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Abstract: We present a novel approach for model-based FDI of abrupt faults in process
components of continuous dynamic systems. Abrupt faults refer to parameter value
changes that occur much faster than the nominal process dynamics, and component
faults refer to faults that correspond to physical parameters in the bond graph model
of a system. These faults cause transients in system behavior. We analyze this transient
response by combining statistical detection and estimation with a model-based qualitative
fault isolation engine. Detection uses the discrete wavelet transform in combination with
a statistical decision function. Fault isolation is based on analysis of fault signatures in a
qualitative framework. We demonstrate robust detection for small faults, and robust fault
isolation that becomes more precise for larger faults. Copyright c

�
2003 IFAC
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1. INTRODUCTION

In real applications, model-based approaches to fault
detection and isolation (FDI) for continuous dynamic
systems have to contend with uncertainties in the
model structure and its parameter values, as well as
noise in measurement data. An important focus of
current research in model-based FDI is the design of
robust FDI schemes, where the FDI result is made
insensitive to uncertain information.

Research in model-based FDI of continuous dynamic
systems has taken place largely in two communities.
Control engineering approaches to FDI use analyti-
cal models in state-space and transfer function forms.
Robust solutions are achieved through disturbance de-
coupling that explicitly represents model uncertainty
as unknown inputs to the system (Chen and Patton,
1998), and statistical detection and estimation tech-
niques that handle measurement uncertainty. A second
strand of research originates in the artificial intelli-
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gence community (Weld and de Kleer, 1990), and is
based on constraint analysis techniques that link faults
to deviations in behavior. Constraint models describe
system behavior qualitatively, using symbolic equa-
tions or causal relations, thereby implicitly accommo-
dating model uncertainty. However, analyzing system
behavior with qualitative models requires a mapping
of numerical measurement data to a symbolic repre-
sentation. This mapping, the signal-to-symbol trans-
formation, determines the ability to accomodate data
uncertainty.

The success of analytical model-based FDI approaches
in real world applications has been considerable. How-
ever, solutions are often strongly tailored to the spe-
cific system, and require careful tuning of the design
parameters to achieve good performance (Isermann,
1997). Therefore, it is not always clear how well a
design will generalize to other applications. Real ap-
plications of qualitative techniques for continuous dy-
namic systems are unknown (although good results
have been shown for discrete systems). Qualitative
FDI researchers have assumed that the symbolic input
is error free, and ad hoc approaches to the signal-
to-symbol transformation make it difficult to quantify



performance for small faults given measurement un-
certainty.

This paper describes a novel approach for model-based
FDI of abrupt faults in component parameters of a con-
tinuous dynamic system. In our approach, component
parameters are the generic physical parameters of the
bond graph of a system. These parameters appear in
multiple terms of the state space model matrices, and,
parameter changes directly affect system dynamics.
In other words, these are multiplicative faults. Abrupt
faults correspond to changes that occur at time scales
much faster than the nominal dynamics of the sys-
tem. We model abrupt faults as discrete and persis-
tent changes in the value of component parameters.
Note that this is strictly a temporal abstraction and
does not imply a large fault magnitude (Basseville
and Nikiforov, 1993). An abrupt fault in a component
parameter results in transients in the system variables.
Typically, the transient behavior vanishes after an in-
terval, and for certain faults no evidence of the fault
is observable in the measurements after some time.
FDI schemes based on parameter and state estimation
techniques to FDI have an inherent low-pass behav-
ior (Chen and Patton, 1998) that can smooth such a
transient response. As a result, the detection sensitivity
for these faults may be reduced.

Our approach, named TRANSCEND, is based on the
analysis of the fault transient. A model-based fault
isolation scheme for qualitative analysis of the fault
transients was developed by Mosterman & Biswas
(Mosterman and Biswas, 1999). It is a hypothesize-
and-test approach based on a prediction of the tran-
sient behavior immediately after the onset of the fault.
To achieve robustness against model uncertainty and
noisy measurements, we combine this qualitative fault
isolation scheme with statistical detection and esti-
mation techniques. This solution realizes a signal-to-
symbol transformation component that is tailored to
the detection of fault transients, and support the extrac-
tion of features that describe the transient dynamics.

