
A Model Integrated Computing Tool-Suite for
Fault-Adaptive Control

Eric-J. Manders, Gautam Biswas, John Ramirez, Nagabhusan Mahadevan, Wu Jian
and Sherif Abdelwahed

�

Abstract. The proliferation of safety-critical embedded systems has
created great demands for online fault diagnosis and fault-adaptive
control techniques. A number of methodologies have been proposed,
but the implementation of on-line schemes that integrate the fault de-
tection, isolation, identification, and fault accommodation or recon-
figuration tasks remains challenging. We present a tool chain using a
Model Integrated Computing (MIC) approach to develop Fault adap-
tive control systems. The domain specific features support physical
system behavior modeling using the Hybrid Bond Graph paradigm.
This, combined with models of the controller, fault detection, iso-
lation, identification, fault-adaptation and reconfiguration schemes
provides the basis for developing the run-time online computational
system. The key component of the runtime system is an active state
model representation that is dynamically updated as mode changes
occur in the system. FDI is realized through the Hybrid TRANSCEND

scheme, and a decision theoretic approach to fault adaptivity is being
developed. An additional feature of our system includes a simulation
system automatically generated from the system model that allows
for experimentation with a range of fault scenarios. We illustrate the
work on a water recovery system application.

1 Introduction

The increasing complexity of embedded systems and their use in
safety-critical applications has imposed strict requirements on their
reliability, robustness, and availability. These concerns are guiding
the development of model-based approaches to diagnosis, and they
include a wide range of solution paradigms that range from tradi-
tional signal analysis and control systems approaches [8] to the use
of artificial intelligence techniques [9]. A particular solution may em-
phasize an aspect of the diagnosis problem, i.e., fault detection, fault
isolation, and fault identification (FDI

�
), and a comprehensive diag-

nosis architecture may combine multiple design approaches [8].
However, to achieve autonomy, the overall objective must extend

beyond FDI to the task of invoking actions online during operation
that mitigate the effects of the fault. This makes the system design
problem quite complex because they may combine controller adap-
tation or system reconfiguration to compensate for or to eliminate
the effects of the fault. The online scheme for FDI

�
and fault recov-

ery/accommodation requires a number of component modules that
are by themselves complex, and their composition results in a very
complex run time computational system that has to meet a number of
performance guarantees. Runtime diagnosis architectures have been

�
Department of Electrical Engineering and Computer Science, and the Insti-
tute for Software Integrated Systems, Vanderbilt University, P.O. Box 1824
Station B, Nashville, TN 37235-1592 USA. Phone: +1 615 322-0732, fax:
+1 615 343-6702. (e-mail: � gautam.biswas � @vanderbilt.edu)

proposed in the literature (e.g., [8]), but there are few systematic ap-
proaches to developing tool chains that support generating of runtime
systems for the given architecture. Further, there are few tools that
provide support for exploring and analyzing the design space with
the goal of coming up with good modular and integrated system de-
signs. These notions are particularly important when the FDI

�
and

fault adaptive control system are realized as an embedded system ap-
plication, where the computational system has to be tightly coupled
with the actual physical plant.

This paper describes an approach to building such a tool chain
using a Model Integrated Computing (MIC) [12] approach developed
at the Institute for Software Integrated Systems (ISIS) at Vanderbilt
University. The tool chain, called Fault Adaptive Control Technology
(FACT), implements our approach to modeling, diagnosis and fault-
adaptive control. The tool set comprises of three primary aspects:
(i) an environment for building dynamic models of the physical plant,
its interface hardware that includes sensors and actuators, and the
controller; (ii) Computational environments and run-time support for
FDI

�
and fault adaptive control as an embedded system application;

and (iii) a simulation environment based on the plant, interface, and
controller models that allows for running simulation experiments of
nominal and faulty system scenarios. This provides a powerful tool
for testing system performance under different fault scenarios.

