
54 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus

Today, medical knowledge-based systems focus
on computerized physician order entry (CPOE) and
clinical decision-support advisory systems.3 CPOE
systems depend on comprehensive EMRs to give
physicians and nurses the means to create and ex-
ecute orders for tests, procedures, and medications.
CPOE and related systems are often called physi-
cian workflow systems because they’re designed to
fit the normative matrix of activities that flow from
specific surrounding systems and medical practice
standards.

Process management is another knowledge-
based medical application area. Vanderbilt Medi-
cal Center (VMC) is pioneering the use of process
management dashboards to inform medical staff
of the status of required activities for patients with
specific problems. Physicians create activity bun-
dles for treating certain conditions; the dashboard
shows the bundled activities and their status with
red, yellow, and green indicators to remind hospital
staff of which activities are completed and which
remain to be done.

The key enabler of our work is model-integrated

computing (MIC),4 an approach and supporting
tool suite for model-based software and systems en-
gineering that Vanderbilt University has developed
over the past two decades. This infrastructure of-
fers new opportunities in creating clinical decision-
support and process-management systems. MIC
focuses on formally representing, composing, and
manipulating integrated models of information
processes and security/safety policies. The formal
representation of treatment protocols promotes
software reusability and maintainability in the
overall management of complex medical processes
by explicitly capturing a task’s temporal structures
and coordination (as opposed to hiding them in the
code). MIC also provides tools for automated sys-
tem generation directly from the models.

The open source MIC tool suite, including the
Generic Modeling Environment (GME),5,6 enables
layered, multiple-view system modeling, model
transformation, model analysis and validation,
model execution, and system design evolution. The
MIC tools establish a framework for creating clini-
cal decision-support and process-management sys-

F ormalizing medical knowledge has been an active research area since the
1960s. Early work focused on creating systems that mapped signs, symptoms,
and laboratory results to probabilistic estimates of different diagnoses.1 These
expert systems proved impractical for the everyday practice of medicine. Only

with the development of electronic medical records (EMRs) have practitioners adopted
knowledge-based systems.2

Vanderbilt University
and its Medical
Center are applying
model-integrated
techniques to specify
treatment guidelines
as asynchronous
processes and
implement them in
visual dashboards
to assist healthcare
teams.

Janos L. Mathe, Akos Ledeczi, Andras Nadas, and Janos Sztipanovits, Institute for
Software Integrated Systems, Vanderbilt University

Jason B. Martin, Liza M. Weavind, and Anne Miller, Vanderbilt Medical Center

Peter Miller and David J. Maron, Vanderbilt HealthTech Laboratory

A Model-Integrated,
Guideline-Driven, Clinical
Decision-Support System

dom a in - sp e c i f i c m o de l ing

 July/August 2009 I E E E S o f t w a r E 55

tems. In this article, we describe its first application
to the management of a serious illness.

Motivating Problem:
Sepsis Management
To maximize our system’s impact, we sought a
clinical paradigm that was common, clinically im-
portant, and expensive with accepted, evidence-
based treatment guidelines. Sepsis proved an ideal
candidate. The sepsis syndrome results from a ro-
bust host reaction to infection and is characterized
by a systemic inflammatory response, frequently
with very low blood pressure and multiple organ
failures. The disease process is very common.
About 750,000 cases occur in the US annually,7
and about 30 percent of septic patients die from
the disease.8 Severely septic patients consume
many hospital resources, requiring on average
7–10 days in intensive care units (ICUs) and 3–5
weeks in a hospital. Sepsis-related expenditures
are estimated to approach US$17 billion annually
in the US alone.9

Sepsis treatment is a complex, extremely infor-
mation-intensive process performed in ICUs and
emergency departments. Given the large scope of
this clinical problem, it’s not surprising that many
treatment strategies have been proposed and in-
vestigated. The Surviving Sepsis Campaign (SSC),
led by experts from numerous professional orga-
nizations, seeks to improve the diagnosis, manage-
ment, and clinical outcomes. The SSC has pub-
lished a comprehensive set of treatment guidelines
based on graded clinical evidence. The guidelines

are widely considered to represent the state of the
art in sepsis management,10 but they will evolve
over time. Also, they must be customized to in-
dividual patient needs, and their correct applica-
tion has important quality and cost implications
in sepsis care. The SSC guidelines are complex and
require multiple time-sensitive interventions based
on dynamic patient variables. Correct and timely
implementation of the guidelines requires continu-
ous assimilation and interpretation of numerous
pieces of patient data.

