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Summary 
 

Objective: The goal of this research is to provide a framework to enable the model-based development, 

simulation, and deployment of clinical information system prototypes with mechanisms that enforce 

security and privacy policies. 

Methods: We developed the Model-Integrated Clinical Information System (MICIS), a software toolkit 

that is based on model-based design techniques and high-level modeling abstractions to represent 

complex clinical workflows in a service-oriented architecture paradigm. MICIS translates models into 

executable constructs, such as web service descriptions, business process execution language 

procedures, and deployment instructions. MICIS models are enriched with formal security and privacy 

specifications, which are enforced within the execution environment. 

Results: We successfully validated our design platform by modeling multiple clinical workflows and 

deploying them onto the execution platform. 

Conclusions: The model-based approach shows great promise for developing, simulating, and evolving 

clinical information systems with formal properties and policy restrictions. 

 

Keywords: hospital information systems, medical records systems, computer-aided design, 

software design 
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1. Introduction 

To reduce preventable errors in patient care and minimize administrative burdens, healthcare 

organizations (HCOs) are migrating from traditional, paper-based records to clinical information systems 

(CISs), a collection of computer-based applications that enables sophisticated services for patients and 

health care providers. Various empirical evidence indicates that CISs can decrease healthcare costs [1, 2, 

3, 4], strengthen staff productivity [5, 6], and promote patient safety [7, 8]. As a consequence, HCOs are 

adopting CISs to enable a wide array of functions, including data sharing, decision support, employee 

training and student education, research, and access to reference materials. Many HCOs are leveraging 

CISs to build “web portals”, which can be tailored to provide a specific experience based on the role of 

the intended user [9]. For example, physician portals have been designed to support daily clinical 

workflows, such that they enable access to guidelines, educational materials, treatment and cost 

information, and referral directories [10]. Similarly, patient portals have been designed to provide 

patients with access to their electronic medical records, billing, and appointment scheduling [11, 12].  

Despite their potential benefits, the design of CISs presents unique challenges, which derive from the 

constant evolution and interaction of an HCO’s policies, technologies, and workforce. The electronic 

nature of CISs, for instance, in contrast to the traditional paper-based systems, increases the potential 

magnitude of system failures and inadvertent exposure of highly sensitive patient-specific health 

information. It is necessary that HCOs design CISs to adhere to diverse governmental regulations that 

influence both procedural, as well as access policies, such as the Privacy and Security Rules of the Health 

Insurance Portability and Accountability Act (HIPAA) [13, 14]. A CIS must account for the complexities of 

the HCOs, both at the social and the technical level, to ensure timely access to health information and 

services without compromising the security of the system or sensitive patient records. 

Disparate HCOs, as well as departments within an HCO, can differ greatly in terms of the software and 

technologies that comprise their CISs. We believe that the service-oriented architecture (SOA) paradigm 

provides an intuitive approach to resolve system diversity and integrate CISs. Instead of relying on site-

specific, ad hoc design strategies, SOA provides a mechanism to create complex distributed applications 

from loosely-coupled services. Workflow definitions define the structure of the applications, capturing 

the interaction of services with formally provable properties [15, 16, 17]. SOA inherently supports 

modular design, promotes reusability, and simplifies system evolution since services can be individually 

modified, upgraded, or completely replaced. Even interface changes can be tolerated because interface 

definitions are published and can be queried. Moreover, services can be implemented in a number of 

different languages and they can run on different operating systems, which provides true platform 

independence. Hence, building CISs on top of SOA leads to improved interoperability and extensibility. 

SOAs have been successfully applied in the e-commerce sector [18] and, as a result, a rich infrastructure 

of SOA-specific tools is available [19, 20, 21]. However, the design and implementation of SOAs for CISs 

raises nontrivial challenges. In traditional business applications, the human-workflow interaction is often 

based on an “accept or deny” schema, where a person serves as an approval checkpoint that determines 
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if a procedure can continue. On the contrary, in the clinical domain, many workflows require human 

tasks that do not fit this schema, such as a physician’s interpretation of laboratory test results. An 

emerging extension of the Business Process Execution Language for the Web Services (WS-BPEL) 

standard, called BPEL4People [22], partially addresses this issue, but its usage is limited, mainly because 

existing BPEL workflow managers do not support the extended functionality. A second challenge is that 

typical SOA implementations hardcode policies in the workflow logic, which is not amenable to the 

complex procedural and regulatory policies that are associated with HCOs. To manage intricate and 

dynamic privacy, security, and access control policies, a more elaborate solution is needed.  

