
1

2nd International Workshop on Model-Based Design of Trustworthy Health Information

Systems, 2008

A Model-Integrated Approach to Implementing

Individualized Patient Care Plans Based on Guideline-Driven

Clinical Decision Support and Process Management - A

Progress Report

Jason B. Martin, MD
3
, Janos L. Mathe

1
, Peter Miller

2
, Akos Ledeczi, PhD

1
, Liza Weavind,

MD
3
, Anne Miller, PhD

3
, David J. Maron, MD

2,3
, Andras Nadas

1
, Janos Sztipanovits, PhD

1

1
 Institute for Software Integrated Systems

2
 Vanderbilt HealthTech Laboratory

3
 Vanderbilt University Medical Center

Vanderbilt University

Abstract. Standardizing the care of patients with complex problems in hospital settings is

a challenge for physicians, nurses and other medical professionals. In acute care settings

such as intensive care units, the inherent problems of stabilizing and improving vital

patient parameters is complicated by the division of responsibilities among different

individuals and teams. The use of evidence-based guidelines for managing complex

clinical problems has become the standard of practice. Computerized support for

implementing such guidelines has tremendous potential. The use of model-based

techniques for specifying and implementing guidelines as coordinated asynchronous

processes is a promising new methodology for providing advanced clinical decision

support. Combined with visual dashboards, which show the status of the implemented

guidelines, a new approach to computer-supported care is possible. These techniques are

being applied to the management of sepsis in acute care settings at Vanderbilt Medical

Center.

Introduction

Formalization of medical knowledge has been an active area of research since the 1960s. Early

efforts were focused on creating systems that mapped signs, symptoms and laboratory results

to probabilistic estimates of different diagnoses [1][2][3]. These systems, embodied as expert

systems, proved not to be practical for the everyday practice of medicine. Only with the

development of the electronic medical record (EMR) have knowledge-based systems proven to

be practical and been adopted by practitioners [4][5].

Medical knowledge-based systems today focus on computerized physician order entry

(CPOE) and clinical decision support advisory systems [6][7][8]. CPOE systems depend on

comprehensive EMRs to provide means to physicians and nurses to create and execute orders

for tests, procedures and medications. A system such as WizOrder, developed at Vanderbilt

2

University Medical Center (VUMC) and sold commercially as Horizon Expert Orders by

McKesson Corporation, contains multiple advisors that help physicians with issues such as

identifying potential adverse drug interactions or determining which combination of medicines

might be best for a particular patient [9][10]. CPOE and related systems are often termed

‗physician workflow‘ systems because they are designed to fit the normative matrix of

activities that flow from specific surrounding systems and the standardized practice of

medicine.

Another area being actively explored is the use of computer-generated alerts. By utilizing

rule engines through publish/subscribe models to actively monitor the patient‘s real time

status, they are looking for specific problems which should trigger an alert [11].

The next area of application of knowledge-based systems is process management. VUMC is

pioneering the use of process management ‗dashboards‘ to inform medical staff of the status of

required activities to be performed for patients with specific problems. This has been applied

to the management of ventilator acquired pneumonia (VAP), a serious consequence of a

patient‘s intubation and mechanical ventilation. The ‗bundle‘ of activities required to minimize

the development of VAP was created, and the status of these activities is shown using red,

yellow and green indictors. These are made available to the hospital staff as reminders of what

has been and what needs to be done.

The overall management of a complex medical process requires a formal representation of

treatment protocols in order to be able to show the temporal structure and coordination of the

tasks and the history of measurements that demonstrate status, trends and rates of change. The

key insight in our work is Model-Integrated Computing (MIC) [12][13][14], an approach and

its supporting tool suite for model-based software and systems engineering that has been

developed over the last two decades at Vanderbilt. This infrastructure offers new opportunities

in creating clinical decision support and process management systems. MIC focuses on formal

representation, composition, and manipulation of integrated models of information processes

and security/safety policies, and provides tools for automated system generation directly from

the models. The open-source MIC tool suite [15][16][17] addresses layered, multiple-view

system modeling, model transformation, model analysis and validation, execution, and design

evolution. The application of MIC principles and tools casts the creation of clinical decision

support and process management systems in the following framework:

1. Design of modeling language for treatment protocols. In MIC, modeling languages

are formally defined by metamodels [15][17]. The MIC metaprogrammable tools for

modeling, model management and model transformation are automatically

customized by the metamodels.

