed to discrete and persistent parameter value model

changes. Fault isolation is performed by matching : : — ¢ — ¢
. . diagnosis | hypothesis wP | hypothesis | L

features extracted from the transients against those model | | generation refinement

predicted by the model. This paper discusses a statistical
signal processing approach to transient detection and
analysis using a time-frequency representation of the
signal. The approach is robust for the detection task and it
provides feature values for the initial fault isolation steps.

Figure 1. TRANSCENDarchitecture.

formed in two phaseshypothesis generatioand hypoth-

esis refinementHypothesis generation uses the diagnosis
model,m and the symbolic feature date, at the point of
detection to generate a set of hypothesized fault candidates,
1. Introduction fn, and to predicted system behaviprfor each candidate.

A fault candidate is a physical system parameter with a

Model-based approaches for fault detection and isolgQualitative label that indicates an increase or decrease in
tion (FDI) in continuous dynamic systems employ rela-the parameter value. During hypothesis refinement subse-
tions imposed by the system configuration and functionduent feature values extracted from new measurement data
ality to computeresidualsthat capture the discrepancies aré matched against the predictions to derive the refined
between nominal and observed behavior. Residual compiult Sét,f.. This process continues until a unique fault is
tation and analysis is non-trivial for complex systems, pri_ldentlﬂed or the fault set can no longer be reduced. In more
marily because of stiffness, convergence, and intractabilitjecent work we have pointed out the fundamental limita-
problems related to their non-linear dynamic behavior. ~ tions of the qualitative approach and demonstrated an ex-

We have developed a model-based system namdgnsion with a simplified numerical parameter estimation
TRANSCEND, that employs qualitative residual analysis SCheéme to resolve remaining fault hypotheses that can not
for fault isolation [12]. Figure 1 shows theREnscenp D€ resolved using qualitative te(.:hnlques [10].
architecture. Variables, x, andy, are the input, state, ~ In our work, faults are defined as an abrupt (step)
and output vectors of the physical system, respectively. Ahange in the value of a model parameter, and this causes
standard gain matrix observer scheme [2] tracks thé&ransients in the measured signals. Fault detection is the
residual,r = y — § (¢ is the predicted system behavior), detection of a transient. Consequently, hypothesis gener-
to correct for small deviations in the estimated stateation requires characterization of the transient dynamics
vectorz. predicted by the model, and hypothesis refinement is based

Qualitative residual analysis uses a symbol generatiofn analysis of the evolving transient. The objective is to
module that maps numeric residual values to a symboli€apture sufficient discriminating features from the transient
form. Fault detection identifies a discrepancy in the residin a timely manner.
ual, and this initiates the fault isolation task that is per- Transient detection and analysis is a challenging prob-



lem for realistic, noisy, measurement data, especially wheare referred to as non-additive, or multiplicative, faults [1].
the amplitude of the transient signal is small, resulting in arhis class of faults is much more difficult to isolate than ad-
low signal-to-noise ratio (SNR). The amplitude of the gen-ditive faults such as sensor and actuator faults. For analysis
erated transient is directly related to the magnitude of theve sett = 0 as the time of failure. The system response for
parameter value change, leading to the intuitive observa:> 0 is then determined by the combined forced response
tion that a small parameter change will be more difficultto the input vecton and the initial value response to a step
to detect. This paper presents an approach for transient dehange in a parameter value that corresponds to the faulty
tection and analysis inRANSCENDthat is based on signal component.
detection in the time-frequency (TF) signal representation.
The motivation for a time-frequency signal representatiorp.2. Representation of transient dynamics
is twofold. First, we can design the TF representation so
that the transform domain coefficients are sparse, capturing Qualitative analysis of transient signals requires an ab-
information in an efficient way. Second, the signal repre-straction scheme to derive qualitative information from the
sentation in the TF domain allows further analySiS that caltontinuous Signa| dynamics_ The notion of Signa| abstrac-
be used in fault isolation. tions was formalized by Milios and Nawab [11]. Signals
In the remainder of this paper we first present the prinare viewed in a hierarchy of abstraction levels, where at
ciples of predicting fault behavior and qualitative transienthigher levels, detail is suppressed with respect to lower lev-
detection and analysis inRANSCEND. We then present e|s. Higher levels of abstraction support fewer inferences,
the signal representation and detection approach in detapyt they can be tailored to solve specific problems more

and illustrate the method with examples. efficiently. Signal abstractions can be defined in the data
domain, a transform domain, or both. As a basis for these
2. FDI from Transients signal abstractions, we need a signal model, a description

of the signal with respect to an underlying structure [7].

