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Abstract

TRANSCEND, our system for fault detection and
isolation of complex dynamic systems, uses a model based
approach to predict and analyze transient effects resulting
from abrupt faults in the system. Abrupt faults are
attributed to discrete and persistent parameter value
changes. Fault isolation is performed by matching
features extracted from the transients against those
predicted by the model. This paper discusses a statistical
signal processing approach to transient detection and
analysis using a time-frequency representation of the
signal. The approach is robust for the detection task and it
provides feature values for the initial fault isolation steps.

1. Introduction

Model-based approaches for fault detection and isola-
tion (FDI) in continuous dynamic systems employ rela-
tions imposed by the system configuration and function-
ality to computeresidualsthat capture the discrepancies
between nominal and observed behavior. Residual compu-
tation and analysis is non-trivial for complex systems, pri-
marily because of stiffness, convergence, and intractability
problems related to their non-linear dynamic behavior.

We have developed a model-based system, named
TRANSCEND, that employs qualitative residual analysis
for fault isolation [12]. Figure 1 shows the TRANSCEND

architecture. Variablesu, x, andy, are the input, state,
and output vectors of the physical system, respectively. A
standard gain matrix observer scheme [2] tracks the
residual,r = y − ŷ (ŷ is the predicted system behavior),
to correct for small deviations in the estimated state
vectorx̂.

Qualitative residual analysis uses a symbol generation
module that maps numeric residual values to a symbolic
form. Fault detection identifies a discrepancy in the resid-
ual, and this initiates the fault isolation task that is per-

Figure 1. TRANSCENDarchitecture.

formed in two phases:hypothesis generationandhypoth-
esis refinement. Hypothesis generation uses the diagnosis
model,m and the symbolic feature data,rs at the point of
detection to generate a set of hypothesized fault candidates,
fh, and to predicted system behavior,p, for each candidate.
A fault candidate is a physical system parameter with a
qualitative label that indicates an increase or decrease in
the parameter value. During hypothesis refinement subse-
quent feature values extracted from new measurement data
are matched against the predictions to derive the refined
fault set,fr. This process continues until a unique fault is
identified or the fault set can no longer be reduced. In more
recent work we have pointed out the fundamental limita-
tions of the qualitative approach and demonstrated an ex-
tension with a simplified numerical parameter estimation
scheme to resolve remaining fault hypotheses that can not
be resolved using qualitative techniques [10].

In our work, faults are defined as an abrupt (step)
change in the value of a model parameter, and this causes
transients in the measured signals. Fault detection is the
detection of a transient. Consequently, hypothesis gener-
ation requires characterization of the transient dynamics
predicted by the model, and hypothesis refinement is based
on analysis of the evolving transient. The objective is to
capture sufficient discriminating features from the transient
in a timely manner.

Transient detection and analysis is a challenging prob-



lem for realistic, noisy, measurement data, especially when
the amplitude of the transient signal is small, resulting in a
low signal-to-noise ratio (SNR). The amplitude of the gen-
erated transient is directly related to the magnitude of the
parameter value change, leading to the intuitive observa-
tion that a small parameter change will be more difficult
to detect. This paper presents an approach for transient de-
tection and analysis in TRANSCENDthat is based on signal
detection in the time-frequency (TF) signal representation.
The motivation for a time-frequency signal representation
is twofold. First, we can design the TF representation so
that the transform domain coefficients are sparse, capturing
information in an efficient way. Second, the signal repre-
sentation in the TF domain allows further analysis that can
be used in fault isolation.

In the remainder of this paper we first present the prin-
ciples of predicting fault behavior and qualitative transient
detection and analysis in TRANSCEND. We then present
the signal representation and detection approach in detail,
and illustrate the method with examples.

2. FDI from Transients

The analysis of transients in the TRANSCEND frame-
work is targeted to discriminating among faults, and ex-
ploits the behavior predictions generated by the model in
constraining this analysis.

2.1. Transients resulting from faults in continuous
dynamic systems

The state equation model, for a linear time invariant sys-
tem is given by:

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Dr(t) (2)

In the Laplace domain these equations become:

X(s) = (sI −A)−1x(0) + (sI −A)−1BR(s) (3)

Y (s) = CX(s) +DR(s), (4)

wherex(0) is value of the initial state vector evaluated at
t = 0. The time domain solution for any output can be
expressed as a sum of complex exponentials, provided all
eigenvalues of the system are distinct. A discussion of the
link between component parameters and state equations is
not part of this paper, but in our work the state equations
are easily derived from a bond graph model of the system
under consideration [12]. As a result, the terms of the state
equation matrices are directly defined in terms of the com-
ponent parameters.