2. Modeling treatment protocols. Using the modeling language defined in step 1, models

of specific treatment protocols are created. These models are formal representation of

guidelines that drive the management of clinical processes. The precise semantic

foundation of the MIC modeling infrastructure and related tools enable validation and

verification of the models against a range of safety, privacy and security related

criteria defined as constraints or policies.

3. Generation of process management systems. Using the MIC model transformation

infrastructure, the verified models are translated into configuration files that

customize the generic run-time components (such as execution engine, Graphical

User Interface and EMR Interface) of the process management system.

3

The components of this framework are consistent with the Model-Integrated Clinical

Information System (MICIS) infrastructure [18], which is a generic tool suite for designing,

testing and deploying clinical information systems. The goal of this paper is to show the use of

the framework in creating a Sepsis Treatment Enhanced through Electronic Protocolization

(STEEP) application. Sepsis management is a complex and extremely information intensive

process performed in intensive care units and emergency departments. Application of

guidelines that can evolve with accumulated experience and can be customized to the needs of

individual patients has huge significance, which makes sepsis management an attractive

application target for MICIS. Since the overall effort is complex, we restrict our discussion to

the central issues in the model-integrated development approach: modeling language and

model specification, model validation and verification and the automated system generation

process.

Sepsis Management Problem

In an effort to maximize the impact of our process management tool, we sought a universal

clinical paradigm that was common, expensive (both in terms of hospital resources and

financial expenditures), and has accepted evidence-based treatment guidelines. We found

sepsis to be an ideal candidate for our intervention. The sepsis syndrome results from a robust

host reaction to infection and is characterized by a systemic inflammatory response, frequently

with hypotension and multiple organ failure. This disease process is very common, occurs with

a worldwide distribution, and can impact patients of any sex, race, or age. About 750,000 cases

occur in the United States annually [19], and about 30% of septic patients will die from the

disease [20]. Severely septic patients consume many hospital resources, requiring on average

7-10 days in the intensive care unit and up to 3-5 weeks total hospital length of stay. In the

United States, patients may accrue hospital charges of tens of thousands of dollars, and it is

estimated that sepsis-related expenditures approach $17B in the United States annually [21].

Given the large scope of this clinical problem, it is not surprising that many treatment

strategies have been proposed and investigated. The Surviving Sepsis Campaign (SSC), led by

experts from numerous professional organizations, seeks to improve the diagnosis,

management, and clinical outcomes in sepsis. The SSC has published a comprehensive set of

treatment guidelines based on graded clinical evidence that are widely considered to represent

the state of the art in sepsis management [22].

The SSC guidelines are complex and require multiple time-sensitive interventions based on

dynamic patient variables. In clinical practice, the treatment guidelines are often grouped into

―bundles‖ based on their ideal implementation time. For example, certain interventions are

targeted for completion within 6 hours of diagnosis, including obtaining appropriate cultures,

administering broad empirical antibiotics, and optimizing hemodynamics with early goal

directed therapy in patients with septic shock. Other priorities, such as deep venous thrombosis

and stress ulcer prophylaxis, are less time-sensitive but ideally completed within 24 hours.

Therefore, correct and timely implementation of the guidelines requires continuous

assimilation and interpretation of numerous pieces of patient data.