The implementation of FACT is a work in progress and currently
covers a set of specific techniques for building the different run-
time components of the fault-adaptive control system. System behav-
ior is modeled using a component-oriented, compositional modeling
scheme using the underlying Hybrid Bond Graph (HBG) modeling
paradigm [14] to build the physical process models. A hybrid ob-
server scheme based on the HBG model, combines extended Kalman
filter schemes with hybrid automata to track system behavior. On-
line FDI is built upon an extension of the TRANSCEND approach for
qualitative hybrid diagnosis coupled with quantitative parameter es-
timation for fault identification [3, 13]. The FACT tools have been
evaluated on several real-world applications [15]. In this paper, we
focus on the specifics of the design and implementation of the tool
chain, and describe its application to a Water Recovery System, a
component of an Advanced Life Support system for extended dura-
tion human space exploration [7].

Section 2 gives a brief introduction of the water recovery system.
Section 3 introduces the modeling tools, section 4 describes the sim-
ulation support, section 5 the run-time system support, and section 6
presents conclusions of this work.

2

Membrane
Module

1

Brine Permeate
(output)

Tubular
Res

P

To PPSTo AES

Feed
Pump

Recirculation
Pump

P

K

P

Secondary
Loop

Primary
Loop

3

F

From BWP (GLS)

Figure 1. Process engineering diagram of the Reverse Osmosis subsystem.

2 The Advanced Water Recovery System

An actual Water Recovery System (WRS) testbed was designed and
built at the NASA Johnson Space Center (JSC), and a detailed de-
scription of this system may be found in [4, 16]. Throughout this pa-
per, we focus on the Reverse Osmosis (RO) subsystem of the WRS.
Figure 1 shows its process engineering diagram [7, 16].

The RO system receives waste water from the Biological Waste
Processor (BWP) after organic compounds have been removed from
it. This water is pushed at high pressure through a membrane, the
key functional component [16] of the system. Clean water, passes
through to the Post Processing system (PPS), and the remaining wa-
ter is recirculated in a feedback loop. As a result, the concentration of
impurities in the recirculating water increases with time. The water
that is recirculated will eventually be transferred to an Air Evapora-
tion System (AES) for additional treatment.

The system cycles through three operating modes, which are de-
termined by the position of a multi-position valve. The feed pump,
which is always on, pulls effluent from the BWP and creates a flow
into a tubular reservoir (coil). In the primary mode the input flow
into the system is mixed with the recirculating water (recirculation
loop). The recirculation pump boosts the liquid pressure and pushes
it into the membrane. A transition to the secondary mode occurs after
a predetermined time interval. In secondary mode the recirculating
fluid is directly fed back to the membrane in a smaller loop to in-
crease flowrate and maintain sufficient flow through the membrane.
Membrane resistance increases as it accumulates dirt over time. The
outflow of clean water from the loop causes an increase in brine con-
centration in the water remaining in the loop, and at a predetermined
point that corresponds to 85% of volumetric recovery of water, a tran-
sition is made to the purge mode where the recirculation pump is
turned off, and concentrated brine is pushed out to the AES subsys-
tem. The system then cycles back to the primary mode. A complete
cycle (modes 1 through 3) takes approximately four hours.

The actual physical system has been extensively instrumented.
Figure 1 shows the five measured variables that are used for diagnosis
in the current work: (i) the pressure immediately after the recircula-
tion pump, ��������� , (ii) the pressure of the permeate at the membrane,
���
	��� , (iii) the pressure of the liquid in the return path of the recir-
culation loop, � ������� , (iv) the flow of the effluent, � ��	���� , and (v) the
conductivity of liquid in the return path of the recirculation loop, � .
The sampling time on the sensors is assumed to be 120 (s).

3 The FACT modeling paradigm

The design of the tool chain follows a Model Integrated Computing
(MIC) approach. Key elements of a MIC-based approach are:

1. a Domain Specific Modeling Language (DSML) defined using a
meta-programming environment,

2. a Domain Specific Modeling Environment (DSME), that is created
by instantiating the DSML in a meta-programmable modeling en-
vironment, and

3. model translators/interpreters, that generate analysis tools and
synthesize software components.

The DSML for the FACT approach, referred to as the FACT model-
ing paradigm [11], is being developed using the meta-programmable
Generic Modeling Environment (GME) application [12].

The FACT paradigm supports three types of models: (i) Plant mod-
els, that define the dynamic behavior and describe the interface of a
physical system, (ii) Controller models, that describe the algorithms
used to operate the plant, and (iii) System models, that compose the
plant and controller models.