Consider a system in which an abrupt fault occurs. The
change in physical system parameter value results in a
change in the system (A,B) and output matrices (C,D),
respectively. Changes in parameters of the system matrix

are referred to as non-additive, or multiplicative, faults [1].
This class of faults is much more difficult to isolate than ad-
ditive faults such as sensor and actuator faults. For analysis
we sett = 0 as the time of failure. The system response for
t > 0 is then determined by the combined forced response
to the input vectoru and the initial value response to a step
change in a parameter value that corresponds to the faulty
component.

2.2. Representation of transient dynamics

Qualitative analysis of transient signals requires an ab-
straction scheme to derive qualitative information from the
continuous signal dynamics. The notion of signal abstrac-
tions was formalized by Milios and Nawab [11]. Signals
are viewed in a hierarchy of abstraction levels, where at
higher levels, detail is suppressed with respect to lower lev-
els. Higher levels of abstraction support fewer inferences,
but they can be tailored to solve specific problems more
efficiently. Signal abstractions can be defined in the data
domain, a transform domain, or both. As a basis for these
signal abstractions, we need a signal model, a description
of the signal with respect to an underlying structure [7].
The signal model for the detection problem is the general
form of the solution of (4).

In previous work, both the behavior prediction and the
transient analysis has been carried out strictly in the time
domain [12]. The hypothesis generation algorithm is trig-
gered following the detection of a transient. The direction
of its initial deviation, the sign of the transient signal, is re-
quired to generate the set of fault candidates. The hypoth-
esis refinement is based on predicting the sign of deriva-
tive values. Furthermore it was shown that the detection of
discontinuous changes provides important discriminatory
information. An interpretation of this method as a Tay-
lor series expansion of the transient immediately after the
fault was given in [10]. Robust derivative estimators for
this method was discussed in [9].

In this paper we take a different approach to using the
model to analyze the transient. We look at the relation be-
tween an abrupt parameter value change and the transient
dynamics in the Laplace transform domain, and how this
can be used to make conclusions about the transient be-
havior resulting from that parameter change. The dynamic
properties of an evolving transient can be directly linked to
changes in the parameters of the characteristic polynomial.
The relation of the eigenvalues of the system to the com-
ponent parameters is known and can be used to detect a
change in location of the poles of the system. The transfer
function also determines whether or not a signal will have
an discontinuous change at the onset.

3. Transient Detection and Analysis

We present an approach to detection and analysis of
transients generated by faults in continuous dynamic sys-



tems, by using a linear time-frequency representation. The
detection is then carried out in the transform domain. This
leads to robust detection and the extraction of discriminat-
ing features used during fault isolation.

3.1. Signal Detection with hypothesis testing

Signal detection is the discovery of a signal in a back-
ground of noise. The difficulty of the detection problem
is determined by the severity of the noise, and the amount
of available knowledge about the signal. Signal detection
in time series data is governed by the theory of statisti-
cal hypothesis testing. The null, hypothesis,H0, is the as-
sumption that only noise is observed, and the alternative
hypothesis,H1, corresponds to the presence of a signal in
a noisy background. Lets be the signal of interest andn is
the additive noise. The hypothesis testing is stated as [8]:

H0 : y = n
H1 : y = s + n (5)

We are now interested in constructing a detector that maxi-
mizes the probability of detection ofs while ensuring some
acceptably small false alarm probability. Such a detector is
based on computing thelikelihood ratio between the al-
ternative hypotheses. Whens is completely known it is
possible to build an optimal detector, the matched filter.
When knowledge about the signal is limited, a maximum
likelihood estimate approach is typically used. The result-
ing detector is the generalized likelihood ratio test (GLRT).
Usually presented in logarithmic form, the GLRT can be
expressed as [8]:

l(y) = max
s∈S

log
[
p(y/s,H1)
p(y/H0)

]
(6)

The detector with the desired performance is constructed
by applying a threshold onl.

The signal detection problem for FDI in realistic mea-
surement data is complex. A transient in a continuous dy-
namic system is a deterministic signal, for which we have
a signal model obtained from (4). However, all parameters
of the signal are unknown. The arrival time of the signal
is unknown because the time of failure is unknown. Also,
the direction and magnitude of the parameter value change
that corresponds to the fault are unknown, and, therefore,
the amplitude, and phase of the transient are unknown as
well.

The challenge now, is to find an appropriate represen-
tation of s. This representation should capture the prop-
erties of the transient that distinguish it from the back-
ground noise. A detector should be designed to exploit as
much knowledge of the problem as possible. On the other
hand, to avoid unnecessary computational effort, the detec-
tor should be limited to recovering only those features of
the signal that provide discriminating information among
possible faults.