We can categorize ICU information technology
(IT) interventions generally (in order of increasing
sophistication) as clinical reminders, clinical path-
ways, or real-time protocolized decision-support
tools. Real-time tools continuously monitor spe-
cific patient variables; if they detect an unmet clin-
ical need, they make treatment recommendations
based on clinical guidelines. To our knowledge,
the current effort is the most comprehensive at-
tempt at managing sepsis through a sophisticated
electronic detection and management tool.

System Architecture and Operation
The Sepsis Treatment Enhanced through Electronic
Protocolization (Steep) system is a tool to manage
sepsis treatment. Figure 1 shows the Steep system
architecture with two distinct operational phases
presented side by side:

on the left, the design and occasional update of ■

evidence-based treatment protocols (protocol
models) and

Treatment management console

Patient
management

dashboard

Clinical information system

Surveillance
tool

Patient

Execution
engine

Physician

+

Derived Protocol
Representation (XML)

Protocol models
(Generic Modeling Environment)

T

Database

Figure 1. The Sepsis
Treatment Enhanced
through Electronic
Protocolization (Steep)
system architecture.
Physicians design
and update protocol
models offline (left).
The system then
executes the treatment-
management process
(center) once the
surveillance tool issues
a sepsis alert (right).

56 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

on the right, continuously running sepsis de- ■

tection and treatment management via proto-
col execution.

A dedicated healthcare professional performs
protocol design and maintenance offline. The GME
tool enables the capture of treatment protocols. For
Steep, we configured the GME to implement the
Clinical Process Management Language (CPML), a
visual domain-specific modeling language (DSML)
designed for capturing treatment protocols. From
the CPML protocol models, Steep automatically
generates Derived Protocol Representation files
that configure the system’s execution engine.

The sepsis-detection and treatment-manage-
ment process is integrated with Vanderbilt’s exist-
ing clinical information system to access real-time
patient data streams and to facilitate ordering med-
ications or procedures, for example. The surveil-
lance tool monitors specific lab and vital-sign ab-
normalities that are quite sensitive for diagnosing
sepsis but lack specificity without clinical input and
contextual interpretation. When a patient’s results
indicate the need for further review, the system
alerts the healthcare team—first by a visual cue
on the ICU patient management dashboard. If the
dashboard alert isn’t addressed in a timely manner,
the system sends an electronic notification via a
text page to appropriate team members. If the phy-
sician suspects that infection is causing the abnor-
mal physiological parameters, he or she activates
decision support.

The execution engine starts running the
treatment-management process by executing the
protocol models. It also interacts with the treat-
ment management console (TMC), a GUI that
physicians use to assess the treated patient’s health

status, get decision support from evidence-based
guidelines on the screen, and actuate their deci-
sions. The TMC facilitates this interaction between
the physician and the system through two panels:
the monitoring panel and the advisory panel (see
Figure 2). The monitoring panel presents a timeline
for viewing categorized patient health information
in context with the therapeutic actions provided to
the patient. Displaying cause and effect relations
involves linking patient data and treatments to
show the effects of one on the other. We call this
the action-reaction concept. The protocol models
define this information (both displayed indicators
and available treatment actions). In effect, they
transform the generic GUI to a protocol-specific
interface. Vital signs, including temperature, blood
pressure, heart rate, and central venous pressure
are health indicators that the EMR feeds to the
system as a data stream. Laboratory test results,
on the other hand, are updated on the screen when
the information becomes available. The panel also
shows the actions of the treatment that the patient
received or is scheduled to receive. All displayed
data is temporally aligned on the screen.

The advisory panel helps the physician make
a formal diagnosis by using the built-in logic and
available action controls. These include higher-
level actions, such as selecting the sepsis severity
level, as well as lower-level controls, such as order-
ing specific medications and procedures.