To address the aforementioned challenges, we developed the Model-Integrated Clinical Information 

Systems (MICIS), a software tool suite that assists HCO administrators in the design, verification, 

implementation and integration of CISs. The MICIS tool suite is capable of graphically representing data, 

workflows, organizational aspects, and regulatory requirements of the healthcare environment. MICIS 

translates formal models into the necessary software artifacts and deploys the system on a standard 

SOA platform. The formal models created in MICIS allow administrators to perform rigorous system 

analysis and to enforce privacy and security policies within the CIS prior to deployment. MICIS enables a 

rapid development cycle because CIS prototypes can be quickly generated, evaluated and changed, if 

necessary, by modifying the system models and regenerating the application. Furthermore, the model-

based approach helps over the entire lifecycle of the application by easing maintenance and application 

evolution, since many aspects of the CIS can be modified via the models without touching the actual 

code. 

In previous work, we presented a high-level overview of the MICIS architecture with respect to platform-

specific engineering [23] and the type of abstractions necessary to model the clinical realm [24]. In this 

paper, we focus on the systems integration aspect of MICIS, which illustrates how to integrate model-

based design, SOA, and policy specification in a healthcare environment. We then provide an example of 

how to model, as well as deploy a specific working component of a clinical information system. Finally, 

we elaborate on the details of MICIS modeling and deployment platforms, describe extensions used to 

enforce privacy and security policies, and present how the artifacts generated from the models are used 

for component integration.  

 

2. Background  

In this section, we provide background on the underlying technologies that MICIS is built upon. 

2.1. Model Integrated Computing 

Model Integrated Computing (MIC) was developed at Vanderbilt University for building software-

intensive systems. The core idea behind MIC is to provide a domain-specific modeling language (DSML) 

and a corresponding modeling environment for the given application domain. The DSML raises the 

abstraction level above traditional programming languages and provides an application developer, or 

domain expert, with familiar concepts. MIC can be applied to create and evolve integrated, multiple-
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view models using concepts, relations and model composition principles used in the given field. MIC also 

facilitates systems and software engineering analysis of the models, as well as enables the automatic 

synthesis of applications from the models. This approach has been successfully applied in several 

different applications, including automotive manufacturing [25], wireless sensor networks [26], and 

integrated simulation of embedded systems [27]. 

A core tool within MIC is the Generic Modeling Environment (GME) [28], which can be configured and 

adapted from meta-level paradigm specifications, known as metamodels. The metamodels consist of 

unified modeling language (UML) class diagrams and object constraint language (OCL) constraints. These 

are created in GME and are applied to automatically configure the software to support the new DSML. 

This architecture is illustrated on the left side of Figure 1. The well-documented advantages of MIC in 

general and the highly flexible architecture and customizability of GME in particular, make these 

technologies an ideal candidate for the foundation of MICIS. Most other modeling tools support a single 

or a small set of languages, typically UML. While UML has its well-deserved place in software 

development, we believe that the requirements in many domains, including CIS, call for the application 

of DSMLs. GME is one of the most advanced metaprogrammable tools that support the rapid 

development of DSMLs, hence we decided to employ it. 

2.2. Service Oriented Architectures 

Approaching CIS design from the perspective of SOAs is not unique. In earlier work, Kawamoto and 

Lobach successfully applied a service-oriented software framework to clinical decision support systems 

[29]. Still, clinical decision support is only one of many components in CISs and does not model patient-

provider interactions, which characterize the healthcare field. The challenge is to design a CIS that is 

loosely-coupled to a particular SOA environment. This enables the designer to build an experimental 

infrastructure without being bound to design and execution environments that may not adequately 

represent the particular CIS in development or have the adaptability necessary to meet changing system 

requirements. We refer the reader to a recent paper by Jürjens and Rumm, which provides an excellent 

summary of SOA and model-based approaches in clinical information systems [30]. We highlight that 

MICIS is distinct from existing approaches in that it creates verifiable, executable workflows from 

domain-specific models tailored to the healthcare environment. 

