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Abstract: The TRANSCEND system for fault detection and isolation in continuous systems
uses qualitative reasoning methods to analyze transients caused by abrupt faults. Qualitative
transient analysis avoids some of the computational difficulties associated with numerical
schemes, but they lack discriminating power. This paper presents the formal basis for
qualitative transient analysis, and then establishes the limits of the discriminatory power of
this methodology. An integrated scheme that starts with qualitative fault isolation to narrow
down possible fault hypotheses, and then uses a focused quantitative parameter estimation
scheme to identify the true fault is developed. This approach provides a number of advantages
over purely quantitative FDI schemes.Copyright c© 2000 IFAC
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1. INTRODUCTION

Model-based approaches for fault detection and iso-
lation (FDI) in continuous dynamic systems employ
relations imposed by the system configuration and
functionality to computeresiduals, that capture the
discrepancies between nominal and observed behav-
ior. Residual computation and analysis is non-trivial
for complex systems, primarily because of stiffness,
convergence, and intractability problems in dealing
with the system’s non-linear dynamics. To mitigate
this, an FDI framework has been developed that de-
rives residuals asqualitative fault signatures, and an-
alyzes these residuals with a fault isolation observer
mechanism based on a uniqueprogressive monitoring
scheme (Mosterman and Biswas 1999). This paper
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demonstrates a combined qualitative and quantitative
fault isolation process where the qualitative fault isola-
tion scheme is followed by a directed quantitative pa-
rameter estimation step to resolve ambiguities among
the fault candidates that cannot be distinguished by the
qualitative signatures alone.

Fig. 1 illustrates the architecture of TRANSCEND,
our qualitative model-based approach to diagnosis
(Mosterman and Biswas 1999). Variablesu, x, and
y, are the input, state, and output vectors of the pro-
cess under diagnostic scrutiny. A standard gain matrix
observer scheme (Brammer and Siffling 1989) tracks
the residual,r = y − ŷ (ŷ is the predicted system be-
havior) to correct for small deviations in the estimated
state vector̂x. A unique aspect of the qualitative ap-
proach is thesymbol generationunit, that uses robust
methods to compute symbolic values of the magnitude
deviation and slope of signal transients,rs.



Fig. 1. TRANSCENDarchitecture.

Fault detection triggers a fault isolation scheme that
consists ofhypothesis generationand hypothesis re-
finement. Hypothesis generation uses the diagnosis
model,m (implemented as a temporal causal graph
(TCG) (Mosterman and Biswas 1999)), and the sym-
bolic residuals,rs, to generate a set of hypothesized
fault candidates,fh, and to predict behavior,p, for
each fault candidate. During hypothesis refinement
spurious candidates are eliminated from the set us-
ing progressive monitoring to match new observations
against the predictions and derive the refined fault
set,fr.

This paper establishes the basis for qualitative sig-
natures and progressive monitoring in terms of the
Taylor series expansion of the fault transient signal.
Based on this, the limitations of the qualitative fault
isolation method are derived, and a focused parameter
estimation scheme is introduced to enable further re-
finement of the fault hypotheses. The reduced fault set
obtained by applying the qualitative observers focuses
and significantly reduces the computational complex-
ity in the parameter estimation task. The method is
illustrated with simulation experiments on a three-tank
fluid system.

2. QUALITATIVE DIAGNOSIS FROM
TRANSIENTS

Model parameters in the TCG correspond directly
to system components, and a fault is a parameter
value that deviates from its nominal value. This paper
focuses on the class ofabrupt faults.

Definition 1.(Abrupt fault). An instantaneous and per-
sistent change in a parameter value.

The notion of instantaneous change is a modeling
abstraction (e.g., see (Mosterman and Biswas 1998)),
where the fault is defined as an instantaneous param-
eter change in the model. In a physical system this
change is never truly instantaneous but the abstraction
eliminates the steep nonlinearities and stiffness that
occurs when simulating the behavior of such systems.
An abrupt fault results in transient behaviors in system
variables and the fault isolation task relies heavily on
the characterization of the transients in the measure-
ment data (Mosterman and Biswas 1999).

2.1 Transient detection and analysis

Transient detection implies a decision on whether the
residualr is deviating significantly from 0. The need
for sophisticated detection techniques is strongly de-
pendent of the signal-to-noise ratio of the residual
signal. In simulation studies, a detection scheme based
on an instantaneous signal value has been used by ap-
plying simple threshold crossing detectors, for exper-
iments where a small amount of noise is added to the
simulation data. For signals where the noise presents
a larger problem, more sophisticated methods have
been studied that employ statistical signal processing
techniques and can be designed to obtain desired sen-
sitivity and specificity (Manderset al.1999).