In this paper we propose the use of a linear
time-frequency (TF) signal representation to create a
non-parametric detector. Transients are non-stationary
signals and TF methods are often used to describe non-
stationary signals. The termapproximate matched filteris
sometimes used to describe TF based detectors [6]. We
note that the derivation of the optimal parametric
detector for a pure sinusoidal signal with unknown
amplitude, phase, arrival time and frequency results
in the computation of the spectrogram, which is a
time-frequency representation. The detector compares the
peak value of the spectrogram with a threshold [8].

3.2. Signal representation using the Gabor trans-
form domain

Several possible linear TF transforms are available, but
we have selected the Gabor transform representation be-
cause it uses complex exponential basis functions that ap-
pear also in the transient signals of linear systems. For
completeness, we recall the definition of the Gabor ex-
pansion. For a discrete time sequencey(k) of lengthL,
the finite approximation of the Gabor expansion is defined
as [13]:

y(k) =
M−1∑
m=0

N−1∑
n=0

Cm,ngm,n(k), (7)

for k = 0, . . . , L− 1. Cm,n are the Gabor coefficients and
N andM are the maximum allowable time and frequency
shifts respectively. The synthesis functiongm,n(k) is given
by:

gm,n(k) = g̃(k −ma)exp(j2πnb/L), (8)

where theg̃(k) is the periodic extension of the window
functiong(k). Some constraints need to be imposed on the
parameters of the synthesis function for the transform in
(7) to be stable. Details can be found in various treatments
of the Gabor transform, e.g. [13].

The suitability of the transform for fault detection in
continuous dynamic systems follows from the choice of the
window function in (8). Friedlander and Porat suggested a
one-sided exponential decaying window function [3], for
the purpose of detecting transient signals subject to sudden
onset and exponential decay. This matches the fault tran-
sients that occur in systems described by (2)-(4). The win-
dow function is defined asg(k) =

√
2λ exp(−λk)u(k),

whereλ, the damping factor, controls the locality of the
analysis, andu is the unit step function. The damped com-
plex exponential basis functions are not orthogonal, but do
constitute a frame [3].

Figure 2 illustrates the transform domain representation
for a transient signal with two different noise levels. The
transform coefficients are plotted in a TF grid with four
time bins and 8 frequency bins. The transform is graph-
ically represented as the square of the absolute values of
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(b) σ = 0.6

Figure 2. Transient signal with additive Gaus-
sian noise (top) and Gabor transform domain
representation (bottom) for different values
of the noise standard deviation. Ranges of
2σ and 3σ around 0 are indicated with hori-
zontal markers in the time series data.

the Gabor coefficients, (CC?). Figure 2(b) shows that
even when the noise level increases to where visual detec-
tion becomes challenging, the signal is clearly recoverable
in the transform coefficients. The compactness of the rep-
resentation in the time-frequency plane is illustrated with
this example.

3.3. Fault detection in the transform domain

The next step is to design a GLRT based detector based
on the statistical properties of the Gabor transform coeffi-
cients. The transform coefficients of white noise are jointly
Gaussian [3]. The transform coefficients of a transient sig-
nal will have a non-zero mean value in the subset of the
time-frequency plane where the signal is located. This be-
comes the hypothesisH1. The test is constructed on the
probability ratio of non-zero mean valued coefficients for a
region of the time-frequency plane. If multiple regions are
to be evaluated, multiple tests are required. Each region
then corresponds to a different component of the transient
signal. Figure 3 illustrates the use of regions in the TF grid.

An important objective in FDI is fast fault detection.
That means we must detect the transient as early as possi-
ble. It is, therefore, critical that the detector has the ability
to analyze the signal from its onset, and draw conclusions
from an evolving transient. When a smaller part of the
transient signal is available, the amount of signal informa-
tion in the analysis window is decreased, and effectively,
the SNR of the signal is smaller. When the SNR of the
signal decreases, the performance degradation affects the
partial transient signal more severely. The consequence is
that fault detection will require more data in low SNR sit-
uations.

N

M

(a) TF region representing
a single time bin.

N

M

(b) TF region representing
a single frequency bin in a
specific time range.

Figure 3. Time-frequency grid with different
detection regions. Regions are indicated
with dots in the grid cells.

Figure 4 illustrates the transform domain representation
for several typical fault transients, as the transient signals
progress over time. We indicate the onset of a transient
with an arrival time, meaning that a smaller arrival time
corresponds to having a larger amount of signal available
in the analysis window. In the time domain plots, the sig-
nal is always shown with the smallest arrival time. Fig-
ure 4(a) shows a transient that consists of a single damped
oscillating component. This is representative of a parame-
ter change in an energy storage element. The TF domain
shows that initially the detector cannot resolve the fre-
quency because not enough signal is available. In follow-
ing snapshots a damped frequency component emerges,
that subsequently vanishes as the signal evolves. The sig-
nal in Figure 4(b) has an additional step change, which cor-
responds to a change in an dissipative component. The step
change component is persistent as the signal evolves. Fi-
nally, Figure 4(c) shows a transient generated from a fourth
order system that also includes an initial zero frequency
component that vanishes as the signal evolves.