CPML Design
DSMLs require the specification of the language’s
abstract syntax, concrete syntax, semantic do-
main, and the mappings between the abstract
and concrete syntax (syntactic mapping) and the
abstract syntax and the semantic domain (se-
mantic mapping).5 The formal representations of
these specifications are the language’s metamod-
els. In MIC, the metalanguage for representing
the abstract syntax of DSMLs and the syntactic
mapping is based on UML class diagrams (with
stereotypes) and the Object Constraint Language
(OCL).11 The abstract syntax defines the concepts,
relationships, and integrity constraints available in
the DSML. Thus, the abstract syntax determines
all the (syntactically) correct “sentences” (domain
models) that can be built. In MIC, semantic map-
pings are formally represented by using graph re-
writing rules.5,12

The formal specification of CPML has proved to
be difficult, first because healthcare organizations
rarely phrase operational protocols, policies, and
treatment guidelines in a mathematically sound,
unambiguous manner. Second, healthcare prac-

Figure 2. The Steep
treatment management
console. The TMC
includes two panels:
on the left, the Steep
advisory panel
shows recommended
actions; on the right,
the monitoring panel
displays patient health
information.

 July/August 2009 I E E E S o f t w a r E 57

titioners must consider the protocols that describe
the medical processes constituting a treatment,
their triggering conditions, and their coordination
as guidelines—not rigid workflows that must be
enacted the same way every time. This requirement
is essential for the design of a model’s execution
semantics.

Because of these challenges, the CPML develop-
ment took several iterations. In our first attempt,
the language explicitly represented treatment tra-
jectories as a connected, directed, bipartite graph
structure. The nodes were either decision points
with multiple, predefined, possible outcomes or ac-
tions representing treatment steps. This approach
followed the formalization efforts presented in the
available medical literature,12 and it was simple.
However, it didn’t express complex treatments ef-
ficiently, and it didn’t scale well because the po-
tential trajectories generated by the many con-
current and interacting treatment processes grew
exponentially.

We therefore approached the problem from a
new direction, grouping treatment steps under pro-
cess concepts. Processes are concurrent, asynchro-
nous, and interactive with each other via events. To
capture the decision logic concisely, we organized
processes in a hierarchical manner. Processes can
listen to events happening around them and start
running only if their triggering conditions are sat-
isfied. Processes are coordinated with the help of
events and related messages. The execution se-
mantics of the selected process model corresponds
to the Communicating Sequential Processes (CSP)
model.13 The CSP model lets us use hierarchies and
define the segments of a complex protocol indepen-
dently from each other (because processes can be
composed in CSP). This semantics also proved to
be more intuitive to the physicians, because it more
closely resembles the mental process of medical
decision-making.

A detailed description of CPML is beyond the
scope of this article; however, Table 1 describes the
language’s major abstractions and their relations.
Figure 3 shows segments of the metamodel.

operational Semantics
The operational (behavioral) semantics specify a
CPML model’s behavior at runtime. CPML pro-
cesses have five states: Deactivated, Active, Running
(Enabled), Paused, and Terminated. An instantiated
Process’s state is determined on the basis of its Ini-
tiallyActive attribute. This attribute’s default value is
false, which initializes a Process in the Deactivated
state. Processes in the Deactivated state do not per-
form any actions. If the InitiallyActive attribute is

set to true or the Process receives an explicit acti-
vation message, then the Process moves to the Ac-
tive state. Active processes monitor runtime events.
If an Active process’s EntryCondition attribute—a
logical expression containing an event such as spe-
cific changes in one or more vital signs—becomes
satisfied, it starts Running and its subprocesses get
activated. Steep can suspend Running protocols and
resume them later on demand.

The execution engine implements the protocol
models’ operational semantics (see Figure 1). It cre-
ates a concurrent state machine for every Protocol,
Process, and Activity. It also provides the means
for process synchronization by using implicit and
explicit communication methods: condition evalu-
ation and message exchange, respectively. Condi-
tions typically include references to events (includ-
ing time) and perform data evaluation.

Table 1
High-level concepts of the Clinical Process
Management Language (concrete syntax)

abstraction Description

Medical
Library

Top-level concept that serves as the placeholder for hierarchically
categorizing general medical knowledge. Medical Library components
serve as a knowledge base for the rest of the language. The three main
information categories stored in a Medical Library are patient vitals,
laboratory tests, and medications (see Figure 3a). Protocol and Order-
ables models use these components by reference.

Orderables Top-level concept for building a hierarchical library for executable
actions. Orderables provide the means for building bundles that are
available for healthcare professionals. The actions include proce-
dures, medications, and lab tests (see Figure 3b). Activity compo-
nents in a Protocol refer directly to Orderables.

Protocol Top-level concept for describing medical protocols (see Figure 3c).