The FDI analysis in TRANSCEND assumes that dis-
continuous changes in variable values can only oc-
cur at the point of failure, thus system behavior is
continuously differentiable before and after the oc-
currence of a fault. Therefore, the transient response
in a measurement after the time point of failure,t0,
can be approximated by the Taylor series expansion.
If y(t0) is the value of the residual signal just after
the occurrence of the fault, thekth order Taylor series
expansion fory(t), t ≥ t0 is defined as:

y(t) = y(t0) + y′(t0)
(t− t0)

1!
+ y′ ′(t0)

(t− t0)2

2!
+

· · ·+ y(k)(t0)
(t− t0)k

k!
+Rk(t),

where Rk(t) = y(k+1)(t′) (t−t0)k+1

(k+1)! is a remain-
der term andt′ − t0 < t. For most well-behaved
functions the series converges, i.e.,Rk(t) → 0 as
k → ∞ (Kreyszig 1972). In particular, if|y(k+1)| is
bounded, the Taylor series is a good approximation of
the true signaly(t) whent is close tot0.

Consider the transient signal and its first through
fourth order Taylor series approximation shown in
Fig. 2. Conforming to the definition, ast increases
from t0, approximations differ increasingly from the
actual signal, but higher order approximations follow
the signal for a longer time interval. The analysis of
transient dynamics by interpreting the signal as a Tay-
lor series approximation is the basis for describing the
fault transient signal as afault signature.

Definition 1.(Fault signature). The fault signaturef
is the set ofk + 1 feature values consisting of the
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Fig. 2. Transient signal for a2nd order system (solid
line) and 1st through 4th order Taylor series
expansion (dashed lines) at t =t+0 .



magnitude and the1st throughkth order derivative
values computed att0 from the residualy: f =
{y(t0), y′(t0), y′′(t0), · · · , y(k)(t0)}

The notion of discontinuous change warrants addi-
tional explanation. Similar to the concept of an abrupt
change in a model parameter, a discontinuous change
is an abstraction in the observation of a physical sys-
tem. What is considered as a discontinuous change
is directly related to the sampling rate of the discrete
time sampled signal.

Definition 2.(Discontinuity). A change in a measured
variable that exhibits a transient response faster than
the sampling rate of the signals.

Fault isolation is then based on the comparison of the
fault signatures with subsequent measurements made
on the system. Performing this analysis quantitatively
is an intractable problem. When a fault occurs, the ex-
act magnitude of parameter value changes is unknown,
so derivative values in the fault signature have to be
computed from subsequent measurements. For com-
plex nonlinear systems, this is a very difficult problem
to solve, either by closed form analytic techniques or
by numeric iteration. To address this aqualitative con-
straint analysisscheme, discussed in the next section,
was developed for the fault isolation task.

In the qualitative framework, individual measurements
are labeled as normal (0), above normal (+) and be-
low normal (−). Similarly, derivatives take on values,
increasing (+), steady (0), and decreasing(−). The
fault signature in the qualitative framework then is the
sequence of+, 0, or − magnitude andk derivative
values computed at the point of failure,t0. This fault
signature is the basis for qualitative transient analysis
using the progressive monitoring scheme.

Lemma 1.(Qualitative transient analysis). Transient
dynamics are captured by evaluation of the direction
of abrupt changeat the point of failure (if it occurs),
and thesignsof the derivatives of the signal after the
onset of a fault.

In this paper, all transient signals are considered ide-
alized signals. This means that data is sampled at ap-
propriate sampling rates and that noise does not play a
role in determining the component values of a signa-
ture. Other work (Manderset al. 2000) describes sta-
tistical signal analysis algorithms for extracting tran-
sient features from noisy signals.

2.2 Fault Isolation

Fault isolation using residuals is traditionally achieved
by designing multiple fault observers with a one-
to-one correspondence between the individual fault

hypotheses and the observers (Patton and Chen 1997).
In our work, we define each observer in terms of the
fault signatures.

Fault detection triggers the fault isolation mechanism.
The hypothesis generation algorithms, implemented
as a two step process, fault hypothesis generation fol-
lowed by fault signature generation for each hypoth-
esis, is described in detail in (Mosterman and Biswas
1999). An observer, defined in terms of a set of fault
signatures, one for each measurement, is designed for
each fault hypothesis.