The user constructs a model of the application through a com-
positional, component-oriented approach. The use of component li-
braries can facilitates model reuse when available. Components are
connected through input and output ports, and a constraint manager
prevents the user from making modeling errors by dis-allowing unin-
tended connections. Furthermore, models can be constructed through
hierarchical decomposition allowing multiple abstraction levels.

To reduce visual clutter for the modeler, a model type may have
multiple viewing aspects. For the plant model, the primary aspects
are the system dynamics (HBG), and Input/Output aspect. The con-
troller model defines a finite state machine aspect and a reconfigura-
tion aspect. Plant and controller models are discussed in detail in the
next section.

There are currently two model interpreters in the paradigm: (i) an
interpreter that generates a MATLAB/Simulink simulation model of
the system, and (ii) an interpreter that generates the model repre-
sentation used to instantiate the run-time FDI

�
/fault adaptive control

system. It is this latter representation that is used to create model
representations for tracking system behavior, quantitative and qual-
itative diagnosis components, and parameters to configure run-time
algorithms.

3.1 The Plant Model

3.1.1 Systems Dynamics Aspect: Hybrid Bond Graphs

The component oriented, hierarchical modeling approach in the
paradigm supports the creation of intuitive behavioral models for
the system, that can be tailored to the diagnosis and control appli-
cation. Multiple levels of abstraction allow the modeler to follow
the engineering design of the physical system that is being mod-
eled. At the lowest level in the behavior model, the components are
represented as Hybrid Bond Graph (HBG) fragments. Hybrid Bond
graphs (HBG) are an extension of the bond graph formalism that al-
lows some elements to have discrete states, giving the modeler the
ability to create domain-independent models that can describe both
continuous and discrete behaviors of a system [14].

Components in the plant model can be connected through three
types of ports: (i) decision ports communicate discrete information
about modes of operation, (ii) energy ports handle the transfer of
energy, and (iii) double valued ports, pass numeric information (sig-
nals) to sensors or other functions in the HBG.

Mode changes in the system add discrete components to continu-
ous system behavior. They may be attributed to control actions or
autonomous changes, i.e., when state variables of the system ex-
ceed pre-specified threshold values. In hybrid bond graphs, mode

2

Figure 2. FACT paradigm model of the RO system at the highest level, showing the HBG model view. The refinement model of the RO membrane
component is a flat HBG model. The attribute editor for the modulation function MembMod shows the algebraic relation on the K in input signal.

changes are reflected by junctions that turn off and on based on the
value of switching signals. This is achieved through decision func-
tions, that compute the switching signals as a function of system
variables. Nonlinear systems are modeled by components that have
time-varying parameters, i.e., their parameter values are functions of
system variables. The functions capturing the nonlinear behaviors are
called modulation functions.

Figure 2 shows the top level model of the RO system in the HBG
aspect. The components of this system appear as blocks at this level.
All components are represented at the lowest level of the hierarchy by
HBG model fragments. As an example, we show the HBG fragment
of the RO Membrane. All three types of ports are used in this HBG
component, a double value port (K in), a decision port (Purge)
and an energy port (FlowIn). The HBG for the RO Membrane
component also has a modulating function that defines the value of
RO Resistance Rmemb as a function of the water conductivity K in.
The attribute pane for the modulating function element is shown. The
specification field shows the actual function.

3.1.2 I/O Aspect: Sensors and Actuators

The Input/Output aspect of the plant defines how the connection be-
tween plant components and actuators and sensors. Sensors measure
plant variables associated with junctions in the HBG model. A sensor
connected to a one-junction will read the flow value at that junction,
while a sensor connected to a zero-junction will read the effort value
at that junction. Actuators may be either continuous or discrete. Sen-
sors and actuators may also have attributes associated with them.

3.2 The Controller model

The controller’s task is addressed at two levels. At the supervisory
(discrete) level, reconfiguration implies modification of high-level
control actions, such as changing pump speeds, and turning valves
and pumps on and off. At the lower (continuous) level of control, the
system relies on regulators. Reconfiguration at this level can take on
three different forms: (i) set point changes, (ii) controller tuning, and
(iii) structural changes. The Reconfiguration Manager is responsible
for identifying the necessary reconfiguration tasks and initiating the

reconfiguration process. The Control aspect aspect supports reconfig-
urable control designs. Control switching is specified using a finite
state machine representation, and actual controllers are linked in as
resources in attribute descriptions of control components.