2.3. Policy Languages and Specification 

Policy languages separate the privacy and security requirements from the implementation details of a 

system. As a result, policies can be changed without altering the underlying implementation [31]. The 

application of a formal language for policy representation provides greater reuse for the developer, but 

may not easily represent the high-level goals of business processes. The SECTET framework of Breu et al. 

facilitates the design and implementation of secure inter-organizational workflows [32]. The abstraction 

level is raised above the standard SOA languages by capturing workflows and security requirements 

primarily in the form of UML models [33]. A similar approach is presented by Zhang et al. [34] for 

describing access control and synthesis of machine-readable policy representation. In the solution 

presented in [35], privacy and security policies are tightly integrated with the workflows. This approach 
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provides a sound base for privacy and utility analysis; however, it is unsuitable for highly dynamic 

environments. 

 

3. Methods 

In this section, we present the MICIS framework, an approach to rapidly develop, simulate, and deploy 

CIS prototypes with automatic security and privacy policy enforcement. The architecture of the MICIS 

framework is outlined in Figure 1, which illustrates the two primary contributions: 1) the component 

integration platform (MICIS-CIP) and 2) the model integration platform (MICIS-MIP). 

 

 

Figure 1. The MICIS architecture. 

 

3.1 Component Integration 

MICIS-CIP serves as a base of the clinical information system by providing a set of basic functionalities 

for the other components of the CIS. These include persistence, session management, and access 

control. In addition, MICIS-CIP provides access to information stored in the HCO’s database. This basic 
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set of services is then extended with the integration of different software components in a modular, 

security and privacy preserving manner. The integrated software components implement various 

higher-level services, such as billing, care provider messaging and process management. The modular 

approach of MICIS allows for the integration of new services which can reuse existing ones. 

The modularity in MICIS is achieved by adopting a set of SOA standards that form the base of the MICIS-

CIP (shown on the bottom of the Figure 1). In MICIS-CIP, both basic and extended functionalities are 

implemented through communicating web services. The orchestration of these services is managed by 

the CIS Orchestrator (CIS-O), which consists of a SOA compliant execution engine and the web services it 

manages. 

By integrating an SOA compliant execution engine as a part of CIS-O, we gain the ability to specify the 

orchestration logic of our CIS in terms of workflows. MICIS makes use of workflows to capture the 

business logic of complex applications and to orchestrate the execution of the corresponding services. 

Our workflows are defined using the Business Process Execution Language for Web Services (WS-BPEL) 

[36] standard and are deployed in the CIS-O as executable web services. A benefit of adopting WS-BPEL 

is that it provides the user with the capability to define the logic of services for a particular CIS in an 

explicit manner, instead of hard coding the functionality into a web service. This decouples the 

development of application logic from the specific details of deployment. 

In the CIS-O, the execution of these web services is performed by an OASIS compliant BPEL [37,38,39] 

execution engine, which takes care of managing multiple sessions of instantiated web services. In its 

current implementation, MICIS utilizes the Apache Orchestration Director Engine (Apache ODE). 

Examples of how we implement functionality and express the orchestration logic using WS-BPEL can be 

found in the later sections of the paper. 

Communication of the web services, including the connected applications, is achievable with the 

assistance of an Enterprise Service Bus (ESB), where the communicating web services exchange SOAP 

[40] messages, which are orchestrated with the Apache ODE workflow manager. In our framework, we 

rely on the ESB to support messaging, routing, invocation, and transaction management. 

3.2 Security and privacy enforcement 

Security and privacy enforcement in MICIS is achieved through mechanisms that allow for the definition 

and deployment of policies in the MICIS-CIP. Specifically, we have developed reusable application-

independent Prolog-based Policy Decision Point and Policy Enforcement Point (MICIS-PROPER) 

components and integrated them with the Apache ODE.  

In MICIS, selected services can be secured using MICIS-PROPER with its dedicated policies. This means 

that if a protected service is invoked, the information flow between the service and its invoking client is 

carefully monitored. In cases where non-compliance with the defined policies is discovered during the 

information exchange, the execution of the undesired operation is prevented and a exception is 

returned to the workflow manager. For example, the system can notify administrators of an 
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unauthorized request for patient information or prevent a physician from ordering a medication that, in 

combination with a patient’s existing medications, could cause an adverse drug effect. 