Process Coordinated group of activities used in Protocol models. Processes
help decompose the treatment protocol and organize the treatment
steps. Processes are concurrent and asynchronous, and they can
interact with each other via Events.

Event Component used in a Process. Events refer to state changes (such
as activation, initiation, and completion events) of other components
(such as a Protocol, Process, or Activity). They help create dependen-
cies among models.

Activity Lowest-level components of a Protocol. They are the representation
of what actions must be performed at a given time as part of the treat-
ment. Activities include ordering lab bundles, medication bundles,
single medications, and procedures.

Step Coordination primitive captured as a connection that specifies the
execution order of Activities within a Process.

Synchronizing
merge

Coordination primitive defining a synchronization point between
activities where multiple Steps converge into a single Step. This
means that if more than one path is taken, synchronization of the
active paths must occur.

58 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

the Sepsis Protocol
CPML models capture the medical knowledge re-
lated to sepsis. Figure 4 presents an example that
describes two components of the sepsis protocol.
The main Protocols window contains the Sepsis
Protocol model. The model’s contents are shown in
the Sepsis Protocol window, consisting of five Pro-
cesses that are activated in the order specified by the
activation arrows (from left to right) once the pro-
tocol starts executing. This activation mechanism
has no direct control over the execution order of the
processes; it just constrains the order by specifying
when the components start to listen. The execution
order isn’t determined until runtime, when Steep
can evaluate the entry conditions for processes.

The window labeled Diagnostics is the last win-
dow opened in the Figure 4 example. It shows the
contents of a fairly simple process to initiate the or-
dering of laboratory test bundles, such as the one
including the complete blood count (CBC) lab test.
This process has no entry condition and is marked
initially active, which means it will start executing
immediately after the protocol starts. No depen-
dencies exist among the provided actions (various
laboratory tests), so their execution will be initi-
ated simultaneously. During the protocol’s execu-
tion, this generates a reminder on the TMC advi-
sory panel (see Figure 2, left side) to order the listed
laboratory tests.

Discussion
The use of evidence-based guidelines for manag-
ing complex clinical problems has become the stan-
dard of practice, but guidelines are protocols and
not patient care plans. To be truly effective, pro-

tocols must be deployed as customized, individu-
alized clinical care plans (protocol instances). Our
approach inherently supports this idea by allowing
protocol models to be tailored on a per-patient ba-
sis, if necessary, and treatment to be customized via
the TMC at the bedside.

We had to develop a DSML because no widely
accepted visual languages exist for capturing treat-
ment protocols, and generic software modeling
languages, such as UML, weren’t designed for rep-
resenting medical knowledge. The use of model-
integrated techniques provides several benefits. The
protocol models capture medical knowledge ex-
plicitly and avoid ambiguity. Medical professionals
comprehend the models easily, eliminating the need
for IT personnel to mediate between the medical
and computer fields.

Furthermore, the protocol models enable knowl-
edge transfer because they’re based on the best
practice available at the time. Medical students
and residents using the tool thereby learn expert
knowledge in actual practice. Moreover, the models
can be updated on a regular basis as new findings
emerge in the medical literature. Finally, the system
facilitates the tracking of protocol execution, which
helps not only increase compliance but also improve
the protocols themselves by enabling the analysis of
outcomes.

While our approach’s medical benefits are clear,
it also presents several advantages from a software
development perspective. The software architecture
is generic and expected to work just as well for other
illnesses as it does for sepsis. In fact, we’ve already
begun modeling congestive heart failure (CHF), a
completely different problem. CHF is a chronic

MedicalLibrary
<<Model>>

LabGroup
<<Model>>

(a)

MedGroup
<<Model>>

VitalGroup
<<Model>>

LabValue
<<Model>>

Medication
<<Model>>

Vital
<<Model>>

Color: enum DosageDefault: �eldColor: enum

Range
<<Atom>>

Orderables
<<Model>>

MedBundleGroup
<<Model>>

(b) (c)

ProcedureGroup
<<Model>>

LabBundleGroup
<<Model>>

MedBundle
<<Model>>

LabValue
<<ModelProxy>>

Medication
<<ModelProxy>>

Color: enum DosageDefault: �eld

Procedure
<<Model>>

LabBundle
<<Model>>

MedicationRef
<<Reference>>

LabValueRef
<<Reference>>

Protocols
<<Model>>

Protocol
<<Model>>

Process
<<FCOProxy>>

DosageDefault: �eld

Figure 3. Segments of
the Clinical Process
Management Language
in the Generic Modeling
Environment:
(a) the Medical Library,
(b) Orderables, and
(c) Protocols. CPML
groups treatment
steps into processes
that can be organized
hierarchically.