In the intensive care unit (ICU), the healthcare team must respond in a timely manner to the

needs of many patients with a diverse array of clinical problems. Managing the massive flow

of critical clinical information is challenging and may impede excellent care. For this reason,

the ICU is an excellent test bed for information technology (IT) interventions. Such IT

4

interventions can be categorized generally (in order of increasing sophistication) as clinical

reminders, clinical pathways, or real-time protocolized decision support tools. Clinical

reminders are ―pop-ups,‖ or similar passive cues, activated on every patient and intended to

remind a provider of a universal intervention. For example, clinical reminders are deployed

frequently to ensure that physicians remember to order deep venous thrombosis prophylaxis, a

measure required for most inpatients. Clinical pathways are lists of preferred interventions in

patients with a specific disease. For example, in a patient with hyperglycemia and diabetic

ketoacidosis, a physician may activate a treatment pathway and choose IV fluids, insulin, and

other interventions from a list of therapies commonly applied during the treatment process of

the disease. The most sophisticated IT interventions are real-time clinical advisory tools. Such

tools continuously monitor specific patient variables, and based on clinical guidelines, provide

treatment recommendations if an unmet clinical need is detected. There are few examples of

such sophisticated IT interventions in ICU medicine currently. To our knowledge, the current

effort is the most comprehensive attempt at managing sepsis though a sophisticated electronic

detection and management tool.

We anticipate that the STEEP application will 1) decrease time to detection of patients with

developing sepsis, 2) improve physician compliance with evidence-based standards as

described in the SSC, and 3) result in improved clinical outcomes for patients (ICU and total

inpatient length of stay, number of organ system failures and mortality rate).

The STEEP tool will monitor real-time patient data streams and, using specific laboratory

and vital signs criteria, will identify patients with possible sepsis. The lab and vital sign

abnormalities are quite sensitive for the diagnosis of sepsis, but lack specificity without clinical

input and contextual interpretation. Therefore, these patients with ―alert status‖ will be

identified to the healthcare team for further review. The patients are identified first by a visual

cue on the ICU dashboard; if this visual alert is not addressed in a timely manner, an electronic

notification via text page will be sent to appropriate team members. When responding to the

sepsis alert, physicians will be presented with an intuitive, visually rich, and educational

explanation of why the sepsis alert was activated, and they will be offered the opportunity to

activate decision support if there is a reasonable suspicion that the abnormal physiological

parameters are due to infection. If the physician activates decision support, the tool will assess

various patient parameters and provide customized decision support recommendations.

Overview of the System Architecture

On the highest level, MICIS-STEEP has two architectural views: the Modeling and Generation

view and the Operation view.

Modeling and Generation Architecture

The Modeling and Generation architecture is shown in Figure 1. The STEEP application

includes the model-based Execution Engine and two graphical user interfaces (GUIs), the

Sepsis Management GUI and the Supervisor GUI. The Execution Engine runs the sepsis

management process according to the specification in the Derived Protocol Representation

(XML) file.

5

The Protocol Models containing the formally specified treatment protocols are designed by

physicians using the Generic Modeling Environment (GME) [17]. The GME tool is a

metaprogrammable graphical model builder; it can be customized to the designed protocol

modeling language by defining its metamodel. The Protocol Models built with the help of the

GME tools are transformed into the Derived Protocol Representation (XML) files used by the

Execution Engine during operation.

Physicians use the Sepsis Management GUI to assess the treated patient‘s health status, to

make decisions based on the evidence-based guidelines present on the screen and to actuate

their decisions. Protocol Models are validated using Simulation. The Simulation Supervisor

controls the simulation of a patient‘s treatment using the Supervisor GUI. The supervisor

controls the environment which includes the patient‘s response to treatment and the behavior

of the other simulated players, which include nurses administering drugs and laboratories

delivering the lab results. Sample data for simulated execution of protocols are collected in

spreadsheets and translated into XML files that are accessed by the Execution Engine.

Figure 1 - Modeling and Generation Architecture

Operation Architecture

The Operation Architecture in Figure 2 shows the interactions among the Physician, STEEP,

and the related components of the clinical information system.