2. ROBUST MODEL-BASED FDI BASED ON
TRANSIENT DETECTION AND ANALYSIS

The TRANSCEND approach explicitly decouples the
fault detection and fault isolation tasks. Fault detection
is based on a numerical residual and coupled with a
symbolic residual generator. The numerical residual
is computed as the difference between observed and
nominal system behavior. The output of the symbol
generator is then input to a qualitative model-based
fault isolation scheme (Fig 1). We present an outline
of the fault isolation scheme. Details are presented
in (Mosterman and Biswas, 1999).

2.1 Qualitative fault isolation from fault transients

The fault isolation engine follows the generate-and-
test approach to residual evaluation. The model repre-
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Fig. 1. TRANSCEND couples symbolic residual gener-
ation and model-based residual evaluation.

sentation is a temporal causal graph (TCG), a topolog-
ical representation of the algebraic and temporal rela-
tions between variables in the system (Mosterman and
Biswas, 1999). Vertices represent system variables and
edge relations include the model parameters. Qualita-
tive analysis is made possible by defining symbolic op-
erations for the edge relations and symbolic values for
the variables. The TCG can be derived automatically
from the bond graph model for the system (Karnopp et
al., 1990; Mosterman and Biswas, 1999).

Qualitative transient behavior is expressed as a fault
signature that describes the expected fault transient
immediately after the point of fault occurrence. The
signature corresponds to a qualitative interpretation of
the Taylor series expansion of the residual around the
point of fault occurrence (Manders et al., 2000b). The
order of the signature is defined by the highest deriva-
tive computed (a design parameter). Symbolic values
for the elements of a signature are: ‘

�
’ for a posi-

tive or increasing value, ‘ � ’ for a zero or unchanged
value, and ‘ � ’ for a negative or decreasing value. An
unknown value is represented by ‘ � ’. The description
of a fault signature in terms of the behavior around the
point of fault occurrence is unique to the approach.

Fault isolation is triggered by the first non-zero mag-
nitude symbol that is output by the signal-to-symbol
generation module. This initial symbol reflects the
magnitude deviation in the residual at the onset of the
fault transient. The hypothesis generation step results
in a set of fault hypotheses. A fault hypothesis consists
of a candidate parameter with a direction of change for
the parameter value and a fault signature for each of
the measured variables. During hypothesis refinement,
the signatures are compared with symbolic values
computed from the measurements in a scheme called
progressive monitoring, which will be illustrated in the
example later. When a match fails, the candidate is
dropped.

In previous work, the fault isolation scheme was im-
plemented in a deterministic framework. Fault detec-
tion and the trigger for hypothesis generation were
defined by the same event (Mosterman and Biswas,
1999). Computing the magnitude deviation symbol



was achieved with an instantaneous threshold compar-
ison. Similarly, the derivative of the residual was com-
puted with a discrete difference operator. The scheme
was improved upon by using estimation techniques
with noise suppression capabilities, or specific feature
extraction techniques that detect a discontinuous onset
of a fault transient (Manders et al., 2000a).

2.2 Robust detection of fault transients

The transient signal detection problem can be formally
stated in the hypothesis testing framework. Consider a
(discrete time) signal � . Under the null hypothesis,

���
,

� consists only of noise, � , and under the alternative
hypothesis,

� � , � contains the signal, � , superimposed
on the noise.

����� �
	����	 � � � �
	�����	 � ��	��
A decision function that decides between the two
hypotheses is ideally designed to exploit knowledge
about the signal � . A key observation for the approach
taken here is that a direct association of the decision
function with the computation of symbols for fault iso-
lation cannot fully exploit the fault transient response
as an event of interest. Instead, the decision function
should capture the knowledge about fault transients in
a suitable signal model. Unfortunately, only minimal
knowledge is available. Provided the fault does not
result in an unstable system, the transient is a damped
complex exponential signal with a possible discontin-
uous change at the onset. The component fault pa-
rameter, fault size, and time of fault occurrence are
all unknown. Under these circumstances, defining a
parametric signal model becomes unfeasible, and we
resort to a non-parametric model instead. A suitable
signal model for representing transient signals is a
linear time-frequency (TF) transform. The decision
function is then computed in the transform domain.

A framework transient detection based on this princi-
ple was first proposed in (Friedlander and Porat, 1989),
using the discrete Gabor transform with an asymmet-
ric damped exponential window function to match
physical transient phenomena, and a generalized like-
lihood ratio test (GLRT) as a decision function. This
scheme was evaluated in the context of TRANSCEND

in (Manders and Biswas, 2001), and was found to
have some limitations. The complex exponential basis
functions in the Gabor transform do not easily allow
discontinuities to be represented. Moreover, for tran-
sients whose location in the TF domain is unknown,
the GLRT difficult to apply. The scheme described
next addresses these problems.