The fault signature is of orderk when it includes
derivative values of up to orderk. The minimal prac-
tical fault signature consists of magnitude and first
order derivative, the slope, of the signal. The choice
of k is directly related to the concept of diagnosabil-
ity (Mosterman and Biswas 1999). Ideally, the fault
signature order and the set of measured variables are
selected such that that all possible faults that can be
hypothesized by the model can also be uniquely deter-
mined.

Comparing the fault signature with the feature vector
obtained from the evolving transient data is the basis
of aprogressive monitoringscheme for tracking signal
transients (Mosterman and Biswas 1999).

Lemma 2.(Progressive monitoring). Qualitative mag-
nitude and slope of a fault transient are matched
against a qualitative fault signature by starting in a se-
quence from a discontinuous magnitude and first order
change to a succession of higher order derivatives.

Comparing theith and(i+1)th terms in the Taylor se-
ries, one can establish|y(i)(t0)| > |y(i+1)(t0)| (t−t0)

(i+1)

for some period of time t. As t increases, at some point
in time the inequality reverses. From that point in time,
the higher order derivative dominates the lower one.

Lemma 2 provides the basis for progressive monitor-
ing of signal dynamics using higher order derivatives.
Starting from the point of failure,t0, the signal mag-
nitude in response to the faulty(t0) determines the
signal value. Immediately after that the first derivative
of the signal dominates the dynamic behavior because
small values of(t − t0) dominate higher powers(t −
t0)i in the Taylor series. Ast increases, higher order
derivatives in succession increasingly contribute to the
dynamics of the signal.

In dynamic transient analysis, a current normal mea-
surement or slope value cannot be used to eliminate
a fault candidate, because, there is no guarantee that
this measurement will not deviate at some later time.
The exception to this is the case when a discontinuous
change can be inferred from the signature, because
any discontinuous change in the measurements should
manifest itself at the point of failure. Therefore the
ability to reliably detect discontinuous changes in the
measurement data enhances fault isolation.



Qualitative transient analysis based on the progressive
monitoring scheme established in Lemma 2 becomes
the basis for tracking system behavior and eliminat-
ing inconsistent fault hypotheses till the true fault is
isolated.

As an example, the methodology is applied to a three-
tank fluid system in a simulation. The tank system and
corresponding TCG model are shown in Fig. 3. The
tank capacities,C1, C2, andC3, and pipe resistances,
R12 R23, andRb, constitute the set of model parame-
ters of the physical components and thus the possible
fault candidates. Theei andfi vertices shown in the
TCG correspond to tank pressure and pipe flow rate
variables, respectively. Circled vertices in the TCG
indicate the measured variables. In this example the
pressure in the third tank (e10) and the flow rate in the
pipe connecting tank 1 and tank 2 (f3) are measured.

Consider the fault situation where the capacity of
tank 1 decreases abruptly (indicated withC−1 ), as
might happen when an object falls into the tank. The
resulting transients in the measurements are shown in
Fig. 4(a). The initial deviation that triggers the isola-
tion scheme is an abrupt increase inf3, indicated by
f3

+. Fault detection and hypothesis generation based
on this deviation produces the set of fault candidates
with predicted fault signatures for both measured vari-
ables, as shown in Fig. 4(b). This figure lists the com-
plete qualitative fault isolation sequence. Step 0 is de-
fined as the initial fault isolation step. Abrupt change
detection allows the elimination of three of the six
initial fault hypotheses in the first step. At step 1,e10

andf3 are reported as(0, 0) and(+,−), respectively.
All three fault hypotheses are still consistent with the
observations. At step 2,e10 crosses the threshold and
is reported to be(+,+). Application of progressive
monitoring based on Lemma 2 results in fault can-
didatesC−1 andR−12 still remaining consistent with
the observations butC+

2 does not. Further refinement
of the fault hypotheses is not possible with the given
measurements.

2.3 Analysis of the Qualitative Fault Isolation Scheme

The Taylor series expansion example above illustrates
the two primary assumptions of this scheme:

(1) the signal sampling rate is fast enough to pick
up all significant qualitative changes in signal
magnitudes and slopes, and

(2) abrupt changes in signal magnitudes can be reli-
ably detected.