3.4. Fault isolation in the transform domain

As was seen in Section 2, fault isolation is initiated
by hypothesis generation step. Hypothesis generation re-
quires the initial deviation of the signal to generate the ini-
tial set of fault candidates using the model. This requires
determining the direction of change in the signal (i.e., its
sign), which can be derived in a straightforward way from
the transform coefficients.

Another important feature for discriminating among
fault hypotheses, is to determine if an abrupt change in a
parameter value causes a discontinuous change in a mea-
surement signal. A discontinuous change implies that there
is no integrating function (associated with an energy stor-
age component) between the faulty parameter and the mea-
sured signal. This is recovered from the transform coeffi-
cients by evaluating the relative size of the real and imag-
inary parts. Figure 5 shows two transient signals that dif-
fer only in phase, and produce identical detection results.
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(a) damped complex exponential sig-
nal.
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(b) Signal as in (a) with added step
change.
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(c) Signal as in (b) with an additional
damping factor.

Figure 4. Three transient response signals and their Gabor domain coefficients at various arrival
times. Top graph shows signal, and signal with additive Gaussian noise ( σ=0.3). Bottom shows
coefficients with arrival times [3.5, 3, 2, 1].

However, evaluating the coefficients in polar coordinates
reveals the differences between the signals.

Another feature, the steady state operation of the faulty
system, helps discriminate between hypothesized faults in
energy storage elements, and fault in dissipative elements.
An abrupt fault in an energy storage element results in
transient behavior that returns to the previous steady state,
however, a fault in a dissipative element results in a change
in the steady state behavior. It was pointed out in [12]
that the detection of steady state in a signal is quite diffi-
cult, and may require a significant amount of time. Recall
from Figure 4 that zero frequency components show up in
the Gabor transform also, and that a non-vanishing zero-
frequency component implies a change in system steady
state as a result of the fault. With the aid of the signal
model it is possible to predict that a zero frequency com-
ponent will disappear before all dynamic behavior in the

signal is damped out. Because hypothesis refinement is
based on the elimination of hypotheses that become incon-
sistent with the measurement data, the absence of a zero-
frequency component can be used to eliminate hypotheses
that fault hypotheses linked to dissipative elements.

4. Discussion and Conclusions

This paper has outlined a more sophisticated transient
detection and analysis methodology for TRANSCEND. In
addition, detection of the direction of change and discon-
tinuous changes aids in the initial fault isolation. The Ga-
bor transform provides a direct mapping to some features
of transients resulting from discrete changes in component
parameter values in linear dynamic systems. Using a detec-
tor based on statistical signal processing techniques makes
the qualitative fault isolation method of TRANSCEND ro-
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Figure 5. Transient signals that differ only in
sign or phase. Signals (left) are shown with
additive Gaussian noise ( σ=0.3), f = 1, tArr =
1, Transform coefficients (right) are shown as
complex valued data in a quiver plot.

bust to noise, and improves the sensitivity to faults that
result from small parameter changes.

Improvements on the current method are possible both
with respect to the fault detection problem as well as the
fault isolation problem. Analysis of the Gabor transform
has shown that the representation, is quite sensitive to non-
integer arrival times or frequencies, that is, misalignment
of the signal with the TF grid. The oversampled Gabor
transform may be used to gain higher resolution in either
the time domain or frequency domain or both [5]. How-
ever, excessive oversampling would lead to a substantially
larger computational effort.

Finding the optimal signal representation for fault iso-
lation is an ongoing topic of research. A comparison of
various linear TF transform domain detectors by Fried-
lander and Porat [4] showed that the Gabor based detec-
tor performs better than a Wavelet transform based detec-
tor for narrow band transient signals. However, further
study is needed to determine how additional discriminat-
ing features derived from a different transform represen-
tation would improve the fault isolation task, possibly at
some loss of sensitivity. The ability to derive some qualita-
tive transient features depends on the signal representation
used. For example, the detection of discontinuous changes

in the wavelet domain is typically realized by interpreting
those changes as local high frequency components (singu-
larity detection). Finally, it should be noted that a linear TF
transform based detector belongs to the class of matched
subspace detectors. A realization of the Gabor transform
detector as a matched subspace detector in the data domain
was given in [13].
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