The analysis of transients in theRENSCEND frame- The signal model for the detection problem is the general

work is targeted to discriminating among faults, and ex_form of the solution of (4).

ploits the behavior predictions generated by the model in " Prévious work, both the behavior prediction and the
constraining this analysis. transient analysis has been carried out strictly in the time

domain [12]. The hypothesis generation algorithm is trig-
gered following the detection of a transient. The direction
of its initial deviation, the sign of the transient signal, is re-
quired to generate the set of fault candidates. The hypoth-
esis refinement is based on predicting the sign of deriva-
tive values. Furthermore it was shown that the detection of
discontinuous changes provides important discriminatory
#(t) = Ax(t) + Bul(t) 1) informgtion. An interpretation o_f thi§ meth_od as a Tay-
lor series expansion of the transient immediately after the
y(t) = Cx(t) + Dr(t) (2 fault was given in [10]. Robust derivative estimators for
this method was discussed in [9].
In this paper we take a different approach to using the
X(s) = (s — A)"'2(0) + (s] — A)"'BR(s) (3 model to analyze the transient. We look at the relation b_e—
tween an abrupt parameter value change and the transient
dynamics in the Laplace transform domain, and how this
can be used to make conclusions about the transient be-
t = 0. The time domain solution for any output can be havior r.esulting from t.hat para_meter chang_e. The _dynamic
roperties of an evolving transient can be directly linked to

expressed as a sum of complex exponentials, provided changes in the parameters of the characteristic polynomial.

eigenvalues of the system are distinct. A discussion of thel.he relation of the eigenvalues of the system to the com-
link between component parameters and state equations Is

not part of this paper, but in our work the state e ua’tiongOnent parameters is known and can be used to detect a
P paper, q change in location of the poles of the system. The transfer

are easily d_envet_j from a bond graph model of the sySten?unction also determines whether or not a signal will have
under consideration [12]. As a result, the terms of the state

equation matrices are directly defined in terms of the coms" discontinuous change at the onset.

ponent parameters. . . .
Consider a system in which an abrupt fault occurs. The3- Transient Detection and Analysis

change in physical system parameter value results in a

change in the systemA(B) and output matrices({,D), We present an approach to detection and analysis of

respectively. Changes in parameters of the system matrixansients generated by faults in continuous dynamic sys-

2.1. Transients resulting from faults in continuous
dynamic systems

The state equation model, for a linear time invariant sys

tem is given by:

In the Laplace domain these equations become:

Y(s) = CX(s)+ DR(s), 4)

wherez(0) is value of the initial state vector evaluated at



tems, by using a linear time-frequency representation. The In this paper we propose the use of a linear
detection is then carried out in the transform domain. Thigime-frequency (TF) signal representation to create a
leads to robust detection and the extraction of discriminatnon-parametric detector. Transients are non-stationary

ing features used during fault isolation. signals and TF methods are often used to describe non-
stationary signals. The terapproximate matched filtas
3.1. Signal Detection with hypothesis testing sometimes used to describe TF based detectors [6]. We

note that the derivation of the optimal parametric

Signal detection is the discovery of a signal in a back-detector for a pure sinusoidal signal with unknown
ground of noise. The difficulty of the detection problem amplitude, phase, arrival time and frequency results
is determined by the severity of the noise, and the amourift the computation of the spectrogram, which is a
of available knowledge about the signal. Signal detectioriime-frequency representation. The detector compares the
in time series data is governed by the theory of statistiPeak value of the spectrogram with a threshold [8].
cal hypothesis testing. The null, hypothedi,, is the as-
sumption that only noise is observed, and the alternativé.2. Signal representation using the Gabor trans-
hypothesisH, corresponds to the presence of a signal in form domain
a noisy background. Latbe the signal of interest andis
the additive noise. The hypothesis testing is stated as [8]: Several possible linear TF transforms are available, but