 July/August 2009 I E E E S o f t w a r E 59

condition with patients typically living at home, as
opposed to acute sepsis, where treatment is admin-
istered in the ICU. We don’t expect any software
changes to the main components of the system as
we attack different illnesses, just as there are no
software changes when the protocols are updated
according to new medical knowledge.

Treatment protocols, even if they serve only as
guidelines in patient management, are safety criti-
cal, and their validation and verification is an essen-
tial part of the protocol specification process. One
of the key advantages of the MIC approach is that
modeling languages are formally sound and provide
a foundation for disciplined validation and verifica-
tion processes.

Validation
Protocol validation tests whether the generated
decision-support guidance corresponds to clini-
cians’ expectations. The first step is to model walk-
throughs with clinicians. The modeling language’s
expressiveness is helpful in this process and fully
confirms the importance of using DSMLs highly
customized to the clinical environment. Physi-
cians actively participated in CPML’s iterative de-
velopment over several months. In our experience
with many different domains, domain expert in-
volvement in DSML development is an absolute
necessity.

The second validation step is simulation-based
studies. The Steep system architecture supports the
generation of simulated execution through a su-
pervisor console. The console helps the supervisor

control the environment, including the simulated
patient’s response to treatment and the behaviors of
other simulated players, such as physicians ordering
drugs and procedures, nurses administering drugs,
and laboratories delivering lab results. Sample data
for simulated execution of protocols are stored in
XML files that the execution engine accesses and
the TMC displays just as they would with real data.

The simulation must be conducted in a realistic
environment, where ICU personnel can face treat-
ment management situations similar to real life and
can interact with the system to make decisions. The
validation process must be closely monitored and
the results precisely evaluated. VMC provides the
infrastructure for this evaluation at the Simulation
Center of the Center for Experiential Learning and
Assessment (www.mc.vanderbilt.edu/medschool/
otlm/cela/stp/index.html). The Simulation Center
not only helps validate the protocol models but
also provides valuable training to the medical per-
sonnel before they use the system in the ICU with
actual patients.

Verification
Another benefit of using DSMLs is that the domain
models can be formally verified against established
criteria. This is a significant step forward. In tra-
ditional approaches, where the system is manually
coded, the model is not explicit and can’t be inde-
pendently verified. Our models support verification
on three levels.

The first line of defense is static model verifi-
cation, which the GME provides. Metamodels

Process
Synchronizing merge
(Coordination primitive) Conditions

Lab order
(activity)Protocol

Figure 4. Sepsis
management models
expressed using CPML
(partial view). The
Sepsis Protocol model
appears in the Protocols
window. Opening
the model reveals
the five Processes in
the Sepsis Protocol
window. Opening the
first Process shows the
Diagnostics window for
ordering laboratory test
bundles.

60 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

include well-formedness rules that separate syn-
tactically correct models from incorrect ones.
The constraints are expressed using OCL. During
modeling, GME enforces these well-formedness
rules. In CPML, the constraints include clinical
limits for parameters as well as more sophisticated
rules that would be difficult to check without auto-
mated verification.

Next is verification of dynamic properties at de-
sign time. The execution engine transforms models
into behaviors at runtime. In fact, protocols are in-
stantiated into a complex, multithreaded program
that interacts with ICU personnel, patient data,
and events. Using well-defined, clean execution
semantics (such as CSP) is crucial for verifiability
of the models against a set of predefined behav-
ioral properties such as determinacy, livelock, and
deadlock. We’ve developed a model translator to
map the protocol models into an intermediate ex-
ecutable model using Mathworks Stateflow (www.
mathworks.com/products/stateflow). The Stateflow
models can drive a number of verification tools,
such as model checkers, simulators, and reachabil-
ity analysis tools. We plan to use these tools in im-
plementing a dynamic verification strategy.

Finally, critical actions that are performed dur-
ing the treatment need to be checked at runtime.
Security and privacy policies determine access
rights to data published through the TMC and to
the invocation of actions such as initiating treat-
ment processes and ordering medications. In the
current implementation, we rely on general ICU
access-control policies, but we intend to make this
customizable in later phases. Decisions present in
the protocol let healthcare professionals order vari-
ous actions during treatment that must be not only
logged but also matched against a set of legal reg-
ulations and the hospital’s own policies. Systems
interfaced to the execution engine perform several
of these checks—for example, the order manage-
ment system checks all medication-related actions
against a large suite of rules.