2.3 A detection scheme in the time-frequency domain

The DWT is a linear transform that is very suit-
able to represent the non-stationary events in sig-
nals. The DWT has good localization properties of
high frequency components, which is beneficial for

faults transients that exhibit a discontinuous change.
We choose the 4-tap Daubechies wavelet for this
study, and use the Fast Lifting Wavelet Transform
(FLWT) (Sweldens, 1995) for our implementation. We
compute the DWT in a sliding window over the data,
to obtain fine grained tracking of the time-frequency
evolution of the signal. A longer window results in
higher detection sensitivity but at increased compu-
tational cost (which cannot be ignored in an on-line
application). To determine a suitable window size, we
exploit the fact that a fault transient is a damped signal,
and most of the signal energy is present toward the on-
set of the transient. This allows us to choose a window
that is smaller than the transient length.

For the decision function, we base our solution on
a transient detection scheme developed by Wang &
Willett (2001) The scheme is based on a DWT repre-
sentation of the signal, and a decision function called
a power-law statistic. If ��� � 	 represents the squared
coefficient of a DWT transform at index � of decompo-
sition level � , the power-law statistic ��� for the DWT
is defined as:

� ��� �����
� 
�"! �

#%$ 
	 ! � � ���

� 	 �'&)( (1)

where * is a real valued exponent. To understand the
role of * , we consider two limit values. As *,+.- ,
the detector selects the maximum coefficient, which is
optimal if there is only one non-zero coefficient. This
corresponds to a GLRT based detector that chooses the
coefficient with the maximum power. For */�10 , the
detector is essentially an energy detector in the trans-
form domain. This would be optimal only if all coeffi-
cients are non-zero. The exponent * lets us adjust the
detector based on representation of the transient signal
in the transform domain in an intuitive way. However,
the optimal value for * depends on the characteristics
of the actual transient signals, and there is no analytic
solution to determine * . Wang & Willett (Wang and
Willett, 2001) determined a range of values (through
numerical analysis) where the decision function per-
forms well for a variety of transient signals.

An enhanced version of the decision function is ob-
tained by exploiting contiguity of real transient signals
in both the time and frequency dimensions. This is
accomplished by grouping neighboring coefficients.
A grouping of three neighboring coefficients: 2�� � 	 �
��� � 	 � ���"3 � � # 	�4 � � ���"3 � � # 	 was proposed, and is il-
lustrated in Fig. 2.

C1,1 C1,2

C0,1

Fig. 2. Power-law contiguity for the DWT in a 4
level decomposition. Circles indicate groups of 3
neighboring coefficients.



A power-law decision function that exploits contiguity
in the DWT coefficients, ������� , follows by replacing
��� � 	 in Eq. 1 with 2 � � 	 . This detector was found to have
excellent performance for a wide range of transient
signals (Wang and Willett, 2001).

2.4 Estimating the onset of the transient response

TRANSCEND analyzes the transient behavior of a fault
immediately after the onset of the fault. Therefore,
symbol generation must be initiated as close as pos-
sible to the fault onset. Given measurement noise, reli-
able fault detection occurs some time after the onset
of the fault. Symbols computed around the time of
detection will be a less accurate description of the
transient dynamics at the point of fault occurrence. To
improve on this we compute an estimated time of fault
occurrence and align the symbol generation with that
point in time. We follow a principle that is well known
from abrupt change detection theory (Basseville and
Nikiforov, 1993), where the change point is computed
after detection by further analysis of the decision func-
tion. Our approach is illustrated in Fig. 3. Assume that
the fault occurs at time

���
. As we slide the analysis

window of length N over the transient signal the deci-
sion function increases, and crosses the threshold for
detection � at time

���
. The decision function reaches

a maximum value at
��	

, which indicates that at that
point, the alignment of the analysis window with the
transient signal captures the most time-frequency en-
ergy in the signal.

Analysis window 

time

time

h




������� �

����� �

Fig. 3. Time line for detection with landmark points for
alignment of the sliding window with the signal.