In the MICIS architecture, we use a set of protected services to access the contents of CIS-DB, the 

database that stores all sensitive information of the HCO. The CIS-DB contains patient-specific 

information (e.g., demographics, lab results, vitals and treatment information) and organization-specific 

information (e.g., personnel, departments, physical locations, etc.). Access to protected information is 

achieved though the ESB and the information flows are controlled by MICIS-PROPER. The details of this 

protection mechanism are explained in section 3.6. 

 It should be noted that the architecture is inherently distributed. It allows for an arbitrary number of 

applications, services and databases, and even multiple component integration platforms (CIP). For 

example, the CIS-DB does not need to be a centralized database. Multiple databases can be supported 

as long as access to the data is controlled by an appropriate PEP. 

3.3 Extending functionality 

MICIS supports three distinct approaches for extending the functionality of a particular CIS. The basic 

functions can be added as additional web services (1). More complex behavior involving, for example, 

multiple entities can be specified as workflows and deployed by the CIS Orchestrator (2). Finally, 

complete application modules, such as Billing Services or Outpatient Monitoring, can be seamlessly 

integrated into the system (3). 

The range of functionality that integrated applications can provide in MICIS is limited only by the ESB 

and the available set of services deployed as part of the MICIS-CIP. In the upper right corner of Figure 1, 

we present three different kinds of application modules integrated in the CIP. The modules are A) an 

application with its own execution engine and explicitly defined workflows, B) an application whose 

functionality is implemented as a web service and finally, C) a standalone application with its own 

communication infrastructure directly connected to the ESB. Regardless of the architecture of a 

particular application, MICIS-CIP provides the ability for users to access the services of a particular CIS 

with the help of its own front-end. 

3.4 Modeling framework 

The MICIS model integration platform (MICIS-MIP) is built on Vanderbilt's metaprogrammable Model-

Integrated Computing (MIC) tool suite called GME (Modeling Environment in Figure 1) [28]. MICIS was 

developed in the following steps: (1) specification of domain-specific modeling languages that capture 

all relevant architectural and policy modeling aspects of CIS applications, and (2) development of model 

transformations for mapping the domain specific models on the MICIS component integration platform. 

CIS prototypes were then developed with MICIS by building application models, automatically 

generating the necessary software artifacts, and finally running the applications. 

We enable the framework to model and implement the higher level functionalities of the CIS by 

capturing the logic that orchestrates their execution and interaction. In MICIS, system models are built 
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to capture workflows, services, organizations, roles, messages, message attributes, and deployment 

configurations, as well as access control and security policies. We find that the explicit representation of 

policies over the orchestration logic, represented by workflows is advantageous in the CIS domain. Our 

policy modeling language is based on the work of Mitchell et al. on contextual integrity [35]. It enables 

the formal representation of permitted communications and considers past, as well future, 

communication instances. Later in the paper we discuss some of the aspects of policy representations in 

the Policy Evaluation and Enforcement section. Detailed example models are shown in the Illustrative 

Example section. In the MICIS architecture, the Policy Decision Point (PDP) implements all of the 

decisions that are to be made in the execution of a workflow, thus enforcing the defined policies. 

3.5 Model Transformation Layer 

The models captured in MICIS represent the logic that drives a CIS, or a certain part of it. However, 

without the Model Translator Layer, the models serve as formal documentation only. It is the job of the 

translators to generate the code that implements the corresponding CIS on top of a SOA platform. The 

models are automatically translated to application components, assembled, and deployed. The 

generated artifacts include workflow descriptions in WS-BPEL, web service descriptors in WSDL, and 

access control and privacy policies in Prolog. Also, verification and simulation tools, which ensure the 

correct behavior of the system once deployed, can be easily integrated by creating appropriate model 

translator that configure the given tools automatically from the models. 

The Model Transformation Layer is composed of four sets of model translators for (1) workflow 

orchestration (Execution Environment Translator), (2) creation of the policy rules for policy enforcement 

(Policy Translator), (3) creation of the front-end interface for users in form of html/jsp pages (Front End 

Skeleton Translator) and (4) driving external tools to verify the design and to simulate the execution of 

the system (Verification Tool Translator). 

