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focus

Today, medical knowledge-based systems focus 
on computerized physician order entry (CPOE) and 
clinical decision-support advisory systems.3 CPOE 
systems depend on comprehensive EMRs to give 
physicians and nurses the means to create and ex-
ecute orders for tests, procedures, and medications. 
CPOE and related systems are often called physi-
cian workflow systems because they’re designed to 
fit the normative matrix of activities that flow from 
specific surrounding systems and medical practice 
standards.

Process management is another knowledge-
based medical application area. Vanderbilt Medi-
cal Center (VMC) is pioneering the use of process 
management dashboards to inform medical staff 
of the status of required activities for patients with 
specific problems. Physicians create activity bun-
dles for treating certain conditions; the dashboard 
shows the bundled activities and their status with 
red, yellow, and green indicators to remind hospital 
staff of which activities are completed and which 
remain to be done.

The key enabler of our work is model-integrated 

computing (MIC),4 an approach and supporting 
tool suite for model-based software and systems en-
gineering that Vanderbilt University has developed 
over the past two decades. This infrastructure of-
fers new opportunities in creating clinical decision- 
support and process-management systems. MIC 
focuses on formally representing, composing, and 
manipulating integrated models of information 
processes and security/safety policies. The formal 
representation of treatment protocols promotes 
software reusability and maintainability in the 
overall management of complex medical processes 
by explicitly capturing a task’s temporal structures 
and coordination (as opposed to hiding them in the 
code). MIC also provides tools for automated sys-
tem generation directly from the models. 

The open source MIC tool suite, including the 
Generic Modeling Environment (GME),5,6 enables 
layered, multiple-view system modeling, model 
transformation, model analysis and validation, 
model execution, and system design evolution. The 
MIC tools establish a framework for creating clini-
cal decision-support and process-management sys-
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tems. In this article, we describe its first application 
to the management of a serious illness. 

Motivating Problem:  
Sepsis Management
To maximize our system’s impact, we sought a 
clinical paradigm that was common, clinically im-
portant, and expensive with accepted, evidence-
based treatment guidelines. Sepsis proved an ideal 
candidate. The sepsis syndrome results from a ro-
bust host reaction to infection and is characterized 
by a systemic inflammatory response, frequently 
with very low blood pressure and multiple organ 
failures. The disease process is very common. 
About 750,000 cases occur in the US annually,7 
and about 30 percent of septic patients die from 
the disease.8 Severely septic patients consume 
many hospital resources, requiring on average 
7–10 days in intensive care units (ICUs) and 3–5 
weeks in a hospital. Sepsis-related expenditures 
are estimated to approach US$17 billion annually 
in the US alone.9

Sepsis treatment is a complex, extremely infor-
mation-intensive process performed in ICUs and 
emergency departments. Given the large scope of 
this clinical problem, it’s not surprising that many 
treatment strategies have been proposed and in-
vestigated. The Surviving Sepsis Campaign (SSC), 
led by experts from numerous professional orga-
nizations, seeks to improve the diagnosis, manage-
ment, and clinical outcomes. The SSC has pub-
lished a comprehensive set of treatment guidelines 
based on graded clinical evidence. The guidelines 

are widely considered to represent the state of the 
art in sepsis management,10 but they will evolve 
over time. Also, they must be customized to in-
dividual patient needs, and their correct applica-
tion has important quality and cost implications 
in sepsis care. The SSC guidelines are complex and 
require multiple time-sensitive interventions based 
on dynamic patient variables. Correct and timely 
implementation of the guidelines requires continu-
ous assimilation and interpretation of numerous 
pieces of patient data.

We can categorize ICU information technology 
(IT) interventions generally (in order of increasing 
sophistication) as clinical reminders, clinical path-
ways, or real-time protocolized decision-support 
tools. Real-time tools continuously monitor spe-
cific patient variables; if they detect an unmet clin-
ical need, they make treatment recommendations 
based on clinical guidelines. To our knowledge, 
the current effort is the most comprehensive at-
tempt at managing sepsis through a sophisticated 
electronic detection and management tool.