The maximum in the decision function provides the
reference point that is used in the estimation of the
time of fault onset, ���� . We determine

� 	
for an observed

fault transient, and compute ���� as ���� � � 	 ��� . The
parameter � defines an offset, that will be discussed
shortly. The goal is to compute ���� so that

����� ������
� �

. This avoids the case where ���� � ����� � , which
may result in generating the wrong symbol values. To
determine � we perform a simulation study for the
system. To avoid symbol generation errors we make

a conservative estimate and set � � ��� ��! #"$ #% � � " � ,
generated from N experiments. Note that when the
threshold for detection is increased, the detection delay
will increase also. Consequently, the relative benefit of
computing ���� increases also. For an increasing fault
size, the detection delay decreases, and the gains from
computing ���� are diminished.

2.5 Symbol generation

We compute both the magnitude and the derivative es-
timation symbols using linear estimators. A basic sam-
ple mean estimator is used for the magnitude symbol.
We select a short, length 5, estimator, to avoid exces-
sive smoothing of a discontinuous onset for a transient.
For the derivative estimation, a minimum variance un-
biased estimator is used (Manders et al., 2000a). For
this estimator we select a long window to achieve max-
imum noise suppression. The combination of these
two estimators is admittedly configured to perform
especially well on transients that have a discontinuity
at the onset.

Assuming that the system model is correct, threshold
values for symbol generation are chosen to avoid fault
isolation errors. This means that the initial hypothesis
set should contain the correct candidate (although it
will also contain spurious candidates), and that that
candidate is not subsequently eliminated. While a true
zero error probability is not practically possible, we
can nevertheless set the thresholds to get a near zero-
error rate under specific constraints. Thresholds are
determined in a simulation experiment for all faults
of interest and a fault size such that PD=0.9. Starting
with low threshold values, thresholds are increased in
iteratively until a zero error rate is obtained for both
the magnitude and the derivative symbols.

3. EXPERIMENTS WITH A DAMPED
SPRING-MASS SYSTEM

We evaluate the TRANSCEND scheme using a simu-
lated third-order damped spring-mass system shown
in Fig. 3. The system consists of two masses, & � and
& # , each connected to a damper, with friction coeffi-
cient ' � and ' # , respectively. A spring with stiffness
parameter ( connects the two masses. Our model
parameters are generalized physical system phenom-
ena, i.e., inertia parameters, ) � and ) # are used for
masses & � and & # , respectively, a capacitance param-
eter, � � � 0+* ( represents the spring, and resistances
' � and ' # represent the friction processes. The system
has one input, a force , � acting on & � . The state
vector for the system is - � �/. � ( , # ( . # ��0 . Fig. 5
shows the TCG, where the vertices corresponding to
the state variables are 1 � , 2+3 , and 154 , respectively. The
other vertices correspond to force and velocity values
at different points in the system.

For this third order system we select a measurement
vector �/. � ( , # ( . # � . For the nominal parameter values
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Fig. 4. Damped spring-mass system.
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Fig. 5. Damped spring-mass system TCG.

(Fig. 3), the rise time of the system is approximately
0.2 (s). A suitable sampling rate,

�
	 � � � � 0 (s),
corresponds to a 5x oversampling rate. The input to
the system is a unit step signal on , � . The nominal
behavior is assumed to be the steady state response to
the unit step input. We add zero-mean Gaussian noise
with � � � � � 0 to all measured signals.

We design a DWT/power-law detector with an analysis
window of N=64 samples, corresponding to a DWT
decomposition of 6 levels (

���� # ����� � ). The optimal
value of the power-law exponent for our system is
determined in a simulation experiment, giving a value
*/��� � 0 , which is in the (1.8–2.5) interval suggested
in (Wang and Willett, 2001). We set the probability
of false alarm, PFA= 0 � 4�� , and determine the value
for the detection threshold, � =3000, by simulation.
The offset � in the computation of �� � was found to
be 55 samples (zero errors in 100 realizations). As a
reference for the time-frequency (TF) detector we use
a energy detector (ED). The energy detector exploits
no information about the signal and represents a lower
bound for statistical detection performance.

As a fault scenario, consider an increase in the capac-
itance parameter, � 3� (physically this corresponds to
a weakening of the spring). Fig. 6 shows the noise
free residual for this fault. Table 1 shows performance
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Fig. 6. Residual for fault � 3� and fault size 10%.

results (averages from 20 realizations). The time-
frequency detector performs noticeably better than the
energy detector, and for a fault size of 3% has ex-
cellent detection performance (probability of detection
PD=1). For this fault size, ���� � � �

is -0.08 (s), which
means that ���� is 8 samples closer to

���
than

� �
.