6

The interaction between the Physician and the STEEP is facilitated by the Sepsis

Management GUI by means of two panels: the Monitoring Panel and the Advisory Panel. The

Monitoring Panel presents a timeline where categorized patient health information can be

viewed in time in context with the actions of the therapy provided to the patient. Displaying

cause and effect relations involves linking patient data and treatments so that the effect of one

on the other can be seen; this is what we refer to as the action-reaction concept. The timeline

runs from the past, when the treatment started, to the current time. Health indicators, fed to the

system as a stream of data, include vital signs, such as temperature, blood pressure, heart rate

and central venous pressure, etc. Laboratory test results, like the white blood cell count, are

updated on the screen when the information becomes available. The panel also shows the

actions of the treatment that were provided or are scheduled to be provided to the patient (e.g.

the start of a normal saline (NS) treatment). All displayed data is temporally aligned in the

same columns.

Figure 2 - Operation Architecture

Once physicians have assessed the patient information they must actively make a decision

that the patient does or does not have sepsis. This decision is made in the Advisory Panel,

which is the main view for performing the protocol-based treatment of the patient. Once the

physician has assessed the patient data (visible on the Monitoring Panel) and any other

information (e.g. patient history, admission notes, and physical exams), the physician then

makes a formal diagnosis by using the built-in logic and the available action controls on the

Advisory Panel. These actions include higher level control (e.g. selecting the sepsis severity

level) as well as lower level controls (e.g. ordering of specific medications and procedures).

7

Design of the Clinical Process Management Language (CPML)

CPML is a domain specific modeling langue (DSML) designed for representing treatment

protocols. Specification of DSMLs requires the specification of their abstract syntax, concrete

syntax, semantic domain and the mapping between the abstract and concrete syntax (syntactic

mapping) and the abstract syntax and the semantic domain (semantic mapping) [16]. The

formal representations of these specifications are the meta-models and the language we use for

describing meta-models is the meta-language. In MIC, the meta-language for representing the

abstract syntax of DSML-s and the syntactic mapping is based on UML class diagrams (with

stereotypes) and the Object Constraint Language (OCL) [23]. The abstract syntax defines the

concepts, relationships, and integrity constraints available in the DSML. Thus, the abstract

syntax determines all the (syntactically) correct ―sentences‖ (domain models) that can be built.

In MIC, the formal representation of the semantic mapping is done by using graph re-writing

rules [15][24].

The precise specification of CPML has proved to be a hard problem due to the following

issues. First, operational protocols, policies and treatment guidelines of healthcare

organizations are rarely ever phrased in mathematically sound, unambiguous manner, which

makes the design of a formal modeling language difficult. Second, the protocols that describe

the medical processes constituting a treatment, their triggering conditions and their

coordination methods need to be considered as guidelines, and not rigid workflows that must

be enacted always the same way. This requirement is essential for the design of the execution

semantics of models.

Due to these challenges, the language development took several iterations. In our first

attempt, the language explicitly represented treatment trajectories as a connected, directed,

bipartite graph structure. The nodes were either decision points with predefined multiple

possible outcomes or actions representing treatment steps. The advantages of this approach

were that it followed the formalization efforts presented in the available medical literature [25]

and that it was simple enough. However, this approach did not prove to be efficient for

expressing complex treatments (like the one for described for sepsis) because it was not scaling

well due to the exponentially large number of potential trajectories generated by the many

concurrent and interacting treatment processes.

The following iteration of the CPML approached the problem from a new direction:

treatment steps were grouped together under the concept of processes. Processes are

concurrent, asynchronous and can interact with each other via events. In order to capture the

decision logic concisely, processes can be organized in a hierarchical manner. Processes listen

to events happening around them and will only start running if their triggering conditions are

satisfied. Coordination of processes is done with the help of events (and related messages). The

execution semantics of the selected process model corresponds to the well known

Communicating Sequential Process (CSP) model [26]. The major advantages of the CSP

approach is the possibility of using hierarchies and defining segments of a complex protocol

independently from each other (processes compose in CSP). This semantics proved to be more

intuitive to the physicians too, because it is closer to the way they tend to think of the different

cases they deal with.

The CPML language is defined by the metamodel, which is the placeholder for the

definitions of the various concepts we use to define a protocol. These concepts include the

aforementioned abstractions: the process and the protocol, to which the precise models

8

(defined in GME) are shown in Figure 3. The two highlighted boxes show the building blocks

of a protocol and the building blocks of a process.