System Architecture and Operation
The Sepsis Treatment Enhanced through Electronic 
Protocolization (Steep) system is a tool to manage 
sepsis treatment. Figure 1 shows the Steep system 
architecture with two distinct operational phases 
presented side by side:

on the left, the design and occasional update of  ■

evidence-based treatment protocols (protocol 
models) and 
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Figure 1. The Sepsis 
Treatment Enhanced 
through Electronic 
Protocolization (Steep) 
system architecture. 
Physicians design 
and update protocol 
models offline (left). 
The system then 
executes the treatment-
management process 
(center) once the 
surveillance tool issues 
a sepsis alert (right). 
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on the right, continuously running sepsis de- ■

tection and treatment management via proto-
col execution.

A dedicated healthcare professional performs 
protocol design and maintenance offline. The GME 
tool enables the capture of treatment protocols. For 
Steep, we configured the GME to implement the 
Clinical Process Management Language (CPML), a 
visual domain-specific modeling language (DSML) 
designed for capturing treatment protocols. From 
the CPML protocol models, Steep automatically 
generates Derived Protocol Representation files 
that configure the system’s execution engine. 

The sepsis-detection and treatment-manage-
ment process is integrated with Vanderbilt’s exist-
ing clinical information system to access real-time 
patient data streams and to facilitate ordering med-
ications or procedures, for example. The surveil-
lance tool monitors specific lab and vital-sign ab-
normalities that are quite sensitive for diagnosing 
sepsis but lack specificity without clinical input and 
contextual interpretation. When a patient’s results 
indicate the need for further review, the system 
alerts the healthcare team—first by a visual cue 
on the ICU patient management dashboard. If the 
dashboard alert isn’t addressed in a timely manner, 
the system sends an electronic notification via a 
text page to appropriate team members. If the phy-
sician suspects that infection is causing the abnor-
mal physiological parameters, he or she activates 
decision support. 

The execution engine starts running the  
treatment-management process by executing the 
protocol models. It also interacts with the treat-
ment management console (TMC), a GUI that 
physicians use to assess the treated patient’s health 

status, get decision support from evidence-based 
guidelines on the screen, and actuate their deci-
sions. The TMC facilitates this interaction between 
the physician and the system through two panels: 
the monitoring panel and the advisory panel (see 
Figure 2). The monitoring panel presents a timeline 
for viewing categorized patient health information 
in context with the therapeutic actions provided to 
the patient. Displaying cause and effect relations 
involves linking patient data and treatments to 
show the effects of one on the other. We call this 
the action-reaction concept. The protocol models 
define this information (both displayed indicators 
and available treatment actions). In effect, they 
transform the generic GUI to a protocol-specific 
interface. Vital signs, including temperature, blood 
pressure, heart rate, and central venous pressure 
are health indicators that the EMR feeds to the 
system as a data stream. Laboratory test results, 
on the other hand, are updated on the screen when 
the information becomes available. The panel also 
shows the actions of the treatment that the patient 
received or is scheduled to receive. All displayed 
data is temporally aligned on the screen.

The advisory panel helps the physician make 
a formal diagnosis by using the built-in logic and 
available action controls. These include higher-
level actions, such as selecting the sepsis severity 
level, as well as lower-level controls, such as order-
ing specific medications and procedures.

CPML Design
DSMLs require the specification of the language’s 
abstract syntax, concrete syntax, semantic do-
main, and the mappings between the abstract 
and concrete syntax (syntactic mapping) and the 
abstract syntax and the semantic domain (se-
mantic mapping).5 The formal representations of 
these specifications are the language’s metamod-
els. In MIC, the metalanguage for representing 
the abstract syntax of DSMLs and the syntactic 
mapping is based on UML class diagrams (with  
stereotypes) and the Object Constraint Language 
(OCL).11 The abstract syntax defines the concepts, 
relationships, and integrity constraints available in 
the DSML. Thus, the abstract syntax determines 
all the (syntactically) correct “sentences” (domain 
models) that can be built. In MIC, semantic map-
pings are formally represented by using graph re-
writing rules.5,12

The formal specification of CPML has proved to 
be difficult, first because healthcare organizations 
rarely phrase operational protocols, policies, and 
treatment guidelines in a mathematically sound, 
unambiguous manner. Second, healthcare prac-

Figure 2. The Steep 
treatment management 
console. The TMC 
includes two panels: 
on the left, the Steep 
advisory panel 
shows recommended 
actions; on the right, 
the monitoring panel 
displays patient health 
information.
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titioners must consider the protocols that describe 
the medical processes constituting a treatment, 
their triggering conditions, and their coordination 
as guidelines—not rigid workflows that must be 
enacted the same way every time. This requirement 
is essential for the design of a model’s execution 
semantics.