A fault signature of orderk results on2k distinct sig-
natures. Combining this with the above assumptions
and Lemma 2, one may come to the conclusion that
for a system withK possible faults, complete diagnos-
ability can be achieved withdlog2kKemeasurements.
However, careful analysis of the progressive monitor-
ing framework reveals that this is not the case. As a

first step, the occurrence of an abrupt fault can have
one of three distinct effects on a measured signal: (i)
an observed positive discontinuity in the signal, (ii)
an observed negative discontinuity in the signal, and
(iii) no discontinuity observed in the measured sig-
nal. The example for the three-tank system discussed
above shows that reliable discontinuity detection plays
a major role in pruning the fault hypothesis. Following
the abrupt change, the following observation patterns
can occur: (a)(+,+), (b) (+,−), (c) (−,−), and (d)
(−,+), implying that there are at least four distinct
fault signatures that can be recognized after an abrupt
change.

Case (iii) above implies the presence of integrating
energy storage elements in the direct path from the
component parameter to the measurement signal in
the TCG. Depending on the number of such integrat-
ing elements in the path, a corresponding number of
derivative terms (1st, 2nd, · · · ) may be0 in the fault
signature. Applying progressive monitoring, the initial
direction of change for this signal will be the first non-
zero term in the fault signature. Given the assump-
tion that the transient is appropriately sampled, the
observed signal will necessarily exhibit a(+,+) or a
(−,−) pattern. Therefore, initially, there are only two
distinct fault signatures associated with a measured
signal that does not undergo a discontinuous change
in response to an abrupt fault. The limitations of the
strictly qualitative analysis can now be summarized in
the following lemma.
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(a) Transient data for measurementse10 (top) andf3, with
TRANSCENDdiagnosis steps indicated.

Step 0
actual e10: 0 ·

f3: + ·
R−12 e10: 0 0 + −

f3: + − + −
C+

2 e10: 0 − + −
f3: + − + −

R−23 e10: 0 + − +
f3: 0 + − +

C+
3 e10: − + − +

f3: 0 + − +

R−
b

e10: 0 − + −
f3: 0 0 + −

C−1 e10: 0 0 + −
f3: + − + −

Step 1
actual e10: 0 ·

f3: + −
R−12 e10: 0 0 + −

f3: + − + −
C+

2 e10: 0 − + −
f3: + − + −

C−1 e10: 0 0 + −
f3: + − + −

Step 2
actual e10: + ·

f3: + −
R−12 e10: 0 0 + −

f3: + − + −
C−1 e10: 0 0 + −

f3: + − + −

(b) Diagnosis results.

Fig. 4. Fault detection and isolation for a faultC−1 .
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Fig. 3. Three-tank fluid system and its TCG model representation.

Lemma 3.(Discriminatory power). In a purely quali-
tative framework, only the following characteristics of
a signal can be used to discriminate among faults:

(1) if there is an abrupt change, the direction of
abrupt change plus the direction of change im-
mediately following the abrupt change. This im-
plies that there are four distinct fault signatures.

(2) if there is no abrupt change, the first direction of
change in the signal. Therefore, this case has two
unique fault signatures.

For the case where the signal does not undergo an
abrupt change, higher order derivatives beyond the
first non zero derivative have no discriminatory power.
Consider two faults with second order signatures<
0,+,+ > and< 0,+,− >, respectively for a par-
ticular measurement. In both cases, the signal shows
no discontinuous change at the point of failure, and
subsequently matches a< +,+, · > signature, where
· can be a+ or −. Subsequently, even if the signal
slope is measured to be−, the< +,+,+ > cannot
be eliminated, because a higher order derivative effect
that is not captured in the second order signature could
be−. This problem can only be overcome by mod-
eling more quantitative information about the signal
time constants, and thus the system parameters.

3. PARAMETER ESTIMATION

Qualitative methods for diagnosis are robust in that
they apply in uncertain environments, and avoid the
computational difficulties associated with the stiff-
ness and convergence problems of numerical schemes.
However, for the reasons discussed in Sec. 2.3 the
inability to incorporate time constant information ad-
versely affects their ability to discriminate faults that
show no qualitative differences, or differ only in higher
order transient effects. Fig. 4 shows that the qualitative
fault isolation scheme is unable to distinguish between
fault hypotheses,C−1 andR−12 for the three-tank sys-
tem.

To achieve higher resolution, a quantitative analysis
approach, illustrated in Fig. 5 is introduced into the
fault isolation scheme. The idea is to express the tran-
sient behavior as a function of the hypothesized fault

parameters derived fromfr, and estimate the value of
these parameters from the available measurements.