Figure 3 - Segments of the CPML Metamodel (partial view)

To explain the metamodel in detail is not the focus of this paper however some of the major

concepts, without which the protocol modeling language would not be complete, are listed and

described in Table 1.

Table 1 - High-level concepts of CPML

Abstraction Description

Protocol Top level concept, in which medical protocols can be

described.

Medical Library Top level concept, which serves as the placeholder for

hierarchically categorizing general medical knowledge on the

three main information categories that are referred to in our

protocols: Patient Vitals, Patient Labs and possible

Medications.

9

Orderables Top level concept for building a hierarchy of bundles from

the elements defined in the Medical Library. Orderables are

the items that Activities of a Protocol refer to and are specific

to healthcare organizations.

Process Coordinated group of activities used in Protocols. Processes

help to decompose the treatment protocol and to categorize

the treatment steps. They are concurrent, asynchronous and

can interact with each other via Events.

Activity Activities are the lowest level components of a Protocol. They

are the items that a physician can order, including Lab

Bundles, Medication Bundles, single Medications and

Procedures.

Event Component used in Processes. Events refer to the activation,

starting and completion events of other components, such as

Protocols, Processes and Activities. They help to create

dependencies among the mentioned runnable components.

Step Example of a coordination primitive. It is the connecting

element with which the execution order of Activities within a

Process can be specified.

Synchronizing Merge Coordination primitive used together with the Step

connection. It defines a synchronization point in between

activities where multiple paths of the Step connection

converge into one single one. This means that if more than

one path is taken, synchronization of the active paths needs to

take place.

The example model in Figure 4 describes two components of a complete sepsis protocol

that were represented using CPML. The first open window in the figure shows the contents of

a fairly simple process, called ―Order Labs‖, which initiates the ordering of laboratory tests

(such as blood culture, etc.). It is a process with no entry condition and marked initially active,

which means that it will start executing immediately after the protocol starts. Since there are no

dependencies among the provided actions, (various laboratory tests), their execution will be

initiated simultaneously. During the execution of the protocol this translates to the following

behavior: after activating the sepsis protocol the physician receives reminders on the Sepsis

Management GUI that the ordering of the listed laboratory tests is advised.

The second example, in the second open window in Figure 4, describes the coordination

among the components of the ―Early Goal-Directed Therapy‖ process (EGDT) [25]. The

EGDT process contains subprocesses that get activated in the order specified by the activation

arrows (from left to right) once EGDT starts executing. This activation mechanism has no

control over the execution order of the processes, it just specifies when the components start to

listen. Only in runtime will the execution order be determined, when the entry conditions for

process can get evaluated (completely independently from the activations).

10

Figure 4 - Sepsis management models expressed using CPML (partial view)

Model Validation and Verification

With the help of the approach presented in the previous section we were able to represent

treatment processes, operational policies and guidelines of Health Care Organizations as a set

of well-formed and explicitly defined protocols. Also, as mentioned, by defining abstractions

in CPML that are based on the basic concepts that healthcare professionals use in daily

treatment we achieved that the formally defined protocols themselves can now be interpreted

by the healthcare professionals. Treatment protocols, even if they serve as guidelines in the

patient management, are safety critical and their validation and verification is an essential part

of the protocol specification process. One of the key advantages of the MICIS approach is that

the modeling languages are formally sound and provide foundation for disciplined validation

and verification processes.

Validation

The role of protocol validation is to test if the generated decision support guidance corresponds

to the clinicians‘ expectations. The first step of the validation is to model walk-through-s with

clinicians. Expressiveness of the modeling language is an extremely important help in this

process and fully confirms the importance of using DSML-s highly customized to the clinical

environment. The second step of the validation is simulation based studies. As described

earlier, the MICIS-STEEP architecture supports the generation of simulated execution. The

simulation function includes Sample Data import, interface to the Execution Engine and a

Supervisor GUI through which the simulated execution of the protocol can be controlled.