In the FACT architecture, the control component is implemented
in software. The designer supplies two models: (i) the structural
model, which is based on a run time computational architecture,
and specifies the interconnections between the plant and the con-
trollers through the I/O interfaces, i.e., sensors and actuators; (ii)
the behavioral model, that captures low level controller behavior as
a state machine. The state transitions in the state machine are gov-
erned by events (timers) and/or guard conditions generated from in-
ternal events and external (input) signals. External events may in-
clude events generated by the FDI

�
system. Each state may be asso-

ciated with one or more actions that are executed on entry, exit, or
while continuing to remain in that state. At the supervisory control
level, reconfiguration strategy models describe the different configu-
ration (modes of operation) of the controller, and the possible transi-
tions between the configurations. This is described as a parallel state
machine. In section 5, we demonstrate an online fault-adaptive re-
configurable decision-theoretic controller applied to the RO system.

4 Experiments with Fault Scenarios

Simulation tools are essential for developing the right models of
complex systems. Through an iterative process, system behavior gen-
erated by simulating the models allows the the designer to refine the
models by comparing against actual system measurements, and then
using parameter estimation techniques to improve model accuracy.
The simulation environment provides added functionality in that it
allows modelers to insert parametric faults into system components
at user-specified times during system operation, with a chosen fault
profile and fault magnitude. This provides a powerful tool for testing
fault-adaptive performance of the system in a simulation environ-
ment.

The model interpreter constructs an abstract representation of the
HBG model, and then synthesizes a new model representation for a
particular simulation environment, currently MATLAB/Simulink.
However, other implementations may target alternate simulation

3

GME

Model
 Intepreter

 Data Generation

Code Generator

Sequential

Causality

Assignment

Procedure

Controller Interface

Simulink model
mode changes

causality

assignment

Figure 3. Mapping the GME model to a Simulink model.

models, such as Modelica [5]. A Graphical User Interface
allows easy scenario construction, and manual editing of the
MATLAB/Simulink model is not required.

The simulation consists of two main components: (i) the Simulink
block diagram, and (ii) a causality assignment (SCAP) algorithm.
These two components contain all the information described in the
Hybrid Bond graph as well as the Input/Output aspect information of
the model. Figure 3 illustrates the mapping of the GME model to the
Simulink model.

HBG components are implemented as a library of Simulink
blocks. The Simulink model preserves the component-based hierar-
chy of the system model. To facilitate inspection of the generated
model, all layout information from the GME model is retained. Fig-
ure 4 illustrates the top-level MATLAB/Simulink model for the RO
system, showing the controller, the system and the data plotters for
visualization.

Figure 5 shows the mathematical representation of a capacitor
component created by using blocks from the predefined library of
the conversion package. Similarly, junctions, which are multi-port
bond graph elements translate to summation blocks in the Simulink
model. The mathematical relations captured by the junctions are al-
gebraic, and they depend on the junction type (common effort and
common flow) and the direction of the connecting bonds. The con-
necting bonds establish the energy flow paths among the connected
elements. The causal structure established by the SCAP algorithm,
described below, establishes the order in which variable values are
calculated using the algebraic relations.

The notion of switching junctions is preserved in the simulation
model. Junction blocks may be enabled/disabled which effectively
connects and disconnects all connected components. Mode switching

Figure 4. Top-level MATLAB/Simulink model of the RO system as
generated by the interpreter, showing the controller block, the system model

block, and components to display simulation data.

Figure 5. Simulink model of a capacitor, with FaultGen block detailed.
Fault profile and time of fault occurrence are parameters to this component.

requires the simulator to recompute the causal relations among the
variables in the new mode, and then update the junction blocks with
this information. The causality assignments are computed based on
the Sequential Causality Assignment Procedure (SCAP) [10] after
every mode change. Junctions use the updated causality assignments
to determine the order in which the system variables must be solved
to allow efficient simulation.