we have selected the Gabor transform representation be-
Ho:y=nmn cause it uses complex exponential basis functions that ap-
H :y=s+n (5) pear also in the transient signals of linear systems. For
completeness, we recall the definition of the Gabor ex-
We are now interested in constructing a detector that maxipansion. For a discrete time sequeng&) of length L,
mizes the probability of detection sfwhile ensuring some  the finite approximation of the Gabor expansion is defined
acceptably small false alarm probability. Such a detector ias [13]:
based on computing thigkelihood ratio between the al-
ternative hypotheses. Whenis completely known it is e
possible to build an optimal detector, the matched filter. y(k) = Z Z Crn,nrm,n (K),
When knowledge about the signal is limited, a maximum
likelihood estimate approach is typically used. The resultfor £ = 0,... ,L—1. C,, , are the Gabor coefficients and
ing detector is the generalized likelihood ratio test (GLRT). NV and M are the maximum allowable time and frequency
Usually presented in logarithmic form, the GLRT can beshifts respectively. The synthesis functign . (k) is given
expressed as [8]: by:

@)

m=0 n=0

l(y) = max log

[p(Y/s, H1)} ©) gm.n (k) = g(k —ma)exp(j2mnd/L), (8)
s€S

p(y/Ho) o . : .
where theg(k) is the periodic extension of the window
The detector with the desired performance is constructetlinctiong(k). Some constraints need to be imposed on the
by applying a threshold oh parameters of the synthesis function for the transform in

The signal detection problem for FDI in realistic mea- (7) to be stable. Details can be found in various treatments
surement data is complex. A transient in a continuous dyef the Gabor transform, e.g. [13].
namic system is a deterministic signal, for which we have The suitability of the transform for fault detection in
a signal model obtained from (4). However, all parametergontinuous dynamic systems follows from the choice of the
of the signal are unknown. The arrival time of the signalwindow function in (8). Friedlander and Porat suggested a
is unknown because the time of failure is unknown. Also,one-sided exponential decaying window function [3], for
the direction and magnitude of the parameter value changhe purpose of detecting transient signals subject to sudden
that corresponds to the fault are unknown, and, therefor@nset and exponential decay. This matches the fault tran-
the amplitude, and phase of the transient are unknown asents that occur in systems described by (2)-(4). The win-
well. dow function is defined ag(k) = v2\exp(—\k)u(k),

The challenge now, is to find an appropriate represenwhere \, the damping factor, controls the locality of the
tation ofs. This representation should capture the prop-analysis, and. is the unit step function. The damped com-
erties of the transient that distinguish it from the back-plex exponential basis functions are not orthogonal, but do
ground noise. A detector should be designed to exploit asonstitute a frame [3].
much knowledge of the problem as possible. On the other Figure 2 illustrates the transform domain representation
hand, to avoid unnecessary computational effort, the deteder a transient signal with two different noise levels. The
tor should be limited to recovering only those features oftransform coefficients are plotted in a TF grid with four
the signal that provide discriminating information amongtime bins and 8 frequency bins. The transform is graph-
possible faults. ically represented as the square of the absolute values of



.
M M
. olefe|e

N N

(a) TF region representing (b) TF region representing
a single time bin. a single frequency bin in a
specific time range.

Figure 3. Time-frequency grid with different
detection regions. Regions are indicated
with dots in the grid cells.

(@)o=0.3 (b)oc =0.6

Figure 2. Transient signal with additive Gaus-

sian noise (top) and Gabor transform domain Figure 4 illustrates the transform domain representation
representation (bottom) for different values for several typical fault transients, as the transient signals
of the noise standard deviation. Ranges of progress over time. We indicate the onset of a transient
20 and 3o around 0 are indicated with hori- with an arrival time, meaning that a smaller arrival time

zontal markers in the time series data. corresponds to having a larger amount of signal available

in the analysis window. In the time domain plots, the sig-

nal is always shown with the smallest arrival time. Fig-
the Gabor coefficients,(JC*). Figure 2(b) shows that ure 4(a) shows a transient that consists of a single damped
even when the noise level increases to where visual deteoscillating component. This is representative of a parame-
tion becomes challenging, the signal is clearly recoverabléer change in an energy storage element. The TF domain
in the transform coefficients. The compactness of the repshows that initially the detector cannot resolve the fre-
resentation in the time-frequency plane is illustrated withquency because not enough signal is available. In follow-