3.6 Policy Evaluation and Enforcement 

In order to satisfy the privacy and security requirements in clinical workflows, we have developed an 

application-independent Prolog-based Policy Evaluation and Policy Enforcement Point (MICIS-PROPER) 

and a policy modeling suite. MICIS-PROPER addresses the challenges of modeling and enforcing privacy 

and security policies, dynamic redeployment of existing policies, and customization of the behavior of 

the policy enforcement point. It is necessary to solve the above mentioned issues to represent the 

multifaceted requirements specified by laws and regulations such as HIPAA [13, 14], address the 

organization evolution and introduce the changes with minimum system down-time.  

The presented solution consists of the policy and workflow models, policy generators, a policy 

verification tool, a policy enforcement point (PEP), and a policy decision point (PDP). Figure 2 depicts the 

MICIS-PROPER architecture. 

In our approach, policy, workflow and data models are tightly integrated, which has a significant 

advantage: information duplication and synchronization between multiple aspects of the model can be 

avoided. Despite the integration of the models, the generation of the policies is independent from the 
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generation of the workflow descriptions. Consequently, the underlying policy language could be easily 

changed by modifying the generators and replacing the policy decision point.  

 

Figure 2. The MICIS-PROPER architecture in relation with the MICIS-MIP. 

In the MICIS modeling language, the purpose of a policy model is to represent privacy and security 

constraints. A policy model is then used to generate the policies and policy descriptions. The generation 

is performed by the Policy Translator. In MICIS-CIP, the policy description is applied to inform the policy 

enforcement point about the inputs and outputs of the services and to drive the policy decision point. A 

simple policy description contains such data as arguments passed to the service, fields returned by the 

service, fields used by the policy decision point, timing of policy evaluation, and additional obligations. 

We employ Horn clauses in Prolog to describe the policies. By implementing the Prolog language 

directly, MICIS imposes stricter requirements on the modeler (i.e., knowledge of the Prolog syntax); 

however, it provides more expressive power to the policy designer.  

Policies and policy descriptions generated from the models are manually deployed in the local policy 

repositories. The policies are accessed directly by the PDP and PEP. Policies can be thought of as 

independent documents in the policy container. The policy enforcement point is built into the SOA 

environment as the request interceptor in the web service container and is completely transparent to 

services and clients invoking them. This allows for the seamless replacement of policies, addition of 

protected services, and modification of the policies. Note that redeployment of the policies to the 

repository does not cause system downtime. Whenever the PEP decides to block the client request, an 

exception is generated and the flow of control is changed. Fault handling is the responsibility of the 

workflow manager and consequently the PEP is service and location independent. The policy decision 

point can be readily substituted, hence MICIS can facilitate decision points from different vendors and 

leverage different policy languages with different expressiveness. Currently, MICIS supports the Sun 

XACML implementation [41] for the OASIS XACML standard [42] and the SWI-Prolog engine [43] for 
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Prolog-based policies. We also integrated an additional obligation module to support custom, user 

defined functions to be executed upon policy evaluation. 

3.7 Using MICIS 

When using MICIS, developers need to work with both the Modeling Integration Platform and the 

Component Integration Platform; however, we suspect that the developers’ work with the CIP will be 

minimal. Currently, if a developer wants to create and integrate a new application into an existing CIS, 

any new components including databases or user front ends would have to be manually developed 

within the CIP. Existing components can be simply reused. We intend to automate the generation of 

simplified web-based user interfaces to the services deployed and to automate the generation of the 

skeleton of databases. 

 

4. Illustrative Example 

In this section, we demonstrate the capabilities of the MICIS platform by implementing an example 

scenario, an outpatient monitoring system (OPM). To explain the context of the scenario, assume that 

an elderly patient is monitored in his home with the assistance of sensors mounted on his body. An 

outpatient monitoring station constantly examines the data from the sensors, looking for deviations 

from normal values in the patient’s vital signs. Detected deviations are reported to a monitoring station 

in the hospital. 

The scenario is initiated when the patient experiences an abrupt change in blood pressure. When the 

monitoring system detects abnormal values or trends, an alert message is generated. Figure 3 shows the 

process execution path for handling such an outpatient alert message. 