5 On-line Model-based FDI
�

and Fault adaptivity

The run-time FACT system is configured through the model repre-
sentations generated by the GME-translation step. At system startup
this is used to build a dynamic representation of the controlled phys-
ical plant, as a hybrid system with reconfigurable control. It is also
used to configure the FDI

�

functionality and fault adaptive behavior.
The architecture of the FDI

�

part of the system, the Hybrid ex-
tension of TRANSCEND, is shown in Figure 6. The model-based
approach combines robust tracking of nominal system behavior us-
ing extended Kalman filter techniques [6], statistical fault detection
and symbol generation techniques, and fault isolation scheme that is
based on the qualitative analysis of the system dynamics immediately
after the time point of fault occurrence followed by quantitative pa-
rameter estimation to further resolve fault isolation if needed and also
identify the fault [3]. The extension of these methods to hybrid sys-
tems incorporates both controlled and autonomous mode switches.
The key components of the architecture are the active state model
(ASM), the hybrid observer, and the combined FDI

�

components.
Each of these components is supported by the run-time environment
to create a highly configurable FDI

�

system.

5.1 Active State Model

The Active State Model (ASM) is a dynamic component that main-
tains the current model of the system at run time. It has two compo-
nents: (i) the structural model that contains the HBG model of the
system, and (ii) the model parameters, which is a data structure that
contains the current value of all model parameters. Parameter values
are updated either in response to mode changes, or upon completion
of parameter identification in response to a fault. The ASM contains

4

all information to generate the alternative model representations in
the system: (i) a state-space model used by the extended Kalman
filters in the hybrid observer and the optimization algorithm for pa-
rameter estimation, and (ii) a Temporal Causal Graph (TCG) model
used by the qualitative fault isolation algorithm.

5.2 Hybrid Observer

The hybrid observer includes an Extended Kalman filter, and a mode
estimation component [11]. The estimated state is used to determine
any autonomous mode changes. The estimated output variables are
computed to allow the computation of a numerical residual as the
difference between observed and estimated outputs.

5.3 Fault detection, Isolation and Identification

Through the sequence of fault detection, isolation, and identification
an underlying data flow model defines the top-level computational
model in the system.

Fault detection takes the numerical residual as input. The architec-
ture allows for decoupling the fault detection from the symbol gener-
ation for the qualitative fault isolation scheme. The signal-to-symbol
transformation component is realized as a bank of concurrent gener-
ators, one for each element in the residual vector. A single channel
signal-to-symbol transformation, is realized as a filter bank, where
each symbol is computed using FIR filters with quantization on the
outputs [11].

Qualitative model-based fault isolation, the core of the TRAN-
SCEND approach, implements a hypothesis generation and refine-
ment scheme. During the hypothesis refinement phase, branching
behavior maintains the valid hypotheses over all possible hypothe-
sized modes for the faulty system. Finally, the quantitative parameter
estimation phase is initiated after qualitative fault isolation cannot re-
duce the candidate set any further. This too, can be generalized to a
generic fault identification scheme.

5.4 Decision Theoretic Control

An online adaptive control mechanism implements a resource man-
agement scheme using a decision-theoretic controller based on a
multi-attribute utility function that models system performance:���������
	��� � ��� � �

, where each
� �

corresponds to a value function
associated with performance parameter,

� �
. The parameters,

� �
, can

ControllersControllers

Hybrid Observer

(EKF)

 Fault Detection

Physical

System

Signal To Symbol

Transformatin

Qualitative

Fault

Isolation

Quantitative

Fault

Isolation

Residual Generation Residual Evaluation

+

Model N

Hybrid Bond Graph (HBG)

Models
Models

State

Space

Temporal

Causal Graph

Discrete

Time

Controllers Supervisor

Fault Adaptive Control

Active State Model

PSfrag replacements
u y

ŷ

x̂

r
s

fi f j�

Figure 6. FACT run-time system architecture.

be continuous or discrete-valued, and they are derived from the sys-
tem state variables, i.e.,

� � ������� �
� �����������

. The value functions cur-
rently defined in our FACT paradigm are simple weighted functions
of the form

� � ��� � ����� ��� � �
, where the weights take on values in

the interval ������� �"! , and represent the importance of the parameter in
the overall operation of the system. The supervisory controller uses
the active state model to predict possible behaviors corresponding
to different action sequences for a finite forward time horizon, and
then selects the action (i.e., control input) that maximizes the utility
function. This process is then repeated for the next time step, and
so on. Since the optimizing function operates on the current system
model, the optimizing controller is fault adaptive. Decision making
is adapted to the model with the newly estimated parameter value for
the faulty component.