The bond graph modeling approach (Rosenberg and
Karnopp 1983) is the starting point for deriving both
the state equation based observer model and the TCG
based diagnosis model. This paradigm provides a di-
rect mapping from physical component parameters to
the standard state equation form:

ẋ = Ax+Bu (1)

y = Cx+Du. (2)

The quantitative parameter estimation scheme is im-
plemented by expressing the coefficients of the matri-
ces,A, B, C, andD, in terms of the single parameter
corresponding to the hypothesized fault, and using the
nominal (known) values for all other component pa-
rameter values. Like the qualitative fault observers, a
separate parameter estimator is initiated for each fault
hypothesis infr. Given the observation vectory(t)
(t ≥ t0), a standard least squares estimation method
is applied to derive the fault parameter values. Fault
parameters for which the error term, i.e., the difference
between the predicted (ŷ) and observed measurements
(y), do not converge to zero are eliminated. The de-
cision test for convergence to zero is implemented
as a statistical hypothesis testing scheme. Predicted
measurement values are computed from the estimated
fault parameter values. The parameter estimation is
executed only for the coefficients of the state matrices
in which the fault parameters appear. As a result, the
form of the nonlinear functions used for the estimation
task are simplified, which in turn reduces the com-
plexity of the least squares estimation, and numerical
convergence is easier to achieve.

The state vectorx for the three-tank system is defined
by the pressure variables in the three tanks, i.e.,x =
[e2 e6 e10]T . The input vector,u = [f1] and the output
vectory in the example are the measured variables,
[e10 f3]T . The symbolic form of the matricesA, B,

Fig. 5. Extending fault isolation with quantitative pa-
rameter estimation methods.
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(a)C−1

0 1 2 3 4 5
−10

−5

0

5

 

���
���
���
� 	

 ��
� �

�

��


�����

(b)R−12

Fig. 6. Parameter estimation for remaining candidates
after qualitative fault isolation

C andD, derived from the bond graph model as a
function of the component parameters are:

A =


−

1

R12C1

1

R12C1
0

1

R12C2

1

C2
(

1

R23
−

1

R12
) −

1

R23C2

0
1

R23C3
−

1

C3
(

1

R23
+

1

Rb
)

 ,

B =

 1

C1
0

0

 , C =

[
0 0 1
1

R12
−

1

R12
0

]
, D =

[
0
0

]
.

Consider fault hypothesis,C−1 . Inspection of theA
matrix shows that this parameter appears only in two
of the matrix coefficients,a00 anda01. This simplifies
the parameter estimation task for this fault hypothe-
sis, and system identification techniques have to be
applied to derive the new values fora00 anda01.

In the simulation experiments, the normal values for
all parameters are set to1. Two sets of parameterized
matrices,A,B, C, andD, are constructed for the two
fault hypotheses,C−1 , andR−12. The transient response
for measurementse10 andf3 (illustrated in Fig. 4(a)),
are used to compute the numeric values ofC1 and
R12. The derived values are then used to predict the
values for the same measurements, and the prediction
error,e = ŷ − y, is plotted in Fig. 6. For predictions
with parameter,C1, the errore converges toward0.
However, for prediction with parameterR12, the error
e diverges for both measurements, indicating thatC−1
is the true fault. Currently, the decision procedure is
implemented as a statistical hypothesis testing algo-
rithm that checks for the convergence ofe to 0 at a
predetermined confidence level.

4. DISCUSSION AND CONCLUSIONS

This paper presents a systematic analysis of an ap-
proach to FDI that combines qualitative and quanti-
tative analysis for robust fault isolation. The Taylor
series expansion of transient signals provides the basis
for the construction of qualitative fault signatures and
the progressive monitoring scheme for tracking fault

transients. The limits of the discriminatory ability of
the qualitative scheme could then be established based
on a formal analysis. To improve the isolation task,
a focused parameter estimation method is developed
that works in conjunction with the qualitative scheme
to enable isolation of the true fault candidate. This
methodology allows a the state equations of the sys-
tem to be parameterized in terms of the hypothesized
fault parameters, and in the process creates a simpler
formulation for quantitative analysis. This mitigates
a number of computational problems that arise with
traditional numeric schemes. Simulation experiments
conducted on a three-tank fluid system demonstrate
the effectiveness of the methodology.

In future work, the quantitative analysis will be ap-
plied to more complex systems, such as the automo-
bile engine test bed used in previous experiments (Man-
ders et al. 2000). The parameter estimation prob-
lem for nonlinear dynamic systems must also be ad-
dressed, and the challenge there will be to derive
simplified parameterized input-output representations
(cf. (Zhang et al. 1998)) from the state equations for
the parameter estimation task.
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