As soon as the clinical information system orchestrator (CIS-O) receives the alert message, it begins to 

execute the business process defined for this scenario. After logging the alarm status in the electronic 

medical record (EMR) system, the CIS-O sends the message to the Alert Monitor System, which renders 

it on a monitoring station. When the nurse checks the message, she requests the patient’s medical 

record to evaluate the situation. The CIS-O provides the information from the EMR to the Alert Monitor 

System. This includes the medical history and the contact information, which the nurse can use to 

validate the alert. If the alert is deemed important, she writes the status to the patient medical record. 

Finally, the CIS-O forwards the alert message to the designated physician(s) by using the Message 

Delivery System. Otherwise, the alert message is stored in the EMR system and the process is 

terminated.  

To describe the workflow in charge of handling the alert message, we define three different business 

processes (OPMAlertMain, OPMAlertStore and PatientInformation,) along with Prolog-based policies 

within the OPMAlertStore and PatientInformation process. In this example, the nurse intervenes in the 

process flow twice: first, to collect the patient’s record and second, to validate the alert message. To 

protect sensitive patient information, we introduce appropriate policies for the two processes 
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OPMAlertStore, PatientInformation. These policies are enforced by the Prolog-based Policy Decision 

Point and Policy Enforcement Point. 

 

Figure 3 – A collaboration diagram of the outpatient monitoring scenario. 

Figure 4 shows the models that characterize the PatientInformation and OPMAlertStore processes. 

OPMAlertMain is initiated when the CIS-O receives the alert message triggered by abnormal values from 

the outpatient monitoring system. Implementation details of OPMAlertMain are omitted. The 

PatientInformation process (Workflow A) in Figure 4 is invoked when a nurse requests a patient’s 

medical information from the EMR after reviewing the alert message. Once the receiveEMRRequest 

activity (1) receives the request including the patient and staff identifiers, the activity uses this 

information to retrieve the requested patient medical record from the EMR System. The invokeEMR 

activity (2) invokes the PatientInformation Web Service and the receive activity (3) retrieves the patient 

medical record from the web service. Between these two activities, we apply the privacy policies to 

restrict unauthorized access to the electronic medical records. Finally, to send the patient medical 

record to the nurse, it is assigned to the output variable of the PatientInformation workflow (4). 

The purpose of the OPMAlertStore process depicted on the Figure 4 (Workflow B) is to store the result 

of the nurse’s validation of the alert. After the alert status is assigned to the OPMAlert data type (1) , the 

invokeEMRStore activity (2) invokes the PatientInformation web service to store the validation results in 
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the EMR System. When the invokeEMRStore activity invokes the Patient Information web service, we 

also apply the privacy policies. After the receive activity (3) receives the acknowledge message from the 

web service, it is assigned to the AlertMessage variable. The InvokeMessageSender activity (4) invokes 

the MessageSender web service to forward the alert message to the designated doctors by using the 

Message Delivery System.  

For this scenario we introduced the following restrictions: 

 Only medical staff is permitted to access alert messages. 

 Only primary care physicians are permitted to access patients’ medical records. 

 Nurses are permitted to access the records of patients under surveillance by the 

OPM system. 

 Medical staff is permitted to access patients’ records in emergency situations, 

which trigger the “Break Glass” policy which allows for an emergency elevation 

of access privileges. This action is subsequently audited by the HCO’s policy 

administrators [44]. 

 

 

Figure 4. Patient Information process descriptions examples. 

These policies are enforced for all invocations of the PatientInformation service. A policy for the 

PatientInformation service is presented on the left side of Figure 5. The policy description includes the 

definitions of incoming and outgoing data, the evaluation point, obligations, and additional datasets for 

policy evaluation. A detailed policy model is depicted on the right side of Figure 5. The model contains 

information required to generate the policy: the query is evaluated to determine access rights, attribute 

relations used for policy evaluation and a textual policy description. In this example, we evaluate the 

policy with a query retrievedata(PatientID, staffID) after the service has been executed. To decide on 
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that policy, the Prolog-based PDP uses the predefined set of predicates and attribute relation, i.e. 

critical() and treats(staffID,MRN), which are generated from the incoming and outgoing data by the PEP. 

 

Figure 5. An excerpt of the policy model.  