Because of these challenges, the CPML develop-
ment took several iterations. In our first attempt, 
the language explicitly represented treatment tra-
jectories as a connected, directed, bipartite graph 
structure. The nodes were either decision points 
with multiple, predefined, possible outcomes or ac-
tions representing treatment steps. This approach 
followed the formalization efforts presented in the 
available medical literature,12 and it was simple. 
However, it didn’t express complex treatments ef-
ficiently, and it didn’t scale well because the po-
tential trajectories generated by the many con-
current and interacting treatment processes grew 
exponentially.

We therefore approached the problem from a 
new direction, grouping treatment steps under pro-
cess concepts. Processes are concurrent, asynchro-
nous, and interactive with each other via events. To 
capture the decision logic concisely, we organized 
processes in a hierarchical manner. Processes can 
listen to events happening around them and start 
running only if their triggering conditions are sat-
isfied. Processes are coordinated with the help of 
events and related messages. The execution se-
mantics of the selected process model corresponds 
to the Communicating Sequential Processes (CSP) 
model.13 The CSP model lets us use hierarchies and 
define the segments of a complex protocol indepen-
dently from each other (because processes can be 
composed in CSP). This semantics also proved to 
be more intuitive to the physicians, because it more 
closely resembles the mental process of medical 
decision-making. 

A detailed description of CPML is beyond the 
scope of this article; however, Table 1 describes the 
language’s major abstractions and their relations. 
Figure 3 shows segments of the metamodel.

operational Semantics
The operational (behavioral) semantics specify a 
CPML model’s behavior at runtime. CPML pro-
cesses have five states: Deactivated, Active, Running 
(Enabled), Paused, and Terminated. An instantiated 
Process’s state is determined on the basis of its Ini-
tiallyActive attribute. This attribute’s default value is 
false, which initializes a Process in the Deactivated 
state. Processes in the Deactivated state do not per-
form any actions. If the InitiallyActive attribute is 

set to true or the Process receives an explicit acti-
vation message, then the Process moves to the Ac-
tive state. Active processes monitor runtime events. 
If an Active process’s EntryCondition attribute—a 
logical expression containing an event such as spe-
cific changes in one or more vital signs—becomes 
satisfied, it starts Running and its subprocesses get 
activated. Steep can suspend Running protocols and 
resume them later on demand.

The execution engine implements the protocol 
models’ operational semantics (see Figure 1). It cre-
ates a concurrent state machine for every Protocol, 
Process, and Activity. It also provides the means 
for process synchronization by using implicit and 
explicit communication methods: condition evalu-
ation and message exchange, respectively. Condi-
tions typically include references to events (includ-
ing time) and perform data evaluation.

Table 1
High-level concepts of the Clinical Process 
Management Language (concrete syntax)

abstraction Description

Medical  
Library

Top-level concept that serves as the placeholder for hierarchically 
categorizing general medical knowledge. Medical Library components 
serve as a knowledge base for the rest of the language. The three main 
information categories stored in a Medical Library are patient vitals, 
laboratory tests, and medications (see Figure 3a). Protocol and Order-
ables models use these components by reference.

Orderables Top-level concept for building a hierarchical library for executable 
actions. Orderables provide the means for building bundles that are 
available for healthcare professionals. The actions include proce-
dures, medications, and lab tests (see Figure 3b). Activity compo-
nents in a Protocol refer directly to Orderables.

Protocol Top-level concept for describing medical protocols (see Figure 3c).

Process Coordinated group of activities used in Protocol models. Processes 
help decompose the treatment protocol and organize the treatment 
steps. Processes are concurrent and asynchronous, and they can 
interact with each other via Events.

Event Component used in a Process. Events refer to state changes (such 
as activation, initiation, and completion events) of other components 
(such as a Protocol, Process, or Activity). They help create dependen-
cies among models.

Activity Lowest-level components of a Protocol. They are the representation 
of what actions must be performed at a given time as part of the treat-
ment. Activities include ordering lab bundles, medication bundles, 
single medications, and procedures. 

Step Coordination primitive captured as a connection that specifies the 
execution order of Activities within a Process.