Fig. 7 shows the result for a simulation run with
fault size 4%. The residual signal for measurement

2+3 , the DWT decomposition (absolute value of the
detail coefficients as gray scale values), the power-law
decision function, and the fault isolation sequence, are
shown in top down sequence. For this realization, �� �
is slightly better than average for this fault size. The
time

����� ��� � ��� (s), is the point where hypothesis
generation is triggered (this is the system time, in
real time,

� ���
is delayed by the peak detection in the

decision function). The delay between estimating the
fault onset, and generating the first symbol,

� ��� � ���� �
� � � � (s), or 5 samples, the length of the magnitude
estimation FIR filter.

Fault isolation occurs in two steps: at time step 0,
which corresponds to

� ���
, hypothesis generation is

triggered by an observed magnitude deviation (‘ � ’)
for measurement 2 3 ( , # ), Shown are the set of fault
hypotheses for the generated candidates (we compute
third order signatures). At time step 11, a ‘

�
’ deriva-

tive symbol is computed for 2 3 . The observed quali-
tative transient behavior is thus ( � ( �

). The signature
for fault � 3� for 2+3 is ( � ( � ( �

). This signature cor-
responds to a discontinuous change, because the first
non-zero predicted derivative is opposite from the di-
rection of the initial deviation. The matching algorithm
indicates that the observed behavior matches this sig-
nature, because the progressive monitoring algorithm
implies that this second order effect will propagate
to an observed first order effect. No other candidate
signature matches the observed behavior for 2 3 so all
other candidates are dropped. Consequently, the final
hypothesis set contains only candidate � 3� . Note that
the time from �� � to time step 11 is 19 samples, the
length of the FIR derivative estimator.

Table 2 shows the precision of the fault isolation
results (the size of the final hypothesis set) for different
fault sizes, with 10 experiments for each fault size. The
’count’ column indicates the number of occurrences
for each of the possible final hypothesis sets, grouped
by fault size. For a fault size of 3%, fault isolation is
not sufficiently precise, although we have seen that the
probability of detection for this fault is very good. At
a fault size of 5%, maximum fault isolation precision
is consistently achieved. The true candidate is never
dropped, regardless of fault size.

As a last illustration, Table 3 presents fault isolation
results for fault, ) 3� . The final hypothesis set may be
one of three different sets over the range of fault sizes.
The gradual reduction in the final hypothesis set is
the result of symbols computed from different residual
components.

size SNR �! �"$# �! �%'& (*),+-(�. /(�.�+0(�.
1.5% 14.0 0.7 0.65 0.19 0.07
2% 17.1 0.95 0.8 0.16 0.04
3% 20.5 1.0 0.9 0.11 0.03
4% 22.9 1.0 0.95 0.07 0.03
5% 24.8 1.0 1.0 0.03 0.02

Table 1. Fault detection performance for fault � 3� .
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����� � � � ��� (s).

size SNR (dB) final hypothesis set count

3% 20.5
no candidates generated 1! 	� , " 	� , " �# , $ 	 � , $ �# 7! 	� 2

4% 22.9
! 	� , " 	� , " �# , $ 	 � , $ �# 6! 	� 4

5% 24.8
! 	� 10

Table 2. Fault isolation precision for fault � 3� .

size SNR (dB) final hypothesis set count

9% 23.2
! 	� , " 	� , " �# , $ 	 � , $ �# 10

10% 24.1
! 	� , " 	� , " �# , $ 	 � , $ �# 2
" 	� , $ 	 � 8

12% 24.3
" 	� , $ 	 � 4
" 	� 6

20% 25.6 " 	� 10

Table 3. Fault isolation precision for fault ) 3� .

4. CONCLUSIONS AND DISCUSSION

We have developed a robust scheme for FDI of abrupt
faults in components of continuous dynamic systems.
The method is based on analysis of fault transients
in the measurements. Statistical detection and estima-
tion techniques are coupled with a qualitative model-
based fault isolation scheme to achieve a robust so-
lution that accomodates both measurement and model

uncertainty. By separating the detection and isolation
tasks the performance of each task can be determined
systematically. We exploit a signal model suitable for
fault transients and a statistical decision function to
achieve good detection performance. Good detection
performance can be achieved for a fault size that is
smaller than required for consistently precise fault iso-
lation. Robust fault isolation shows that diminishing
information results in lower fault isolation precision
while maintaining accuracy.
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