T he Sepsis project started in 2007 as a col-
laborative effort between the Vanderbilt
School of Engineering and Vanderbilt

Medical Center to apply advanced MIC techniques
to the management of complex clinical processes.
The team has completed the beta version of the ge-
neric software infrastructure and the sepsis treat-
ment protocol models resulting in the Steep toolset.
We are performing a carefully coordinated, multi-
phase experiment to evaluate the approach in terms
of usability and effectiveness. Phase one of the clin-

ical tests has already started in two ICUs at Van-
derbilt to establish the baseline for the comparative
study. We’re gathering data on patient outcomes
using the surveillance tool only. The entire Steep
toolset will be introduced later this year. We antici-
pate the application will decrease the time it takes
to detect patients with developing sepsis as well as
improvements both in physician compliance with
evidence-based standards and clinical outcomes for
patients.

Once the approach is validated for sepsis, we
will apply the technology and corresponding tools
to the treatment of other serious illnesses.

Acknowledgments
This work was supported in part by TRUST (Team
for Research in Ubiquitous Secure Technology, US
National Science Foundation (NSF) award CCF-
0424422), the Vanderbilt HealthTech Laboratory,
and the Vanderbilt Informatics Center.

References
 1. R.A. Miller, “Medical Diagnostic Decision Support

Systems—Past, Present, and Future: A Threaded
Bibliography and Brief Commentary,” J. Am. Medical
Informatics Assoc., vol. 1, 1994, pp. 8–27.

 2. W.W. Stead and W.E. Hammond, “Computer-Based
Medical Records: The Centerpiece of TMR,” M.D.
Computing: Computers in Medical Practice, vol. 8,
1988, pp. 48–62.

 3. D.L. Hunt et al., “Effects of Computer-Based Clinical
Decision Support Systems on Physician Performance
and Patient Outcomes: A Systematic Review,” J. Am.
Medical Assoc., vol. 280, 1998, pp. 1339–1346.

 4. J. Sztipanovits and G. Karsai, “Model-Integrated Com-
puting,” Computer, Apr. 1997, pp. 110–112.

 5. G. Karsai et al., “Model-Integrated Development of
Embedded Software,” Proc. IEEE, vol. 91, no. 1, 2003,
pp. 145–164.

 6. A. Ledeczi et al., “Composing Domain-Specific Design
Environments,” Computer, Nov. 2001, pp. 44–51.

 7. G.S. Martin et al., “The Epidemiology of Sepsis in the
United States from 1979 through 2000,” New England
J. Medicine, vol. 348, 2003, pp. 1546–1554.

 8. G.R. Bernard et al., “Efficacy and Safety of Recombi-
nant Human Activated Protein C for Severe Sepsis,”
New England J. Medicine, vol. 344, 2001, pp. 699–709.

 9. D.C. Angus et al., “Epidemiology of Severe Sepsis in
the United States: Analysis of Incidence, Outcome, and
Associated Costs of Care,” Critical Care Medicine, vol.
29, 2001, pp. 1303–1310.

 10. R.P. Dellinger et al., “Surviving Sepsis Campaign: In-
ternational Guidelines for Management of Severe Sepsis
and Septic Shock: 2008,” Critical Care Medicine, vol.
36, 2008, pp. 296–327.

 11. Object Constraint Language, OMG Available Specifi-
cation, v. 2.0, Object Management Group, May 2006;
www.omg.org/docs/formal/06-05-01.pdf.

 12. K. Chen, J. Sztipanovits, and S. Neema, “Toward a
Semantic Anchoring Infrastructure for Domain-Specific
Modeling Languages,” Proc. 5th ACM Int’l Conf.
Embedded Software (Emsoft 05), ACM Press, 2005, pp.
35–43.

 13. S.D. Brookes, C.A. Hoare, and A.W. Roscoe, “A
Theory of Communicating Sequential Processes,”
J. ACM, vol. 31, no. 3, 1984, pp. 560–599.

Protocols
are instantiated

into a
multithreaded
program that
interacts with

personnel, data,
and events.