Synchronizing  
merge

Coordination primitive defining a synchronization point between 
activities where multiple Steps converge into a single Step. This 
means that if more than one path is taken, synchronization of the 
active paths must occur.
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the Sepsis Protocol
CPML models capture the medical knowledge re-
lated to sepsis. Figure 4 presents an example that 
describes two components of the sepsis protocol. 
The main Protocols window contains the Sepsis 
Protocol model. The model’s contents are shown in 
the Sepsis Protocol window, consisting of five Pro-
cesses that are activated in the order specified by the 
activation arrows (from left to right) once the pro-
tocol starts executing. This activation mechanism 
has no direct control over the execution order of the 
processes; it just constrains the order by specifying 
when the components start to listen. The execution 
order isn’t determined until runtime, when Steep 
can evaluate the entry conditions for processes.

The window labeled Diagnostics is the last win-
dow opened in the Figure 4 example. It shows the 
contents of a fairly simple process to initiate the or-
dering of laboratory test bundles, such as the one 
including the complete blood count (CBC) lab test. 
This process has no entry condition and is marked 
initially active, which means it will start executing 
immediately after the protocol starts. No depen-
dencies exist among the provided actions (various 
laboratory tests), so their execution will be initi-
ated simultaneously. During the protocol’s execu-
tion, this generates a reminder on the TMC advi-
sory panel (see Figure 2, left side) to order the listed 
laboratory tests.

Discussion
The use of evidence-based guidelines for manag-
ing complex clinical problems has become the stan-
dard of practice, but guidelines are protocols and 
not patient care plans. To be truly effective, pro-

tocols must be deployed as customized, individu-
alized clinical care plans (protocol instances). Our 
approach inherently supports this idea by allowing 
protocol models to be tailored on a per-patient ba-
sis, if necessary, and treatment to be customized via 
the TMC at the bedside.

We had to develop a DSML because no widely 
accepted visual languages exist for capturing treat-
ment protocols, and generic software modeling 
languages, such as UML, weren’t designed for rep-
resenting medical knowledge. The use of model-
integrated techniques provides several benefits. The 
protocol models capture medical knowledge ex-
plicitly and avoid ambiguity. Medical professionals 
comprehend the models easily, eliminating the need 
for IT personnel to mediate between the medical 
and computer fields.

Furthermore, the protocol models enable knowl-
edge transfer because they’re based on the best 
practice available at the time. Medical students 
and residents using the tool thereby learn expert 
knowledge in actual practice. Moreover, the models 
can be updated on a regular basis as new findings 
emerge in the medical literature. Finally, the system 
facilitates the tracking of protocol execution, which 
helps not only increase compliance but also improve 
the protocols themselves by enabling the analysis of 
outcomes.

While our approach’s medical benefits are clear, 
it also presents several advantages from a software 
development perspective. The software architecture 
is generic and expected to work just as well for other 
illnesses as it does for sepsis. In fact, we’ve already 
begun modeling congestive heart failure (CHF), a 
completely different problem. CHF is a chronic 
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condition with patients typically living at home, as 
opposed to acute sepsis, where treatment is admin-
istered in the ICU. We don’t expect any software 
changes to the main components of the system as 
we attack different illnesses, just as there are no 
software changes when the protocols are updated 
according to new medical knowledge.

Treatment protocols, even if they serve only as 
guidelines in patient management, are safety criti-
cal, and their validation and verification is an essen-
tial part of the protocol specification process. One 
of the key advantages of the MIC approach is that 
modeling languages are formally sound and provide 
a foundation for disciplined validation and verifica-
tion processes. 

Validation
Protocol validation tests whether the generated  
decision-support guidance corresponds to clini-
cians’ expectations. The first step is to model walk-
throughs with clinicians. The modeling language’s 
expressiveness is helpful in this process and fully 
confirms the importance of using DSMLs highly 
customized to the clinical environment. Physi-
cians actively participated in CPML’s iterative de-
velopment over several months. In our experience 
with many different domains, domain expert in-
volvement in DSML development is an absolute 
necessity.