The workflow and security policy models of the OPMAlert are applied to generate the source files by the 

Execution Environment Translator and Policy Translator. The source files are required by the ODE BPEL 

engine for correct execution of the workflow. These include 1) the BPEL source file, which describes the 

orchestration logic; 2) the Web Service Definition (WSDL) interface file with the necessary data 

structures in XML Schema Definition (XSD) format, where the latter defines the input and output 

message for the services to allow other processes to connect to them, and 3) the compilation and 

deployment script file (deploy.xml), which is in charge of deploying the aforementioned files onto the 

ODE process manager. The Policy Translator generates two files: 1) the policy description in an XML 

format, which drives the PEP and 2) a Prolog document that describes the policies to be evaluated by 

the PDP. 
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5. Discussion 

The outpatient monitoring example described previously demonstrates the potential of this approach. A 

working prototype implementation was successfully created using MICIS and deployed in a SOA 

environment (Apache ODE + Axis2) in a few weeks. In fact, most of the effort was dedicated to the 

design and implementation of the individual services comprising the application. Once the services were 

completed, the creation of the system models and the automatic generation, configuration, and 

deployment of the running application, which included several testing and debugging cycles, required 

only a couple of days. This suggests that, if a rich set of services are available, CISs can be rapidly 

developed and evolved using our approach. While currently this is not necessarily the case in many 

HCOs, the investment to migrate existing applications to SOA would be well worth it. It would make 

them easier to reuse, maintain, and evolve. Coupled with MICIS, these benefits would be even more 

evident. For example, MICIS decouples policy representation and enforcement from the application 

logic, hence, any application created from the available library of services would be guaranteed to 

comply with all applicable policies automatically. 

The current implementation of MICIS serves as a proof-of-concept that model integrated development 

and integration of the clinical information systems on top of SOA is a promising way to support health 

care organizations. We recognize that the widespread deployment of a tool such as MICIS will be slow, 

even within the Vanderbilt environment, for two main reasons. One is the current lack of available SOA-

compliant services in the complex IT infrastructures currently being used in many HCOs. The other is the 

understandable reluctance of the organization’s management to accept new technologies in a mission 

critical environment. Despite these challenges, we believe that MICIS can be applied to develop SOA-

based clinical information systems in parallel to existing solutions. Then, when the organization is ready, 

the model-based system can replace the legacy code and systems that comprise the HCO’s information 

technology infrastructure. At the present time, we are making progress within Vanderbilt and have 

demonstrated how the model-based technology can assist in different well-defined, smaller-scale 

scenarios. For example, we have demonstrated how a similar approach can be applied to design a 

patient portal [25]. Vanderbilt researchers are also working with MICIS to develop a patient treatment 

monitoring tool using evidence-based protocol models. 

While we have successful developed and demonstrated the MICIS toolkit, we recognize there are certain 

limitations to the presented work. Here, we touch upon several of these issues, which provide a basis for 

the extension of this research. First, our results are limited by the fact that our implementation is only a 

proof-of-concept system and has not been tested in a large scale, heavily distributed environment. 

Second, during our system testing, we did not perform a load analysis to evaluate the performance of 

the off-the-shelf SOA tools that MICIS relies upon. Third, our current presented policy language is 

somewhat restrictive in the sense that it is incapable of representing policies that express rules where 

the relative order of events is stated. Examples for such policies can be found in [35]. We consider the 

above mentioned issues to be part of our future work. 
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6. Conclusions 

In this paper, we described an experimental development environment called the Model-Integrated 

Clinical Information Systems (MICIS). The incorporation of model-based design techniques and the 

utilization of high-level modeling abstractions provide many advantages over ad hoc design approaches 

that many HCOs have relied upon. The explicit representation of the application architecture and other 

aspects of a CIS can support verification, simulation, code generation, automatic deployment and 

documentation of CIS prototypes, all from the same set of models, which provides consistency 

eliminating many potential sources of error. Specifically, the proposed MICIS framework offers a novel 

way to represent complex medical workflows in the service-oriented architecture paradigm. More 

importantly, it allows for the formal representation of security and privacy policies at design time and 

transparently enforces them during run time. Policies are driven by multiple federal, state and local laws 

and standards regulating access to sensitive information, such as patient data. Embedding the 

enforcement of these policies in application logic is error-prone and results in difficult to maintain code. 

By using MICIS, compliance can be strengthened and changes in policies can be accommodated without 

any changes to actual application code.  
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