 July/August 2009 I E E E S o f t w a r E 61

About the Authors
Janos L. Mathe is a PhD student in Vanderbilt University’s
Department of Electrical Engineering and Computer Science. His
research interests include applying model-integrated computing tech-
niques to security and privacy requirements in healthcare settings.
Mathe has an MSc in computer science from the Technical University
of Budapest. Contact him at janos.l.mathe@vanderbilt.edu.

Peter Miller is the director of the Vanderbilt HealthTech Labora-
tory, which has the mission of transforming healthcare processes
through the discovery and demonstration of disruptive informatics-
enabled technologies. His research interests focus on biomedical
informatics. Miller has an MS/EE from the Massachusetts Institute of
Technology. Contact him at peter.miller@vanderbilt.edu.

Liza M. Weavind is an associate professor of anesthesiology
and critical care, director of the Critical Care Fellowship Program,
and medical director of the Surgical Intensive Care Unit at Vanderbilt
University. Her academic interests focus on educational models for
critical-care practitioners and trainees, patient safety initiatives, and
the use of telemedicine and technology to improve and standardize
ICU care. Weavind received her MB, BCh degree from the University
of Witwatersrand Medical School, then completed postgraduate train-
ing in internal medicine, obstetrics, and general and cardiothoracic

surgery at Johannesburg General Hospital. She completed the anesthesiology residency and
critical-care fellowship programs at the University of Texas Medical School. Contact her at liza.
weavind@vanderbilt.edu.

Andras Nadas is a research engineer at Vanderbilt University’s
Institute for Software Integrated Systems. His research interests are in
embedded systems, including wireless sensor networks, configurable
model-driven enterprise services, and configurable runtime engines.
Nadas has a master’s in computer science from the Budapest Univer-
sity of Technology and Economics. Contact him at andras.nadas@
vanderbilt.edu.

David J. Maron is an associate professor of medicine in
Vanderbilt University’s Division of Cardiovascular Medicine. He
also serves as medical director of the Vanderbilt Center for Health
Promotion, director of emergency cardiology, and clinical advisor to
the Vanderbilt HealthTech Laboratory. His research interest is the ap-
plication of optimal medical therapy in the management of coronary
heart disease. Maron received his MD from the University of Southern
California’s Keck School of Medicine. He completed internal medicine
training at the University of California, Los Angeles. He was a Robert
Wood Johnson Clinical Scholar at Stanford University, where he also completed his cardiology
training. Contact him at david.maron@vanderbilt.edu.

Jason B. Martin is a senior clinical fellow in the Vanderbilt
Medical Center’s Division of Allergy, Pulmonary, and Critical Care. His
research interests focus on developing the knowledge and skill neces-
sary to be an effective pulmonologist and critical care physician. He
also has an interest in clinical research and technology interventions
for optimizing the treatment of patients with systemic infections,
or sepsis. Martin has an MD with research honors degree from the
University of South Alabama College of Medicine. He completed
an internship and residency in internal medicine at the Vanderbilt
University Medical Center. Contact him at jason.martin@vanderbilt.edu.

Akos Ledeczi is a research associate professor in Vanderbilt
University’s Department of Electrical Engineering and Computer
Science and a senior research scientist at its Institute for Software
Integrated Systems. His research interests include model-integrated
system development and wireless sensor networks. Lédeczi has a PhD
in electrical engineering from Vanderbilt University. Contact him at
akos.ledeczi@vanderbilt.edu.

Anne Miller is an assistant professor in Vanderbilt University’s
School of Nursing. Her research interests include the role of clinical
information displays in facilitating safe, efficient, and effective
decision-making and care coordination in interdisciplinary healthcare
settings. Miller received her PhD in psychology from the University
of Queensland. She completed a postdoctoral fellowship focusing on
care coordination in ICUs at the Vanderbilt University Medical Center.
Contact her at anne.miller@vanderbilt.edu.

Janos Sztipanovits is the E. Bronson Ingram Distinguished
Professor of Engineering at Vanderbilt University and founding
director of the Institute for Software Integrated Systems. His research
interests are at the intersection of systems and computer science and
engineering, including model-integrated computing for distributed
embedded software, structurally adaptive systems, autonomous
systems, design space exploration, and systems-security codesign
technology. Sztipanovits has a doctorate in electrical engineering from
the Hungarian National Academy of Sciences. He’s a Fellow of the

IEEE. Contact him at janos.sztipanovits@vanderbilt.edu.