11

An essential part of the validation process is that it is needed to be conducted in a realistic

environment, where ICU personnel can face near real-life situations of sepsis management and

can interact with the STEEP system to make decisions. The validation process needs to be

closely monitored and the results precisely evaluated. The infrastructure for this evaluation is

provided by the Simulation Center of the Center for Experiential Learning and Assessment at

Vanderbilt University Medical Center [27] (see Figure 5).

Figure 5 - Simulation Center at the Center for Experiential Learning and Assessment

Verification

Another benefit of using DSMLs is that the formal verification of the domain models against

established criteria becomes possible. This is a significant step ahead, because in traditional

approaches where the system is hardcoded (using programming languages, like Java, C, etc.),

the model is not explicit and cannot be independently verified. Verification using our models

can be performed on the following three levels:

1. Static model verification. This is the first line of defense, which is provided by the

MICIS modeling tool, GME. As we described before, the metamodels of protocol

modeling languages (such as CPML) include wellformedness rules that separate

syntactically correct models (that can be translated into executable protocols) from

incorrect models. The constraints are expressed using the Object Constraint language

(OCL). In modeling time, GME (with the help of its constraint checker) enforces the

wellformedness rules defined as constraints. These constraints include clinical limits

for parameters as well as more sophisticated constraints that would be extremely hard

to check without automated verification. An example for an OCL constraint is

presented below:

Treatment processes should not contain references to medical procedures

that have not been defined yet or have been deleted from the available

medical procedures library.

12

Formally:

let RefSet = self.referenceParts() in

let NotEmptyRefSet = RefSet->notEmpty() in

if NotEmptyRefSet then RefSet->forAll(not

refersTo().isNull()) else true endif

Development of OCL constraints requires expertise in clinical constraints on

protocols and in metamodeling. However, this is a crucial part of the development

process and greatly contributes to the safety of protocol specifications.

2. Verification of dynamic properties at design time. Models are transformed into

behaviors by the Execution Engine. In fact, protocols are instantiated into a complex,

multi-threaded program that interacts with ICU personnel, patient data and events.

Using a well defined, clean execution semantics (such as CSP) is crucial for

verifiability of the models against a set of predefined behavioral properties such as

determinacy, livelock, deadlock and others. At this point, we have developed a model

translator to map the protocol models into an intermediate executable model –

Stateflow [28]. The Stateflow models can drive a number of verification tools (model

checkers, simulators, reachability analysis tools) that we plan to use in implementing

our dynamic verification strategy. This is a planned activity in the next phase of our

research.

3. Run-time checking. Critical actions that are performed during the treatment need to be

checked at runtime. Security and privacy policies determine access rights to data

published through the STEEP GUI and to the invocation of actions (initiating

treatment processes, ordering medication, etc.). In the current implementation, STEEP

access control is part of the general access control policies of the ICU, but we intend

to make this customizable in later phases. Decisions present in the protocol allow

various actions to be ordered by the healthcare professionals during treatment that are

not only need to be logged, but they have to be matched against a set of legal

regulations and the hospital‘s own policies. A number of these checks are performed

by systems interfaced to STEEP, such as the WizOrder order management system that

checks all medication related actions against a large suite of rules.

Continuation of this research in the area of validation and verification will allow the model-

integrated approach to provide safe customization of individualized guideline-driven clinical

decision support and process management systems. This is the primary area of our current

research efforts and the motivation for the further development of the MICIS infrastructure.

Results and Ongoing Work

The project started in 2007, as a collaborative effort between the Vanderbilt School of

Engineering and Vanderbilt University Medical Center to apply advanced model-based

computing techniques to the management of complex clinical management processes which

13

occur in acute care settings in hospitals. The initial results of that effort – MICIS – were

reported at the MOTHIS 2007 Conference [29]. STEEP has been implemented as part of the

MICIS framework. The team has completed much of the work on the first prototype of STEEP

and is preparing to launch a clinical test of the system in late 2008. The completed work

includes the completion of the modeling language, the runtime environment and the gathering

of the testing data samples.