5.5 Fault scenario: Decrease in pump efficiency

For completeness we illustrate the operation of TRANSCEND on a
fault in the RO system. A decrease in the efficiency of the recircu-
lating pump is modeled by a decrease in the value of a bond graph
component parameter of the pump, the gyrator, #%$. We indicate this
fault scenario as #%$'& . Figure 7 shows the simulated plant data in-
cluding the controller signals and the output of the observer, and the
computed residual signals.

Table 1 shows the fault isolation results. Four qualitative fault
isolation steps reduce the set of candidates from twelve model pa-
rameters down to three. Quantitative fault isolation and identification
achieves the desired fault isolation result by eliminating the remain-
ing spurious candidates and provides a good estimate (slight over
estimation) of the actual fault size. On completion of the parameter
estimation, the hybrid observer is updated with the new parameter
values, and continues to track the new behavior, where the known
changed system behavior becomes the nominal behavior. Complete
diagnosis results for this system are presented in [2].

The online controller compensates for the fault by changing the
mode switching pattern, and keeping the system in primary mode
for a longer time in each cycle. The overall average utility after the
occurrence of the fault decreased by only ()�*�+ for this example. The
details of the fault adaptive behavior for this example are presented
in [1].

6 Discussion and Conclusions

We have presented a MIC tool-suite for developing model-based
FDI

�
and fault adaptive control systems that captures many of the

general concepts that apply to this problem domain. The specific
implementation of the FACT approach that represents our on-line
diagnosis and fault-adaptive control schemes represents a reference
realization of the archtecture.

Our long-term goal is to provide a computational framework
that captures FDI

�
and fault accommodation concepts in a general

enough manner, so that the framework may be used by researchers to
implement their particular solutions in an efficient manner.

ACKNOWLEDGEMENTS

This work was supported in part through grants from the NASA-
IS program (Contract number: NAS2-37143), DARPA SEC pro-
gram (Contract number: F30602-96-2-0227), and the NASA-ALS
program (Contract number: NCC 9-159). We acknowledge the help
provided by Gabor Karsai and Gyula Simon and Vanderbilt in the
development of the FACT architecture.

5

0 2 4 6 8 10 12

0

500

1000

1500

Pp
um

p
(p

si
)

0 2 4 6 8 10 12

0

200

400

600

800

Pm
em

b
(p

si
)

0 2 4 6 8 10 12

0

200

400

600

800

Pb
ac

k
(p

si
)

0 2 4 6 8 10 12
1

1.5

2

x 10
4

K
(m

S)

0 2 4 6 8 10 12

0

5

10

15

Fp
er

m
 (m

l/m
in

)

0 2 4 6 8 10 12

Purge

M2

M1

D
is

c.
 C

on
tr.

time (hour)

0 2 4 6 8 10 12

−200

0

200

Pp
um

p
re

s

Step 0

0 2 4 6 8 10 12

−100

−50

0

50

100

Pm
em

b
re

s

0 2 4 6 8 10 12

−100

−50

0

50

100

Pb
ac

k
re

s

Step 2

0 2 4 6 8 10 12

−1000

0

1000

K
re

s

Step 3

0 2 4 6 8 10 12

−2

0

2

Fp
er

m
 re

s

time (hour)

Step 1

Figure 7. Simulation results for an abrupt fault ����� , showing the data (l) and residual (r). Fault size 5%, occurring at ���	��
�������������������������� !��� .
(primary mode in the second cycle).

Fault "$#%"'& Step Symbolic Fault Hypotheses and final parameter estimation

(*),+
, 5%" &.-0/12�2�2

200 0 354�6 -�7 #98;: < =*>? , = >@9A'@9B , C >&�D , C�>A D , E +B�F�GIH�A , JLK9> , E +D G D A , E +@MAN@9B , = >O , E > &5D , EP>A D ,
(*),+

880 1 QSR�T -U7 #M85: < C >&5D , C�>A D , E +B�F�GIHSA , JVKM> , E > &5D , EP>A D ,
(*),+

1240 2 3 /9-U7 #98;: < C�>A D , E +B�F�GIH�A , EP>A D ,
(M)�+

1960 3 3;4�T -�7 #M8;: < C�>A D , EP>A D ,
(M)�+

parameter estimation:
(M)W+

changed by 0.934

Table 1. Diagnosis result for the ��� � fault.