The second validation step is simulation-based 
studies. The Steep system architecture supports the 
generation of simulated execution through a su-
pervisor console. The console helps the supervisor 

control the environment, including the simulated 
patient’s response to treatment and the behaviors of 
other simulated players, such as physicians ordering 
drugs and procedures, nurses administering drugs, 
and laboratories delivering lab results. Sample data 
for simulated execution of protocols are stored in 
XML files that the execution engine accesses and 
the TMC displays just as they would with real data.

The simulation must be conducted in a realistic 
environment, where ICU personnel can face treat-
ment management situations similar to real life and 
can interact with the system to make decisions. The 
validation process must be closely monitored and 
the results precisely evaluated. VMC provides the 
infrastructure for this evaluation at the Simulation 
Center of the Center for Experiential Learning and 
Assessment (www.mc.vanderbilt.edu/medschool/ 
otlm/cela/stp/index.html). The Simulation Center 
not only helps validate the protocol models but 
also provides valuable training to the medical per-
sonnel before they use the system in the ICU with 
actual patients.

Verification
Another benefit of using DSMLs is that the domain 
models can be formally verified against established 
criteria. This is a significant step forward. In tra-
ditional approaches, where the system is manually 
coded, the model is not explicit and can’t be inde-
pendently verified. Our models support verification 
on three levels.

The first line of defense is static model verifi-
cation, which the GME provides. Metamodels 

Process
Synchronizing merge
(Coordination primitive) Conditions

Lab order
(activity)Protocol

Figure 4. Sepsis 
management models 
expressed using CPML 
(partial view). The 
Sepsis Protocol model 
appears in the Protocols 
window. Opening 
the model reveals 
the five Processes in 
the Sepsis Protocol 
window. Opening the 
first Process shows the 
Diagnostics window for 
ordering laboratory test 
bundles.
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include well-formedness rules that separate syn-
tactically correct models from incorrect ones. 
The constraints are expressed using OCL. During 
modeling, GME enforces these well-formedness 
rules. In CPML, the constraints include clinical 
limits for parameters as well as more sophisticated 
rules that would be difficult to check without auto-
mated verification.

Next is verification of dynamic properties at de-
sign time. The execution engine transforms models 
into behaviors at runtime. In fact, protocols are in-
stantiated into a complex, multithreaded program 
that interacts with ICU personnel, patient data, 
and events. Using well-defined, clean execution 
semantics (such as CSP) is crucial for verifiability 
of the models against a set of predefined behav-
ioral properties such as determinacy, livelock, and 
deadlock. We’ve developed a model translator to 
map the protocol models into an intermediate ex-
ecutable model using Mathworks Stateflow (www. 
mathworks.com/products/stateflow). The Stateflow 
models can drive a number of verification tools, 
such as model checkers, simulators, and reachabil-
ity analysis tools. We plan to use these tools in im-
plementing a dynamic verification strategy.

Finally, critical actions that are performed dur-
ing the treatment need to be checked at runtime. 
Security and privacy policies determine access 
rights to data published through the TMC and to 
the invocation of actions such as initiating treat-
ment processes and ordering medications. In the 
current implementation, we rely on general ICU 
access-control policies, but we intend to make this 
customizable in later phases. Decisions present in 
the protocol let healthcare professionals order vari-
ous actions during treatment that must be not only 
logged but also matched against a set of legal reg-
ulations and the hospital’s own policies. Systems 
interfaced to the execution engine perform several 
of these checks—for example, the order manage-
ment system checks all medication-related actions 
against a large suite of rules.

T he Sepsis project started in 2007 as a col-
laborative effort between the Vanderbilt 
School of Engineering and Vanderbilt 

Medical Center to apply advanced MIC techniques 
to the management of complex clinical processes. 
The team has completed the beta version of the ge-
neric software infrastructure and the sepsis treat-
ment protocol models resulting in the Steep toolset. 
We are performing a carefully coordinated, multi-
phase experiment to evaluate the approach in terms 
of usability and effectiveness. Phase one of the clin-

ical tests has already started in two ICUs at Van-
derbilt to establish the baseline for the comparative 
study. We’re gathering data on patient outcomes 
using the surveillance tool only. The entire Steep 
toolset will be introduced later this year. We antici-
pate the application will decrease the time it takes 
to detect patients with developing sepsis as well as 
improvements both in physician compliance with 
evidence-based standards and clinical outcomes for 
patients.

Once the approach is validated for sepsis, we 
will apply the technology and corresponding tools 
to the treatment of other serious illnesses.
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