At present, the followings are our primary focus:

1. In order to be able to seamlessly integrate the STEEP application into the existing

information systems architecture currently in place at the VUMC we plan to

implement a Surveillance Tool (see Figure 2, also briefly mentioned in the

Introduction). This tool will initiate the sepsis protocol by constantly monitoring the

patients‘ health status and issuing alerts for the healthcare professionals if a

predefined set of criteria is met.

2. Another challenge we are currently addressing is the development of a generic GUI

that can be customized from protocol models. While we have solved this problem in

case of the Simulation Panel the rest of the GUI elements (the Monitoring and the

Advisory Panels) are still specific to STEEP and their configurability is limited. The

solution will require the specification of a new aspect in CPML, which will allow the

customization of the GUI elements. Otherwise all components of Figure 1 are

completed and functional.

3. We are in the process of designing and performing a carefully coordinated, multi-

phase experiment to evaluate the presented approach in terms of usability and

effectiveness. The discussion of the evaluation plan is not in the scope of this paper.

Acknowledgments

This work was supported in part by TRUST (Team for Research in Ubiquitous Secure

Technology), which receives support from the National Science Foundation (NSF award

number CCF-0424422) and the following organizations: AFOSR (#FA9550-06-1-0244), BT,

Cisco, ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun,

Symantec, Telecom Italia, and United Technologies.

Support also came from the Vanderbilt HealthTech Laboratory, a research facility of

Vanderbilt Medical Center, the Division of Allergy, Pulmonary and Critical Care Medicine in

the Department of Medicine of Vanderbilt Medical Center, the Emergency Department of

Vanderbilt University Hospital and the Informatics Center of Vanderbilt Medical Center.

References

[1] Bleich HL. Computer evaluation of acid-base disorders. J Clin Invest. 1969;

48:1689-96.

[2] Kassirer JP. A report card on computer-assisted diagnosis: the grade, C. N Engl J

Med. 1994; 330:1824-5.

14

[3] Miller RA. Medical diagnostic decision support systems—past, present, and

future: a threaded bibliography and brief commentary. J Am Med Inform Assoc.

1994; 1:8–27.

[4] Stead WW, Hammond WE. Computer-based medical records: The centerpiece of

TMR. MD Comput. 1988; 8:48-62.

[5] Wilcox A, Hripcsak G. The role of domain knowledge in automating medical text

report classification J Am Med Inform Assoc 2003; 10:330-338.

[6] Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical

decision support systems on physician performance and patient outcomes: a

systematic review. JAMA. 1998; 280:1339–46.

[7] Bates DW, Leape LL, Cullen DJ, et al. Effect of computerized physician order

entry and a team intervention on prevention of serious medication errors. JAMA.

1998; 280:1311–6.

[8] Sittig DF, Stead WW. Computer-based physician order entry: The state of the art.

J Am Med Inform Assoc . 1994; 1:108–23.

[9] Bates DW, Leape LL, Cullen DJ, Laird N, Petersen LA, Teich JM, et al. Effect of

computerized physician order entry and a team intervention on prevention of

serious medication errors. Jama 1998; 280(15):1311-6.

[10] Oliven A, Michalake I, Zalman D, Dorman E, Yeshurun D, Odeh M. Prevention

of prescription errors by computerized, on-line surveillance of drug order entry.

Int J Med Inform 2005; 74(5):377-86.

[11] Heather E. Finlay-Morreale, Clifton Louie, and Pearl Toy. Computer-generated

Automatic Alerts of Respiratory Distress after Blood Transfusion. J. Am. Med.

Inform. Assoc. 2008; 15(3):383-385.

[12] Sztipanovits, J., and Karsai, G., ―Knowledge-Based Techniques in

Instrumentation,‖ IEEE/EMBS Magazine, , Vol. 7, No. 2, 1988, pp. 13-17

[13] Abbott, B., Bapty, T., Biegl, C., Karsai, G., and Sztipanovits, J., ―Model-Based

Approach for Software Synthesis,‖ IEEE Software, May 1993, pp. 42-53

[14] Sztipanovits, J., Karsai, G.: ―Model-Integrated Computing‖, IEEE

Computer,V.30. pp. 110-112, April, 1997.