REFERENCES

[1] S. Abdelwahed, J. Wu, G. Biswas, J. Ramirez, and E.-J. Manders, ‘On-
line hierarchical fault adaptive control for advanced life support sys-
tems’, in Proc 32nd Int Conf Environmental Sys, (2004). To Appear.

[2] G. Biswas, E.-J. Manders, J. Ramirez, N. Mahadevan, and S. Abdelwa-
hed, ‘Online model-based diagnosis to support autonomous operation
of an advanced life support system’, Habitation: An International Jour-
nal for Human Support Research, (2004). To Appear.

[3] G. Biswas, G. Simon, N. Mahadevan, S. Narasimhan, J. Ramirez, and
G. Karsai, ‘A robust method for hybrid diagnosis of complex systems’,
in Proc. 5th IFAC Symp Fault Detection Supervision Safety Technical
Processes, pp. 1125–1131, Washington, DC, (June 2003).

[4] P. Bonasso, D. Kortenkamp, and C. Thronesbery, ‘Intelligent control
of a water recovery system: Three years in the trenches’, AI Magazine,
19–43, (2003).

[5] W. Borutzky, ‘Bond graphs and object-oriented modelling a compari-
son’, J Systems Control Eng, Vol 216 Part I, 21–33, (2002).

[6] K. Brammer and G. Siffling, Kalman-Bucy Filters, Artec House, Nor-
wood MA, 1989.

[7] B.E. Duffield and A.J. Hanford, ‘Advanced life support requirements
document’, Technical Report JSC-38571, Rev. B, NASA-Lyndon B.
Johnson Space Center, Houston, TX, (September 2002).

[8] P. M. Frank, S. X. Ding, and B. Köppen-Seliger, ‘Current developments
in the theory of FDI’, in Proc. 4th IFAC Symp Fault Detection Supervi-
sion Safety Technical Processes, pp. 16–27, Budapest, Hungary, (2000).

[9] P. M. Frank and B. Köppen-Seliger, ‘New developments using AI in
fault diagnosis’, Engineering Applications of Artificial Intelligence,
10(1), 3–14, (1997).

[10] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, Systems Dynam-
ics: A Unified Approach, John Wiley and Sons, NY, second edn., 1990.

[11] G. Karsai, G. Biswas, T. Pasternak, S. Narasimhan, G. Peceli, G. Si-
mon, and T. Kovacshazy, ‘Towards fault-adaptive control of complex
dynamical systems’, in Software-Enabled Control – Information Tech-
nology for Dynamical Systems, eds., T. Samad and G. Balas, chapter 17,
347–368, Wiley-IEEE press, NJ, (2003).

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, ‘Model-integrated
development of embedded software’, Proc IEEE, 91(1), 145–164, (Jan-
uary 2003).

[13] P. J. Mosterman and G. Biswas, ‘Diagnosis of continuous valued sys-
tems in transient operating regions’, IEEE Trans. Syst., Man Cybern. A,
29(6), 554–565, (1999).

[14] P.J. Mosterman and G. Biswas, ‘A theory of discontinuities in physical
system models’, J Franklin Institute, 335B(3), 401–439, (1998).

[15] S. Narasimhan, G. Biswas, G. Karsai, T. Szemetzy, T. Bowman,
M. Kay, and K. Keller, ‘Hybrid modeling and diagnosis in the real
world: A case study’, in Working Papers Thirteenth Int Workshop Prin-
ciples Diagnosis, (June 2002).

[16] K. D. Pickering, K. R. Wines, G. M. Pariani, L. A. Franks, J. Yeh, B. W.
Finger, M. L. Campbell, C. E. Verostko, C. Carrier, J. C. Gandhi, and
L. M. Vega, ‘Early results of an integrated water recovery system test’,
in Proc 29th Int Conf Environmental Sys, (2001).

6