this example. ing snapshots a damped frequency component emerges,
that subsequently vanishes as the signal evolves. The sig-
3.3. Fault detection in the transform domain nal in Figure 4(b) has an additional step change, which cor-

responds to a change in an dissipative component. The step
The next step is to design a GLRT based detector basegthange component is persistent as the signal evolves. Fi-
on the statistical properties of the Gabor transform coeffinally, Figure 4(c) shows a transient generated from a fourth
cients. The transform coefficients of white noise are jointlyorder system that also includes an initial zero frequency
Gaussian [3]. The transform coefficients of a transient sigcomponent that vanishes as the signal evolves.
nal will have a non-zero mean value in the subset of the
time-frequency plane where the signal is located. This be3.4. Fault isolation in the transform domain
comes the hypothesiH;. The test is constructed on the
probability ratio of non-zero mean valued coefficients fora As was seen in Section 2, fault isolation is initiated
region of the time-frequency plane. If multiple regions areby hypothesis generation step. Hypothesis generation re-
to be evaluated, multiple tests are required. Each regioguires the initial deviation of the signal to generate the ini-
then corresponds to a different component of the transierital set of fault candidates using the model. This requires
signal. Figure 3illustrates the use of regions in the TF griddetermining the direction of change in the signal (i.e., its
An important objective in FDI is fast fault detection. sign), which can be derived in a straightforward way from
That means we must detect the transient as early as pos#ie transform coefficients.
ble. It is, therefore, critical that the detector has the ability ~Another important feature for discriminating among
to analyze the signal from its onset, and draw conclusionfault hypotheses, is to determine if an abrupt change in a
from an evolving transient. When a smaller part of theparameter value causes a discontinuous change in a mea-
transient signal is available, the amount of signal informasurement signal. A discontinuous change implies that there
tion in the analysis window is decreased, and effectivelyjs no integrating function (associated with an energy stor-
the SNR of the signal is smaller. When the SNR of theage component) between the faulty parameter and the mea-
signal decreases, the performance degradation affects tlared signal. This is recovered from the transform coeffi-
partial transient signal more severely. The consequence @ents by evaluating the relative size of the real and imag-
that fault detection will require more data in low SNR sit- inary parts. Figure 5 shows two transient signals that dif-
uations. fer only in phase, and produce identical detection results.
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Figure 4. Three transient response signals and their Gabor domain coefficients at various arrival
times. Top graph shows signal, and signal with additive Gaussian noise ( 0=0.3). Bottom shows
coefficients with arrival times [3.5, 3, 2, 1].

However, evaluating the coefficients in polar coordinatesignal is damped out. Because hypothesis refinement is
reveals the differences between the signals. based on the elimination of hypotheses that become incon-

Another feature, the steady state operation of the fau|t§istent with the measurement data, the absence of a zero-
system, helps discriminate between hypothesized faults iffequency component can be used to eliminate hypotheses
energy storage elements, and fault in dissipative elementtat fault hypotheses linked to dissipative elements.

An abrupt fault in an energy storage element results in

transient behavior that returns to the previous steady statd,. Discussion and Conclusions

however, a fault in a dissipative element results in a change

in the steady state behavior. It was pointed out in [12] This paper has outlined a more sophisticated transient
that the detection of steady state in a signal is quite diffi-detection and analysis methodology foRANSCEND. In

cult, and may require a significant amount of time. Recalladdition, detection of the direction of change and discon-
from Figure 4 that zero frequency components show up itinuous changes aids in the initial fault isolation. The Ga-
the Gabor transform also, and that a non-vanishing zerdsor transform provides a direct mapping to some features
frequency component implies a change in system steadyf transients resulting from discrete changes in component
state as a result of the fault. With the aid of the signalparameter values in linear dynamic systems. Using a detec-
model it is possible to predict that a zero frequency comior based on statistical signal processing techniques makes
ponent will disappear before all dynamic behavior in thethe qualitative fault isolation method ofRENSCEND ro-



in the wavelet domain is typically realized by interpreting
those changes as local high frequency components (singu-
S larity detection). Finally, it should be noted that a linear TF

- transform based detector belongs to the class of matched
- subspace detectors. A realization of the Gabor transform
detector as a matched subspace detector in the data domain
was given in [13].
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