[15] Karsai, G.; Sztipanovits, J.; Ledeczi, A.; Bapty, T.: ―Model-integrated

development of embedded software‖, Proceedings of the IEEE, Volume: 91,

Issue: 1, Jan. 2003 Pages:145 – 164.

[16] Karsai G., Nordstrom G., Ledeczi A., Sztipanovits J.: Towards Two-Level Formal

Modeling of Computer-Based Systems, Journal of Universal Computer Science,

Vol. 6, No. 11, pp. 1131-1144, November, 2000.

[17] Ledeczi, A.; Bakay, A.; Maroti, M.; Volgyesi, P.; Nordstrom, G.; Sprinkle, J.;

Karsai, G.: Composing domain-specific design environments, IEEE Computer,

Nov. 2001, Page(s): 44 –51

[18] Mathe, J.; Werner, J.; Lee, Y.; Malin, B.; Ledeczi, A. Model-Based Design of

Clinical Information Systems. Methods of Information in Medicine.

―Forthcoming‖.

[19] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the

United States from 1979 through 2000. New England Journal of Medicine 348:

1546-54, 2003.

[20] Bernard GR, Vincent JL, Laterre P, Larosa SP, Dhainaut JF, Lopez-Rodriguez A,

Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ. Efficacy and safety

15

of recombinant human activated protein C for severe sepsis. New England Journal

of Medicine 344: 699-709, 2001.

[21] Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR.

Epidemiology of severe sepsis in the United States: Analysis of incidence,

outcome, and associated costs of care. Critical Care Medicine 29: 1303-10, 2001.

[22] Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K,

Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H,

Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson

BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis

Campaign: International guidelines for management of severe sepsis and septic

shock: 2008. Critical Care Medicine 36: 296-327, 2008.

[23] Object Constraint Language, OMG Available Specification, Version 2.0,

http://www.omg.org/technology/documents/formal/ocl.htm

[24] Chen, K., Sztipanovits, J., and Neema, S. 2005. Toward a semantic anchoring

infrastructure for domain-specific modeling languages. In Proceedings of the 5th

ACM international Conference on Embedded Software (Jersey City, NJ, USA,

September 18 - 22, 2005). EMSOFT '05. ACM, New York, NY, 35-43. DOI=

http://doi.acm.org/10.1145/1086228.1086236

[25] Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E,

Tomlanovich M; Early Goal-Directed Therapy Collaborative Group, "Early goal-

directed therapy in the treatment of severe sepsis and septic shock", The New

England Journal of Medicine, Volume 345:1368-1377, November 8, 2001,

Number 19

[26] Brookes, S. D., Hoare, C. A., and Roscoe, A. W. 1984. A Theory of

Communicating Sequential Processes. J. ACM 31, 3 (Jun. 1984), 560-599. DOI=

http://doi.acm.org/10.1145/828.833

[27] CELA-SPT website:

http://www.mc.vanderbilt.edu/medschool/otlm/cela/stp/index.html

[28] Stateflow, The MathWorks, http://www.mathworks.com/products/stateflow/

[29] Miller PB, Martin JB. Model-driven Generation of Individualized Clinical Care

Plans to Support Protocol-Driven Clinical Process Management, MOTHIS 2007

Conference Presentation.

http://www.omg.org/technology/documents/formal/ocl.htm
http://doi.acm.org/10.1145/1086228.1086236
http://doi.acm.org/10.1145/828.833
http://www.mc.vanderbilt.edu/medschool/otlm/cela/stp/index.html
http://www.mathworks.com/products/stateflow/

	A Model-Integrated Approach to Implementing Individualized Patient Care Plans Based on Guideline-Driven Clinical Decision Support and Process Management - A Progress Report
	Introduction
	Sepsis Management Problem
	Overview of the System Architecture
	Modeling and Generation Architecture
	Operation Architecture

	Design of the Clinical Process Management Language (CPML)
	Model Validation and Verification
	Validation
	Verification

	Results and Ongoing Work
	Acknowledgments
	References

